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Evolution of the Giant Pulse in a Laser 
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The differential equations governing inversion and photon density in a laser are solved for giant pulse 
operation. The simplifying assumptions which permit solution involve homogeneous excitation of the laser 
and the neglecting of changes produced by pumping and fluorescence during the formation of the giant pulse. 
Energy, peak output power, pulse delay, and pulse width are calculated. 

INTRODUCTION 

I T has been shown by Hellwarth and l\lcClungl - 3 

that a single pulse of very high intensity may be 
obtained from a laser if the onset of stimulated emission 
is delayed by means of a shutter until excitation reaches 
a level far above the threshold with the shutter open. 
Then the shutter is suddenly opened; that is, the 
threshold level is lowered, whereupon the radiation 
intensity builds up to a sharp peak and the excess 
excitation or population inversion is quickly exhausted. 
Under ordinary experimental conditions the process 
takes place so rapidly that the replenishment of the 
popUlation inversion through absorption of the pump­
ing radiation may be neglected. 

The following quantities are of interest in connection 
with the giant pulse: The total energy radiated, the 
peak power radiated, the delay or the time of formation 
of the giant pulse, and the rates of its rise and of its 
fall. 

Hellwarthl ,2 published several estimates for these 
parameters in terms of the parameters of the laser 
and the variables determining its physical state, as 
\vell as the rate of switching. Here we are concerned 
only with the fast switching case which we regard as 
physically and technically the most important. Fast 
switching is characterized by a switching of the shutter 
or cavity Q in time so short that no significant change of 
population inversion takes place during the switching 
process. 

In formulating the equations which govern the 
process of stimulated emission in the period following 
the switching, we neglect the effects of processes which 
are slow in comparison to the formation of the giant 
pulse. In particular, we neglect the effects of continued 
pumping and of spontaneous emission on the population 
inversion. Under the described circumstances we obtain 
two nonlinear differential equations which are simpler 
than the general Statz-Del\lars equations and which 
may be solved completely. The first integral of the 
equations permits calculation of the total energy 
obtainable from the pulse, the population inversion 

1 R. W. Hellwarth, Admnces in Quantum Electronics, edited by 
J. R. Singer (Columbia University Press, New York, 1961), pp. 
334-341. 
, 2 F. J. McClung and R. W. Hellwarth, J. App!. Phys. 33, 828 
(1962). 

3 F. J. McClung and R. W. Hellwarth, Proc. IRE 51, 46 (1963). 

remaining and the peak power. Delay time and pulse 
width require further computations. 

FORMULATION OF THE PROBLEM 

The laser material is characterized by the following 
parameters: No, the number of active ions in the 
volume element, T L, the lifetime of spontaneous 
(fluorescent) decay, and ao, the absorption coefficient 
of the unexcited laser material. The parameter ao is a 
function of the frequency, we use its peak value at the 
center of the fluorescent line. 

The laser geometry is characterized by the following 
variables: V, the volume of the laser material, C, the 
length of the laser material, and L, the optical distance 
between the reflectors calculated with due regard for the 
refractive indices of the materials situated between 
reflectors. 

The physical state of the laser is characterized by the 
following variables: <1>, the photon density at the laser 
frequency v, and N=iY2-~\\, the population inversion 
per unit volume. 

An important device parameter is the loss coefficient 
"I, which is the fractional photon loss in a single passage. 
It may be subdivided into "I = "II +"12, where "II rep­
resents the fraction of photons emitted as useful output 
of the device and "12 represents incidental losses. 

The time of a single passage is tl = L/ c, therefore, the 
lifetime of a photon within the Fabry-Perot interferom­
eter is T=tlh. This is a fundamental unit of time 
characteristic of the laser. 

The initial state for the formation of the pulse is 
achieved by pumping the laser with an optical source 
and keeping the loss coefficient at a value "I' much 
higher than "I. During this period of excitation, the 
population inversion rises from - No to a positive value 
N,; the photon density also rises to a value <l>i. The 
subscript i indicates that the values are "initial" values 
for the giant pulse. At time t = 0 the loss coefficient is 
reduced to "I and the formation of the pulse begins. 

