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FM and AM Mode  Locking of the Homogeneous 
Laser-Part 

DIRK J. KUIZENGA4, MEMBER, IEEE, 

Abstracf-A new  general  analysis  for mode-locked operation of 
a homogeneously broadened  laser with either  internal  phase  (FM) 
or amplitude (AM) modulation is presented in this paper. In this 
analysis, a complex Gaussian pulse is followed through  one  pass 
around  the  laser cavity. Approximations are  made  to  the  line  shape 
and modulation characteristics  to  keep  the pulse  Gaussian. After one 
round trip, a self-consistent  solution is required. This yields  simple 
analytic expressions  for  the pulse length, frequency chirp, and  band- 
width of the mode-locked pulses. The  analysis is further  extended 
to  include effects of detuning of the modulator, in which case 
analytical  expressions are obtained for  the  phase  shift of the pulse 
within the modulation cycle, the  shift of the pulse spectrum off line 
center,  the  change in pulse length,  and  the  change  in power output. 
Numerical results  for a typical Nd:YAG laser  are given. In the  case 
of the  FM mode-locked laser  it  is found that  there  is a frequency 
chirp on the pulse and  that  this  causes pulse  compression and 
stretching  when  the  modulator  is  detuned. Etalon  effects and dis- 
persion effects are also  considered. 

I. INTRODUCTION 

HE phenomenon of mode locking of a laser by an 
internal phase or amplitude  perturba,tion  to  obtain 
short  optical pulses is  well known and  has been 

investigated theoretically and experimentally by several 
authors. 

Theoretical  studies of the mode-locked laser with an 
inhomogeneously Doppler-broadened atomic line have 
been done by DiDomenico [l],  Yariv [ 2 ] ,  and Crowell [3], 
all of whom discuss a linearized solution to  the problem. 
More  detailed nonlinear calculations for the  FM-type 
mode locking [4] and AM-type mode locking [5] have been 
presented by Harris  and NIcDuff. In all the above analyses 
the coupled-mode-equation approach  has been used, 
assuming that  the axial modes saturate independently. 
This  has led to a good understanding of mode-locked gas 
lasers, in  particular the He-Ne laser [GI and argon laser [7]. 

Mode locking has also been observed in solid-state 
Nd:YAG lasers by DiDomenico et al. [SI, using an ampli- 
tude  modulator  and by Osterink and  Foster [9] using a 
phase modulator;  and  in solid-state ruby lasers using an 
internal  amplitude  modulator  by  Deutsch,  Pantell, and 
Kohn [lo], [Ill. I n  analyzing these lasers and  any  other 
homogeneously broadened lasers, the use of the coupled- 
mode equations is complicated by the  fact  that  the axial 
modes do not  saturate independently  due to  the homo- 
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I Theory 

geneous broadening, and also by the  fact that a very large 
number of coupled axial modes are usually generated. 
Haken  and  Pauthier [I21 have suggested one  new analyti- 
cal approach that can be used for the homogeneous 
AM-type mode locking. 

In  this  paper we present  a  totally different approach to 
the homogeneously broadened system [13], working 
completely in  the time domain, rather  than  the frequency 
or coupled-mode domain. We assume that there is a short 
pulse inside the laser cavity,  and we  follow this pulse once 
around the laser cavity,  through the active medium and 
the modulator. We then require a self-consistent solution, 
i.e.,  no net change in  the complete round  trip. This ap- 
proach is very similar to  that used some time ago by 
Cutler [14] to analyze the microwave regenerative pulse 
generator.  A similar approach has recently been used by 
Gunn [15] to analyze the homogeneously broadened laser 
with  internal  amplitude modulation. 

In our analysis we assume that  the pulse is Gaussian, 
and we make necessary approximations to  the atomic line 
shape and  intracavity modulation functions  to keep the 
pulse Gaussian. One essential approximation is that  the 
bandwidth of the pulse is small compared to  the atomic 
linewidth. Experimental observations in the Nd:YAG 
laser show that this approximation is quite reasonable. 

In  this  paper we will first consider some properties of 
Gaussian pulses, the active medium and  the FM and AM 
modulators. The self-consistent solution then leads to a 
simple expression for the mode-locked pulsewidth, showing 
the dependence on all the  important laser parameters 
such as linewidth, modulation frequency, depth of 
modulation, and  saturated gain. Detuning of the modu- 
lator for the I1” and AM  cases  is  also considered as well 
as modifications to  the theory for etalon effects and 
dispersion. 

