April 15, 2001 / Vol. 26, No. 8 / OPTICS LETTERS

485

Physical origin of the Gouy phase shift
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We show explicitly that the well-known Gouy phase shift of any focused beam originates from transverse
spatial confinement, which, through the uncertainty principle, introduces a spread in the transverse momenta

and hence a shift in the expectation value of the axial propagation constant.
for the Gouy phase shift in terms of expectation values of the squares of the transverse momenta.
also explains the phase shift in front of the Kirchhoff diffraction integral.
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The Gouy phase shift is the well-known n#/2 axial
phase shift that a converging light wave experiences
as it passes through its focus in propagating from —«
to +w. Here the dimension n equals 1 for a line fo-
cus (cylindrical wave) and equals 2 for a point focus
(spherical wave). This phase anomaly was first ob-
served by Gouy'™® and was shown to exist for any
waves, including acoustic waves, that pass through a
focus. The Gouy phase shift plays an important role
in optics. It explains the phase advance for the sec-
ondary Huygens wavelets emanating from a primary
wave front. It also determines the resonant frequen-
cies of transverse modes in laser cavities.® In non-
linear optics the Gouy shift affects the efficiency of the
generation of odd-order harmonics with focused beams.
It also plays a role in the lateral trapping force at the
focus of optical tweezers and leads to phase velocities
that exceed the speed of light in vacuum. Recently
we pointed out the effect of the Gouy phase shift on
the temporal profile of a single-cycle electromagnetic
pulse*® and made a direct observation of the polar-
ity reversal that results from a Gouy phase shift of
7.5 Another direct observation of a 7/2 Gouy phase
shift of terahertz beams in a cylindrical focusing ge-
ometry was reported recently.’

Although Gouy made his discovery more than 100
years ago, efforts are still being made to provide
a simple and satisfying physical interpretation of
this phase anomaly. An earlier paper® provided an
intuitive explanation of this phase anomaly based on
the geometrical properties of Gaussian beams. How-
ever, that argument cannot explain the 7 /2 phase
shift for cylindrical focusing. In a recent paper an
interpretation of the Gouy phase shift as a geometrical
quantum effect was also proposed.” Whereas this
interpretation is satisfying in its simplicity, the con-
nection to quantum mechanics appears unnecessary
because Gouy showed that the phase jump exists for
all waves, including sound waves. It has also been
suggested that the Gouy phase shift is a manifestation
of a general Berry phase, which is an additional geo-
metric (topological) phase acquired by a system after a
cyclic adiabatic evolution in parameter space.l® The
parameter that is cycled in the case of the Gouy
phase is the complex wave-front radius of curvature
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q associated with a Gaussian beam.''? This sophis-

ticated modern interpretation requires knowledge of
such concepts as anholonomy and is far from being
intuitive.

In this Letter we provide a simple intuitive explana-
tion of the physical origin of the Gouy phase shift. We
show explicitly that the Gouy phase shift of any focused
beam originates from the transverse spatial confine-
ment, which, through the uncertainty principle, intro-
duces a spread in the transverse momenta and hence
a shift in the expectation value of the axial propaga-
tion constant. A general expression is given for the
Gouy phase shift in terms of the expectation values
of the transverse momenta. It yields the correct val-
ues for both line and point focusing and also explains
the phase shift in front of the Kirchhoff diffraction
integral.

Consider a monochromatic wave of frequency w
and wave number 2 = w/c propagating along the z
direction. For an infinite plane wave, the momentum,
which is proportional to %, is z directed and has no
transverse components. The spread in transverse
momentum is zero and hence, by the uncertainty
principle, the spread in transverse position is infinite.
A finite beam, however, will have a spread in trans-
verse momentum because it is made up of an angular
spectrum of plane waves obtainable by means of a
Fourier transform. The wave number is related to
these transverse components through

k* = k2 + k2 + k.2, (1)

where k., k,, and k, are the wave-vector components
along the coordinate axes. Inasmuch as k& (=w/c) is
constant, the presence of the transverse components
reduces the magnitude of the axial component from its
value of k£, = k for an infinite plane wave propagating
along z. Because of the finite spread in wave-vector
components, it is appropriate to deal with averages or
expectation values defined by
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where f(£) is the distribution of the variable £.
Then from Eq. (1) we can define an effective axial

&)= (2)
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propagation constant for a finite beam through the
second moment as
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The effective propagation constant defined in
Eq. (3) is associated with the overall propagation
phase ¢(z) on axis through %, = 0¢(2)/9z."* The
first term yields the phase kz of an infinite plane
wave propagating along z. The last two terms give
rise to the Gouy phase shift:

be = -7 [ (k) + 2z @

Hence the Gouy shift is the expectation value of the
axial phase shift owing to the transverse momentum
spread. In what follows, we shall apply our principle
result, Eq. (4), to several situations.