Photons are amplified in the laser at the rate of <Pax 
on traversing a distance x in the active material. Here 
a, the coefficient of amplification, satisfies the equation 

a=aoN/No. (1) 

The full length of the laser is traversed l/tl times per 
second. Photons are lost at the rate of <I>/T, therefore 
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neglecting photons created by spontaneous emission, 
the variation of photon density is described by the 
equation: 

(2) 

If the contribution of continued pumping is neglected 
the density of population inversion varies at the follow­
ing rate: 

deY 2at 
--=--cf>, (3) 
dt 11 

because the stimulated emission of a photon causes ~y 
to decrease by 2. 

We eliminate a by means of (1) and introduce the 
normalized variables 

n= :V/No, 'P=cf>/No, (4) 

d'P = (~-~)'P' 
dt tl T 

(5) 

dn 2aot 
-=--n'P. (6) 
dt 11 

Now we change the timescale to make T the unit of 
time. This process is equivalent to the substitution 
tf = tiT and subsequent dropping of the primes. In this 
manner we obtain 

(7) 
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FIG. 1. Inversion and photon density in the giant pulse. 

D.. 

the initial values ni and 'Pi. The laser itself is char­
acterized by the parameters T and np to which one 
might add No and 1I if a variation of materials is also 
contemplated. 

Equations (10) and (11) may be combined in the 
form: 

d(n+2'P)/dt= -2'P' (12) d'P/ dt= [(aoth )12-1 J'P, 

dn/dt= - (2aoth)n'P. (8) Integrating and neglecting 'Pi and 'PI we obtain 

We further introduce the constant np defined by the 
equation 

(9) 

Clearly np is the population inversion which corre­
sponds to threshold for the given laser. The final form 
of the differential equations is: 

d'P/dt= [(n/np) -1J'P, 

dn/dt= - (2n/np)'P' 

SOLUTION OF THE EQUATIONS 

(10) 

(11) 

At the start of the process the photon density 'P is 
very low. It rises from 'Pi, reaches a peak 'Pp generally 
many orders of magnitude higher than 'Pi. Then 'P 
declines to zero because of the exhaustion of its source 
of supply. The population inversion is a monotone 
decreasing function of time starting at ni and ending at 
nf. Figure 1 illustrates the typical curves traced out by 
these variables. 

The total energy obtainable from the pulse is propor­
tional to ni-nJ, the peak power radiated is proportional 
to the peak photon density 'Pp. These are the quantities 
of prime interest; they must be calculated in terms of 

ni- nf = 21'" 'Pdt, (13) 

which is the statement of the elementary fact that the 
time integral of the photon loss rate is equal to the 
number of stimulated transitions. In our units of time, 
the rate of loss of photons is equal to the photon density. 

To solve the differential equations we divide (10) 
by (11). 

d'P/dn= (np/2n)-t. (14) 
Therefore, 

'P- 'Pi=t[np log(nlni)- (n-ni)]. (15) 

Since 'Pi""O and 'PI""O, we can determine the final 
population inversion from 

np log(nf/ni)=nl-ni. (16) 

Equation (16) may be put in the form 

nllni=exp{ (ninp)[(nfln'i)-lJ}. (17) 

Here x = 12 tI ni is unknown; (3 = n;/ np is given. The 
equation x= exp(3(x-1) may be resolved in the form 

(3= (10gx)/(x-1). (18) 
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FIG. 2. Energy utilization factor and inversion 
remaining after pulse. 