Where applicable, numerical results  for a typical 
Nd:YAG laser will  be presented. 

11. GAUSSIAN PULSES 

We  will consider the most general Gaussian optical 
pulse given by 

E(t) = +E, exp (-atz) exp [j(u,t + at’)]. (1) 

The  term a determines the Gaussian envelope of the 
pulse and  the  term jpt is a linear frequency shift  during 
the pulse (chirp). A complex constant y can be defined as 

Y = - $3, (2) 



KUIZEKGA  AND SIEGlMAN : FM A N D  A M  MODE LOCKING OF HOMOGENEOUS LASER 695 

so that 

E(t) = +Eo exp ( 4 )  exp (jw,t). 

The  Fourier  transform of this pulse is given  by [16] 

EW = ( ~ , / 2 )  v'& exp [--(a - w,)2/4r~. (3) 
The  pulsewidth  can be defined in  various ways. In  this 

paper we define the pulsewidth (7,) as the time  between 
half-intensity  points,  and  from (1) it follows that 

7, = ~ ' ( 2  In 2)/a.  (4) 

The  bandwidth or spectral  width of the (Af,) is defined 
as the frequency between half-power points of the pulse 
spectrum,  and from (3) we get' 

Note how the frequency  chirp  contributes to the  total 
bandwidth.  The  pulsewidth-bandwidth  product is a 
parameter  often used to characterize pulses, and  for the 
Gaussian pulses used in  this  analysis, the pulsewidth- 
bandwidth  product is given by 

T ~ *  Af, = (2  h 2/7r) dl + @/a)". 
Two important special cases are /3 = 0 and = a and 

for  these two cases r , .Af ,  = 0.440 and .,.Af, = 0.626. 
We  will see later  that these cases apply to AM and FM 
modulation,  respectively. 

111. ACTIVE  MEDIUM 
For a  laser  with  a homogeneously broadened line such 

as  the Nd:YAG laser [17], it can be shown (Appendix I) 
that  the amplitude  gain is given  by 

g d w )  = exp g / P  + 2j(w - w a > / A 4  (7) 

where g is the saturated amplitude  gain  through the  active 
medium a t  line center (w,) for one round  trip  in the cavity. 
The midband  gain coefficient  is related to other  material 
constants is shown in Appendix I. It should  be  noted  here 
that LC in (89) is twice the length of the active medium for 
an  ordinary  Fabry-Perot  laser  cavity, while LC is equal to 
the  active  medium  length for the ring-type  laser  cavity. 

If we now consider the case where the  bandwidth of the 
pulse is much less than  the linewidth, we can  expand (7) 
as follows. 

where G = eo and we have  assumed that (w - wa)/Aw < 1 
so that we can neglect higher order  terms. The line shape 
has now  become Gaussian, and  a Gaussian pulse going 
through an active medium with  this  line  shape will remain 
Gaussian. 

In  (S), we have  expanded  the line shape about  the center 
frequency w,. If we expa,nd the line shape  about any  other 

in  radians  and f denotes  frequencies  in  hertz.  We will use w in  the 
We adopt  the  convention  that w denotes  circuiar  frequencies 

analyses,  and change to f in the final  results. 

frequency a,, we get 

where w, = up + v, and 71 = v/Aw, the  shift of the spec- 
trum center  frequency wp normalized to  the atomic line- 
width Aw. 

We  will see later  that when we consider detuning of the 
modulator,  the pulse spectrum does indeed  shift  away  from 
line center,  and  hence we must consider the line  shape 
given  by (9). Note  that (8) and (9) have  the same  form, 
with g replaced by g / ( l  + 2jr) and Aw replaced  by 
Aw(1 + 2j7) in (8). 

IV.  MODULATOR 
The  intracavity  modulator may in  practice be either a 

phase  modulator or an amplitude  modulator. 

A. Phase Modulator 
The  internal  phase  modulator  introduces  a  sinusoidally 

varying  phase  perturbation 6( t )  such that  the round-trip 
transmission  through the modulator is given  by 

exp [- j 6 ( t ) ]  = exp (-j26, cos w,t), (10) 

where wm is the modulation  frequency  and 6, is the effective 
single-pass phase  retardation of the modulator.  For an 
ordinary  Fabry-Perot  laser  cavity  with an  intracavity 
modulator, it can be shown that [4] 

where L is the length of the  cavity, a the  length of the 
modulator  crystal, 2, the distance of the modulator to  a 
mirror,  and 6, the peak  phase  retardation  through the 
crystal.  Usually a / L  << 1 and 6, N 6 ,  cos (?rZ,/L). For 
the ring-type  cavity, the pulse passes through  the modu- 
lator only once per  round trip,  and we should  drop the  2 
in (10). Also, 6, N 6, for the ring  cavity. 