Consider a monochromatic beam with a Gaussian
transverse distribution given by
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where
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is the beam radius and wq is the minimum spot size
(beam waist) at z = 0. The Rayleigh range is defined
by zr = mwo?/A, where A is the wavelength. The an-
gular spectrum of plane waves, or, equivalently, the
distribution of transverse wave-vector components, is
given by the Fourier transform

Fleo k)= o= [ [ ree

X exp(—ikyx — ikyy)dxdy . (7)

On substituting the Gaussian distribution for f(x,y)
we find the spectrum
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which is also Gaussian and centered about &, = &, = 0.
Both the functions f(x, y) and F'(k,, k,) are normalized
such that

f f If (x, y)1*dxdy

“+o “+o ~
_ [ [ \F(ky, ky)2dRydly = 1. (9)

Thus, using Eq. (2), we have
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The Gouy phase shift for the Gaussian beam is then
given by

1
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bg = —z[ {(ky + (ky®)}dz = —z[ dz.
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The factor of 2 in Eq. (11) is related to the number of
transverse dimensions, with each dimension contribut-
ing 1/w?(z) to the mean-square transverse momentum.
It is unity for one-dimensional focusing. This explains
why the Gouy shift of a cylindrical wave is half that
of a spherical wave. On carrying out the integration
in Eq. (11) we obtain the standard result for the Gouy
shift of a fundamental Gaussian beam?®:

¢g = —arctan(z/zg). (12)

For a Gaussian beam that evolves from —o to +o
through a point focus, Eq. (12) predicts a phase shift
of 7. These results can also be used to explain the
7 /2 phase shift in front of the Kirchhoff diffraction in-
tegral for two-dimensional diffracting screens and the
7 /4 phase shift for one-dimensional screens as the dif-
fracted beams propagate from 0 to +«~. Both phase
shifts originate from the transverse spatial restriction
imposed by the diffracting apertures.

The result of Eq. (11) can be generalized to com-
plex values of the beam radius as defined by w.2(z) =
AMzg + iz)/w.>® Using this definition in Eq. (11), we
obtain the complex Gouy shift:

6 (2) = pg(2) + ilny22 + 2p2. (13)

The real part of ¢g°(z) is the ordinary Gouy phase;
the imaginary part reduces the amplitude of the dis-
tribution f(x, y) by a factor of \/z%Z + zr?2 as a result of
diffraction.

We now show that Eq. (4) predicts the phase anom-
aly not only for fundamental Gaussian beams but also
for higher-order transverse modes and hence is valid
for arbitrary field distributions. One complete set of
transverse modes is described by Hermite—Gaussian

beams®!3:
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where the normalization coefficient is given by
1 1/2
Cmn = (772’"+”m!n!> (16)



and 0,,() is the Hermite—Gaussian of mth order:

Here H,,(¢) is the mth-order Hermite polynomial.
The Fourier transform of Eq. (14) is found to be
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The Hermite polynomials are orthonormal and satisfy
the recursion relation

H,., —2¢6H, +2nH,_1 =0. (18)

One can use this property, along with Eq. (2), to derive
the expectation values

kP = 3= (m+ 5 )
%ﬂm=£%@+§) (19)

Substituting Eq. (19) into Eq. (4), we obtain

éc,mn(z) = —(m + n + l)arctan(z/zg), (20)
which is identical to the expression given in Ref. 3 for
the Gouy shift of a higher-order transverse mode (mn).
Each transverse dimension offers a phase shift of

—(p + 1/2)arctan(z/zg), p = m for x axis,

p=nfor yaxis (21)
owing to the transverse momentum in that direction.
This is larger than that of the fundamental Gaussian
because of the more rapid transverse variation.

As was mentioned above, the spread in transverse

momentum and the transverse spatial extent of a finite
beam are related by an uncertainty principle:

Ak, Ax = const., (22)
where the operator A denotes the variance defined by

Ag =[{(€ — (ENIHVA (23)
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For a deterministic function f(¢), the quantity in
Eq. (23) represents the root-mean-square width of the
function. For a signal of zero mean, Eq. (23) yields
(A&)? = (£%). Thus we find the uncertainty relation
or the space—bandwidth product of the mth-order
Hermite—Gaussian mode:

(Aky)m(Ax), =m + 1/2. (24)

The higher-order mode occupies a larger volume in the
phase space (x, k).

In conclusion, we have provided a general expression
and physical explanation of the Gouy phase shift by
showing that the Gouy phase can be derived from
the transverse momenta of the monochromatic wave
for both spherical and cylindrical focusing. Conse-
quently, we concluded that the Gouy shift of finite
beams stems from transverse spatial confinement.
This conclusion applies to the phase shift in front
of the Kirchhoff diffraction integral as well. Our
result is valid for a medium with constant refractive
index but can be generalized to lenslike media for
which the refractive index varies quadratically with
radial position. In that case we find that for a stable
propagating mode the Gouy shift is a linear function
of distance z and can take on any arbitrary value.
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