Figure 2 shows the relationship between nf/ni and 
ninp as determined from (18). The graph enables one 
to determine the fraction of inversion remaining from 
the initial conditions. The energy utilization factor is 
(nj-ni)/ni. The total energy output of the pulse is 

(19) 

Two limiting cases are of particular interest. When 
the inversion is high, the energy utilization factor is 
nearly one. In fact, for n;/np>4, nf/ni<0.02. In this 
case nf may be neglected and we have 

(20) 

When the inversion is slight, x=nt!ni is nearly one, 
and we may expand the logarithm in (18) in powers of 
x-I with the result that 

(ni-np)/np~K(ni-nf)/niJ, 

which leads to 

El~ (nin p) (ni-np) VNohv. (21) 

Since ni and np are nearly equal, (21) does not differ 
substantially from the estimate of McClung and 
Hellwarth,3 who obtained (ni-np)VNohvfor this case. 

The peak power is calculated from (15) noting that 
the peak is reached when n = np. Therefore, neglecting 

(22) 

By means of Taylor series expansion, we obtain 

'Pp = (ni- n p)2/4np, (23) 

an approximation good only when (ni-np)/ni«l, 
which is frequently not the case. Hellwarth's recent 
estimate of the peak power [Eq. (14) in Ref. 3J is 
identical to (23) except for the omission of the 4 in the 
denominator. Equation (22) determines the peak 
photon density. Since photons decay with a lifetime T, 
the peak power radiated from the laser is 

Wp=t[n p 10g(np/ni)+ni-1lpJ(VNohv/T). (24) 

When not all escaping photons contribute to the 
useful output of the laser then the peak effective output 
is W pe= W p'Yl/'Y. 

ENERGY AND POWER IN A TYPICAL RUBY LASER' 

In the case of pink ruby N ohv=4.65 J/cm3. At room 
temperature Cl'o=O.4 cm~l. In a typical situation the 
loss coefficient with the shutter open varies between 
0.05 and 0.20. For an optical length of 30 cm, the time 
of passage is 1O~9 sec. For "I = 0.1 the lifetime of the 
photon becomes T= 10~8 sec. 

The parameter l1p is now determined by the length .t 
of the laser rod since (9) must be satisfied. For.t= 5 cm, 
and the assumed "1=0.1, we have np=0.05. An initial 
inversion between 0.1 and 0.25 may be regarded as 
typical. 

If we take for example l1i=0.15 and np =0.05, we 
obtain from the graph of Fig. 2 nf/ni=0.06, the energy 
utilization factor is 0.94. The energy of the pulse is 
calculated from Eq. (19) as 0.321 joules per cc of ruby, 
or of the order of one joule for a ruby of convenient 
thickness. 

The peak power output as calculated from Eq. (24) 
is 10.5 X 106 watts per cc of ruby. When the length of the 
ruby is increased, the value of l1p is proportionately re­
duced. In the example under consideration, this affects 
the energy utilization only slightly, the output energy 
per cc remains practically unchanged, provided ni re­
mains the same. The peak power, however, is affected as 
can be seen by examining (24). Therefore, in this case, 
the peak power per unit volume increases with the 
length of the laser. Consider, however, the effects of 
shortening the laser. If the e is reduced from 5 to 2.5 cm, 
np increases from 0.05 to 0.10. If the inversion at the 
start of the pulse remains unchanged, the energy utiliza­
tion factor is reduced from 0.94 to 0.58, therefore, the 
energy output per unit volume is drastically reduced. 
This unsymmetrical response to a change in length is 
due to the fact that the data chosen for illustration place 
the laser in an operating region where the energy 
utilization factor can hardly be increased. 

However, the value of 1li is frequently determined by 
the value of "I prevailing prior to switching. In such a 

'Bela A. Lengyel, Lasers (John Wiley & Sons, Inc., New York, 
1962), p. 54 ff. 

Downloaded 15 May 2011 to 159.149.103.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



EVOLUTION OF GIANT PULSE IN LASER 2043 

case the reduction of laser length alters ni and np in the 
same proportion. Hence the energy utilization factor 
and the product ni V remain unchanged. Therefore, 
under such circumstances the peak power and energy 
output are not affected by the length of the ruby. 