For the ideal mode-locking case, one can visualize short 
pulses passing through  the  modulator  consecutively at  one 
or other  extremum of the phase  variation. If we make the 
approximation that  the pulse is  short compared to  the 
modulation period, then  the transmission  through 
the modulator is given  by 

exp [ - j s ( t ) ]  'v exp ( ~ j 2 6 ,  =t j6cw2tz). (12) 

We note that there  can exist two possible solutions  for 
the FM case, one for each extremum of the phase  variation. 
For  further reference to  these two possibilities we shall 
call the mode of operation  corresponding to  the  top sign 
in (12) the positive mode and  the  other mode the negative 
mode. Note that  the positive mode corresponds to  the 
maximum phase  variation  and the negative mode to 
the minimum phase  variation. 

We can also consider the more general case, when the 
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locked laser are shown in Fig. 1, and we see that  the 
Fabry-Perot and ring cavities are entirely  equivalent, 
except for small differences noted in the previous sections. 
We  will  only  consider the Fabry-Perot type  cavity,  but 
in all cases the results for a ring cavity can be obtained by 
dividing the  depth of modulation by 2.  

If El(t)  is the pulse entering the active medium, then 
the Fourier  transform of the pulse  coming out is  given by 

- m u )  = g,(w)E,(w) 

pulse  goes through the modulator a t  a phase angle 6 from 
the ideal case. The transmission through the modulator 
can now  be written  as 

exp [ - j 6 ( t ) ]  ‘v exp [ ~ j 2 6 ,  cos 6 =t j26,  sin e(Wmnt) 
=I= js, COS e(Wmt)z. (13) 

For 0 positive, the pulse lags behind the modulation 
signal. We can interpret  the  terms  in  the exponent as 
follows. The first term is an additional phase shift that 
changes the optical length of the  cavity, so that  the 
optical length is  now  given by 

Lo = L =t (6J7r)Aa cos 6. (14) 

The second term is a Doppler frequency shift  and  the 
third  term gives a linear frequency chirp to  the pulse. It 
is the  last  term  that causes the mode  locking. 

B. Amplitude Modulator 
For the amplitude  modulator an idealized modulation 

characteristic will  be assumed, where the amplitude 
transmission through the modulator is  given by 

a(t)  = exp (- 262 sin2 wmt).  (15) 

The ideal mode-locking  case  is  now  when the pulse 
passes through the modulator at  the  instant of maximum 
transmission. This occurs  twice in every cycle of the 
modulation signal, and hence the modulation frequency is 
half that for the phase-modulation case. With  the assump- 
tion that  the pulse  is short compared to  the modulation 
period, (15) becomes 

a(t)  ‘v exp [ - ~ , ( w , t ) ~ ] .  (16) 

For the more general case  where the pulse  passes 
through the modulator a t  a phase angle e from the ideal 
case, (15) can be written as 

a(t)  N exp - [26L sin’ e + 26, sin 2 ~ ( ~ , t )  

+ 26, COS ae(W,t)z]. (17) 

The modulation characteristics of actual amplitude 
modulators may be considerably different, but  it may be 
assumed that  the amplitude transmission can always  be 
written as  follows 

a(t)  = exp -[as,, + 2a1(w,t) + 2 6 , ( ~ , t ) ~  . . * 1, (IS) 

where so, a,, and 6, depend on the phase angle 6 and  the 
depth of modulation. The constants will have to be 
evaluated for particular modulators such as the acoustic 
and electrooptic modulators. It can be shown, however, 
that for 6 = 0, a0 = 0 and = 0. 

V. SELF-CONSISTENT SOLUTION WITH No DETUNING 
We can now  consider the pulse  going through the act‘ive 

medium and  the modulator, and for the approximations 
we have  made in  the previous sections, a Gaussian pulse 
will remain Gaussian and a self-consistent solution 
becomes  possible. The models for analyzing the mode- 

Here we have considered the ideal case  where the pulse 
is  on  line center (w, = w,). This will  be the case if the pulse 
passes through the  FM modulator with no Doppler shift 
or the AM modulator a t  minimum loss. In  this case, (19) 
can be written as 

E,(W) = ~ 

2 4 
.exp [ -A(@ - w,)*] exp [ - ~ B ( w  - m a ) ] ,  (20) 

where 

A = l/(h) f 4g/Aw2 (204 

and 

B = 2g/Aw. (20b) 

Transforming  into the time domain, the pulse  becomes 

E,(t) = ( E 0 G / 4 d y T )  exp [-( t  - B)’/4A] exp (ju,t). (21) 

We can now  see what  the effect of the active medium  on 
the pulses is. Since the pulse spectrum is  on  line center, 
the  term 4g/Ao2 in (20a) is real  and hence IAl > (1/4y), 
which means the spectral  width ha.s been reduced. How- 
ever, it  does not follow that  the pulsewidth is  increased, 
because 1/4y is in general complex, and for p = a, the 
pulsewidth actually remains unchanged, assuming 4g/AwZ 
is small.  We  will  consider these conditions in more detail 
later.  The constant B indicates a delay of the pulse 
envelope. 

Now consider the effects of the modulator. The  trans- 
mission of the modulator  can generally be  given by 
exp - [ 6 , ( ~ , t ) ~ ]  where 6, = r j 6 ,  for FM modulator  and 
6, = 26, for the ideal Ah4 modulator from (12) and (16). 
The peak of the pulse  goes through the modulator a t  time 
t = B and hence the pulse  coming out of the modulator is 
given by 

E3(t) = .E,(t) exp [-6,w;(t - B)2] .  (22) 

Finally, the round trip for the pulse is completed by 
including an additional time delay 2Lo/c and  an effective 
reflectivity Y of a mirror, to include all losses in  the cavity. 
The pulse after one round trip is then given by 

E&) = rE$ - (2L, /c ) ] .  (23) 
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MEDIUM 
(Nd: YAG) 

MODULATOR 

MODULATOR 

------ 
A* 

MEDIUM 
(Nd: YAG) 

(b) 
Fig. 1. Model for mode-locked laser. (a)  Fabry-Perot-type  cavity. 

(b)  Ring-type  cavity. 

To  obtain  a  self-consistent  solution, the envelope of the 
pulse must go through  the modulator at  the same modula- 
tion  phase  every  time.  Hence, the total round trip time 
for the pulse is T,, the modulator  period, where T ,  = 
27r/w, for the phase  modulator  and T ,  = lr/u, for the 
amplitude  modulator. 

The self-consistency requirement now  becomes 

E,(t - T,)e++ = E4(t). (24) 

The phase angle 5, is included to allow for  a possible 
phase shift (or phase precession [14]) of the optical  signal 
with  respect to  the pulse envelope. From (l), (21), (22), 
and  (23), the self-consistency condition  equation  can now 
be written as 

Eo/2 exp [-~(t - TJ21 exp [ j d t  - Tm)l exp (-jd 

-~ - 
4 f l  

exp (- [t - B - (2LO/c)l2/4A) 

.exp (-GUuZ,[t - B - (2LO/c)l2) exp (jua[t - (2L,/c)]). 

(25) 

From  this  equation it follows that 

T ,  = 2L0/c + B (264 

Y = 1/(4A) + 6,wz (26b) 

e-" = ( r G / 2 4 7 2 )  exp ( juB).  (264 

These three equations combined with (20) now  essen- 
tially solve the problem. From  these  equations we can 
obtain  the  desired  analytical expressions for the modula- 
tion  frequency, the pulsewidth,  bandwidth,  etc.  First, 
consider (26b). We can substitute for A from  (20a),  and 
obtain  a second-order equation in y ,  which can be  solved 
to give 

The  real part of y must always be positive,  and hence we 
only retain  the  positive sign in (27). 

To see if further approximations  are possible, consider 
the  ratio of the second to the first term  under  the  square 
root sign in  (27),  namely A.w2/4g0,3,. For lasers  with a 
wide linewidth  such as Nd:YAG where Af N 120 GHz [17] 
the modulation  frequency will  be much less than  the 
linewidth,  i.e., 0, << Am, and  for  practical  values of g 
and 6, we  will usually  have that 

Aw2/4gw26, >> 1. (28) 

With  this  approximation (27) becomes 

Y = (urn m. (29) 

We can now interpret  this for the cases of FM and AM 
intracavity  modulation. 