EVOLUTION OF THE PULSE IN TIME 

The energy and power calculations of the preceding 
sections were carried out by eliminating time from the 
system of differential equations governing the physical 
process. They resemble the calculations pertaining to 
the geometrical parameters of orbits in mechanics. 
We turn now to the dynamics of the situation. This has 
already been studied by Hellwarth,1.3 who noted that 
initially the photon density starts at a low value and 
rises at an approximately exponential rate with a time 
constant (in physical units) 

T=t!/(ail-'Y)=npT/(ni-np). (25) 

This can be seen readily by substituting the fixed value 
of ni for n in (5). We are able not only to predict 
the rate of initial rise, but to derive a complete solution 
by giving t in a closed form as a function of n. Since <{" as 
a function of n, has already been obtained in Eq. (15), 
we have formally solved the mathematical problem. 

The formal solution is obtained by using the fact that 
<{'en) is given by (15), therefore (11) may be integrated 
with the result 

f
n n dn' 

t= - ni 2n':(n')' 
or in greater detail 

(26) 

(27) 

In view of the shape of <{'en) as shown in Fig. 1, we 
recognize three regions of integration: the central 
region B where <{' is large, and the regions A and C 
preceding and following it, respectively. In handling 
the integral (27), it proves convenient to treat the 
regions A and C analytically and the central region B by 
machine computation. In the latter interval the proper­
ties of the solution are independent of the initial 
photon density <{'i (to a very high degree of accuracy) 
and, therefore, the single parameter n./ np characterizes 
the giant pulse. 

The substitution 
Z= -logn/ll p (28) 

places the origin of the new variable at the peak of the 
pulse. To separate the three regions let us introduce the 
quantities z1=zi+0.01<0, and z2=z,-0.01>0. The 
regions A, B, and C are then characterized by Z;<Z<Z1, 
Z1 <Z<Z2, and Z2<Z<Zf, respectively. The expression 
for time becomes 

J
z dz' 

t= Zi F(z')' 
(29) 

where 

It is convenient to arrange calculations so that the 
instants of passage from region A to B and from region 
B to C serve as reference points in regions A and C, 
respectively. We introduce 

J
Z

l dz' JZ
2 dz' 

T 1= -- and T 2= --. 
Zi F(z') Zi F(z') 

(31) 

In interval A the function F(z) may be approximated by 

(2 <{'./np) + (e-zi -1) (z- Zi), 

because Zi:::;Z:::;Zi+O.01. We note that 

e-zi -1= (ni-np)/np. (32) 

Thus in evaluating integrals of the type (29) in the 
region A the integrand may be written as 

Therefore, noting that Z1 = zi+O.01, we obtain 

(33) 

and 
np [2 <{'i+ (z- Zi) (ni- n p)] 

t-T1=--log . 
ni-np 2 <{'i+0.01 (ni-np) 

(34) 

To treat region C we transform F(z) by making use 
of (16) which in terms of the new variables takes the 
form 

(35) 
Then 

F(z)= (2 <{''/np)+zl-z+e-zl-e-z• (36) 

In region C this may be approximated by the expression 

(Zl- z) (l-e-zl), 

where the last factor is readily recognized as (np-nl)/ 
np. \\Te obtain 

np 
= ---loglOO(zl-z). (37) 

np-nl 

Computer solutions have been obtained for the 
interval containing the pulse, Z1<Z<Z2, where 

(38) 

These solutions are plotted in Fig. 3 for Zi= -0.5, 
-1.0, -1.5 and - 2.0. These values correspond to the 
following values of n./np = 1.649, 2.718,4.482, and 7.389. 

In the interval B it is convenient to calculate time 
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FIG. 3. Photon density vs time in the central region of a giant pulse. (Time is measured in units of photon lifetime 
T in the Fabry-Perot interferometer. Origin at peak.) (a) lognl/np=0.5, n;/np= 1.649; (b) logn;/np= 1.0, n;/np 
=2.718; (c) logn;/np=1.5, n;/np=4.482; (d) logn;/np=2.0, ni/np=7.389. 

from the instant of the attainment of the peak, therefore 
the time coordinate is t' = t - tp • Then one calculates 
tl' and t2' by extending the numerical integration to 
the appropriate points. Since the instant when t' = It' 
coincides with the instant when t= T), it follows that 
in terms of the original time reckoned from switching, 
the peak is reached at tp= T 1-/1', where Tl is given 
by (33). The important characteristics of the giant 
pulse in the central region are: 2 r.pp/ n p, a normalized 
measure of peak power; t., the time in units of T for 
the photon density to rise from tr.pp to r.pp; If, the time 
for the fall of r.p from r.pp to tr.pp. These are presented in 
Table I together with data which specify the boundaries 
of the central region, namely tl', t2', 2r.p(t1')/np, and 
2cp(tz')/l1p • 

In addition to these "central" characteristics, it 
is necessary to know the energy utilization factor 
(ni-nf)/ni, which we already discussed and the time 
required to reach the peak from the time of switching. 
The last quantity depends on the time it takes the 
laser to pass through the initial phase which corre­
sponds to region A. This time in turn depends on the 
initial photon density which may be estimated as 
follows: 

During the period of excitation, inversion and photon 
density rise toward the initial values nl and r.pi, respec­
tively. The principal processes governing the rise of r.p 
are spontaneous emission with a lifetime TL, stimulated 
emission, and the escape of photons from the laser at 
the rate corresponding to the preswitching value of 
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"(. We count only those photons which propagate in 
the proper direction; i.e., which are included in the 
laser beam. It is immaterial what happens to photons 
which are spontaneously emitted in a lateral direction. 
Then, assuming N 2 ions in the excited state, the number 
of photons per second emitted spontaneously in the 
proper direction is N 2Q/411'TL. We note that 

2N 2= N 2-N 1+ N 2+ N 1 =]V 0(1 +n), 

therefore the differential equation which takes the 
place of (5) during the excitation period is 

where 'Y'> 'Y is the loss rate prior to switching. Again 
introducing T as the unit of time we get 

dip = Q(l+n)T +(~_ "(')<p>O. (40) 
dt 811'TL np "( 

Only a. small error is introduced by replacing the > 
sign in (40) by the = sign, because on the scale of T the 
rise of <p is slow. The factor of <p in (40) is negative 
during the excitation period, because if n/np were to 
exceed 'Y'h the laser would fire. How close n/np is 
permitted to get to the limit 'Y' h depends on experi­
mental conditions. The assumption that it rises to 
one-half of this limit may be approximately true in a 
typical situation. This means 

(41) 
Then 

<Pi~ (np /ni)[Q(1+ni)T/811'TL]. (42) 

For ruby TL = 3 X 10--3 sec. The value 10-6 is typical 
for Q/411'. Let us consider again the figures ni=0.15, 
np =0.05 and T=Hy-8 secforillustration. Then <Pi"",0.65 
X 10-12, which corresponds to 4X106 photons per cc 
traveling in the correct direction. With these numerical 
data we obtain from (33) the figure T1 = 10.2 for the 
starting time of the central region. Admittedly, the esti­
mate of <Pi is a coalse one. However, because of the 
logarithmic character of (33) a change in <Pi by a factor 
of ten would change T 1 only by 1.1. 

N ow we turn to Table I, where we find for nJ np = 3.00 
the value It' = - 2.88. Therefore, the time from switch­
ing to the attainment of the peak is Tl+t/= 13.1XI0- 8 

sec. This is of the order of observed data.3 The duration 
for which the photon density remains above its half­
peak level is tf+tf= 1.70XIQ-8 sec. 

THE EFFECTS OF TEMPERATURE 

Temperature enters into giant pulse calculations 
because ao and TL are temperature-dependent param­
eters of the material. 4 The change of ao from 0.4 cm-1 at 
room temperature to 10 cm-1 at 77°K has a profound 
effect on np because np changes in inverse proportion to 

TABLE L Characteristics of a giant pulse as functions of n;/np • 

n, 1H 2 <(,p 2 «'(tl') 2",(12') 
iog-

I,' np np np I, If 11' tlp np 

0.1 1.105 0.0052 12.291 12.632 -28.26 22.93 0.0001 0.0017 
0.2 1.221 0.0214 7.960 8.437 -16.81 18.67 0.0022 0.0020 
0.3 1.350 0.0499 5.335 5.803 -11.91 14.43 0.0034 0.0028 
0.4 1.492 0.0918 3.892 4.356 -9.14 11.88 0.0048 0.0037 
0.5 1.649 0.149 3.016 3.480 -7.33 10.25 0.0064 0.0045-
0.6 1.822 0.222 2.432 2.896 -6.05- 9.12 0.0081 0.0053 
0.7 2.014 0.314 2.016 2.481 -5.09 8.31 0.0100 0.0060 
0.8 2.226 0.426 1.704 2.171 -4.35 7.71 0.0121 0.0066 
0.9 2.460 0.560 1.463 1.931 -3.76 7.26 0.0145- 0.0072 
1.0 2.718 0.718 1.271 1.741 -3.28 6.91 0.0170 0.0077 
1.1 3.004 0.904 1.114 1.586 -2.88 6.65 0.0199 0.0082 
1.2 3.320 1.120 0.984 1.459 -2.54 6,47 0.0230 0.0086 
1.3 3.669 1.369 0.875 1.352 -2.26 6.33 0.0265 0.0090 
1.4 4.055 1.655 0.782 1.263 -2.01 6.25 0.0304 0.0092 
1.5 4.482 1.982 0.702 1.186 -1.80 6.21 0.0346 0.0095 
1.6 4.953 2.353 0.633 1.120 -1.61 6.20 0.0.393 0.0096 
1.7 5.474 2.774 0.572 1.064 -1.45 6.23 0.0445- 0.0098 
1.8 6.050 3.250 0.518 1.015 -1.30 6.29 0.0502 0.0099 
1.9 6.686 3.786 0,471 0.973 -1.18 6.37 0.0565 0.0099 
2.0 7.389 4.389 0,429 0.936 -1.06 6.48 0.0635 0.0100 
2.1 8.166 5.066 0.391 0.905- -0.96 6.61 0.0713 0.0100 
2.2 9.025 5.825 0.357 0.877 -0.87 6.75 0.0798 0.0100 
2.3 9.974 6.674 0.327 0.854 -0.79 6.92 0.0893 0.0100 
2.4 11.023 7.623 0.300 0.833 -0.72 7.10 0.0997 0.0100 
2.5 12.182 8.683 0.275- 0.816 -0.65 7.30 0.1112 0.0100 

ao. This decrease of np affects the energy output of the 
laser to an appreciable degree only when the laser is 
operated with a medium or low inversion; i.e., n;jnp <3. 
Then a decrease of np causes nf to decrease also, hence, 
if ni is kept constant the output energy increases as 
required by (19), For high inversion, n;jnp > 4, the 
quantity nf is already nearly zero and no significant 
change can take place. 

Peak power always increases if np is decreased and n, 
is kept constant, but the rate of increase is generally 
slow. This is seen by differentiating Eq. (22) with 
respect to npo Then 

o <ppjan p = t log(np/ni) <0. (43) 

What happens in an actual case is determined to a 
larger extent on the effect of temperature change on n,. 
This depends on the experimental circumstances. 

EVALUATION OF THE RESULTS 

Although formally simple mathematical results were 
obtained, care must be exercised in applying these to 
the physical situation. Some of the assumptions made 
in arriving at the simple formalism do not correctly 
reflect the detailed properties of the physical system. 

The first basic assumption subject to doubt is the 
uniform excitation of the laser rod. This is impossible 
to achieve in practice, the density of the exciting radia­
tion varies with distance from the cylinder axis. The 
initial photon density also varies. Therefore, the process 
of pulse formation proceeds not at a constant rate for 
the entire ruby, but as a function of the radius. Then 
what is observed as pulse delay time is a time average 
over the entire laser. So far, our formula for tp may stili 
correctly represent this average delay. The calculated 
pulse width is in serious error because the observed pulse 
results from the superposition of pulses occurring at 
slightly different times. The same reasoning explains 
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why the observed peak output is lower than what we 
calculate for a homogeneously excited laser. An ad­
ditional factor here is that total observable energy is 
also lower than the calculated one which does not take 
into account incidental losses in the system. 

When the initial inversion ni is determined by an 
experimenter by relating it as a threshold to a measured 
loss coefficient then ni represents the highest excitation 
within the laser, and not the average one over the entire 
cylinder. The fact that the experimenter usually 
measures 'Y=a.onf and not n creates an added complica­
tion, because a.o is a function of the temperature and 
the temperature of the ruby is variable during the 
process of pumping. 

A fundamental limitation of our work is that it 
neglects the spectral distribution of the fluorescent line 
and the selective properties of the Fabry-Perot inter­
ferometer with regard to frequency. "'hen a laser is 
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excited barely above threshold, the operation in a 
single Fabry-Perot mode is fairly possible. This is 
definitely not the case, however, in giant pulse opera­
tion. Here we have to deal with the simultaneous 
evolution of a large number of modes over a range of 
frequencies. An adequate treatment of the giant pulse 
phenomenon should take into account the interaction 
of a number of oscillations all feeding from the same 
reservoir of excited ions. Such work may have to follow 
the approach indicated in the paper of Wagner and 
Birnbaum.5 
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The Hugoniot equation of state of 6061-T6 aluminum was determined in the pressure range from 0 to 31 
kbars from measurements of velocities of plane waves induced by plate impact. Below the Hugoniot yield 
point of 6.4±O.7 kbars, only an elastic wave was observed, while above both elastic and plastic waves were 
observed. The measured wave velocities corresponded closely to values predicted from elastic parameters 
for the material determined in static tests. Above the elastic limit, the free-surface velocity was less than the 
interface velocity by an amount slightly greater than predicted by theory, and appeared to be a function of 
target thickness. 

The measured Hugoniot was found to correspond well with elementary elastic-plastic theory, in which the 
yield stress is assumed to be a constant, and the change in compressibility with compression is predicted by 
second order elastic theory. It was found that the measured Hugoniot yield stress corresponded to the static 
yield stress obtained in simple tension tests, and that the Hugoniot joined smoothly onto an extrapolation 
of the high pressure Hugoniot data of Walsh and AI'Tshuler. 

INTRODUCTION 

T HE method of using explosively generated one­
dimensional shock waves to determine the 

equation of state of a medium in a 1S0- to SOO-kbar 
(1 kilobar= 109 dyn/cm2) pressure range was first 
discussed by Walsh and Christian.l,2 A modification of 
this explosive technique was later used to extend the 
pressure range up to a few megabars,3-5 The results of 
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mission and, under contract AF 33(657)-8427, by the Flight 
Dynamics Laboratory, Aeronautical Systems Division, USAF. 
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3 L. V. Al'Tshuler, K. K, Krupnikov, B. N. Ledenev, V. 1. 

the experiments discussed extend the equation of state 
of 6061-T6 aluminum into the low-pressure region 
from 0 to 31 kbars, The purpose of measuring the low­
pressure equation of state was to investigate the 
validity of extending the elastic-plastic theory into the 
region of high rates of loading. Also, various problems, 
such as the description of the waveform propagated 

Zhuchikhin, and M. 1. Brazhnik, Zh. Eksperim. i Theor. Fiz. 
34, 874 (1958); [English translation: Soviet Phys.-JETP 7, 606 
(1958)]. 
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