A. FM Modulation 

For the FM case 6, = F j S C  and for YFM we now get 

YFM = ~ F M  - ~ P F M  = (1 =F j )  (urn Au/4) dQ&. (30) 
This  equation gives the values for aFM and PFM and from 
(4) and (5) we can now get  the expressions for the pulse- 
width  and  bandwidth' 

A~,,(FM) = 4 2 4 2  In 2 (k)1'4(fm Af)'". (31b) 

We can conclude the following from these two equations. 
1) The  pulsewidth-bandwidth  product 

rpO(FM) - Afpa(FM) = 2 d2 In 2/n = 0.626. 

2) The pulsewidth is inversely  proportional to (6,)'/", 
and since 6, is proportional to  the  square root of P,, the 
RF power into  the modulator, T,,(FM) a (l/Pm)''s and 
hence the pulses shorten  very slowly with  increased 
modulator  drive.  This is not  the best way to shorten  the 
pulses. 

3) The pulse length is proportional to (fmAf)-1/2. It is 
sometimes  assumed that  the bandwidth of the pulse is 
approximately  equal to  the linewidth  and it  then follows 
that 7, a l / A j .  However, the above expression for rp0 
shows clearly that this is not  the case. Note that increasing 
the modulation  frequency is the  better way to shorten the 
pulses. 

The exact  modulation  frequency can be obtained  from 
(26a). Substituting  for  the  optical  length  Lo  from (14) 
and B from  (20b), we get for the FM case 

f,o(FM) = 1/[2L/~ f 2 + 2go/Aw].  (32) ( Y  
The  last two factors  are  perfectly  understandable: the 

term 2(SC/lr)Xa/c is the extrema1 "motion of the mirror," 

2 We  have  here  introduced  the  subscript 0 to indicate the valuea 
of rP, Afp, 9, etc., a t  zero detuning of the modulator. 
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looking at  phase modulation as  a  vibrating mirror, and 
the  term 2g0/Aw is the expected added dispersion or linear 
delay in the Lorentzian line. These two factors are small 
compared to 2L/c,  and hence the modulation frequency is 
approximately  equal  to c/2L. 

From (26c)  we can get  the self-consistent value for g. 
Substituting for A from (26b), we get 

r G d 1  =t j&w,/(a! - $3) = exp [ - j (@ + w,B)]. 

Equating  the magnitude parts of this  equation, and 
letting p = Fa! a.nd Af?, = 2 d E  where Afp is 
the bandwidth of the pulse, we get 

(33) 
where R is the effective (power) reflection of a mirror and 
includes all losses. Usually we  mill have that Af?, >> 6fm 
and hence we get  an  approximate value for go: 

go 'v 4 In (l/R). (34) 

This  value of go can be used to calculate the pulsewidth 
and  bandwidth, and  then (33) can be used to  get a better 
value  for go. After  a few iterations one can  obtain  the 
correct  values  for  all the pulse parameters, but  the ap- 
proximate  equation will in most cases be  within a few- 
percent of the correct value. 

Equating  the phase part of (26b), we can obtain 4, and 
we can show that 4 N -2gw,/Aw, and since w,  >> Aw, 
r#~ is some large angle. However, the  actual value for 4 does 
not affect any of the pulse parameters, and we can neglect 
it. 

B. AM Modulation 

For the AM  case 6, = 2 4  and it follows that 

Y A M  = (.YAM = (urn. Aw/4) d m ,  (35) 

and PAM = 0. The pulsewidth and  bandwidth  are now 
given by 

Afpo(AM) = 4 2  4 5  In 2 (fm Af)"'. (36b) 

These equations  are  identical  to those for the FA4 case, 
except that  the pulsewidth is shorter  by \/z for the AM 
case and hence the pulsewidth-bandwidth product 

T,,,(AM) -AfBO(AM) = 2 In  2/n- = 0.440. 

The exact modulation frequency is given by 

fmo(AfiO +[1/(2L/c + 2yo/A~)l; 

go is given by 

go = In (i) - In [I - 16 In 26, ( k J1  __ 

(37) 

hence 

IEEE JOURNAL OF QUANTUM ELECTRONICS, NOVEMBER 1970 

we get 

g o  'v 3 In (l/R), 

which  is the same as for the FNI case. 
A simple interpretation can be given of the mode- 

locking process. We saw previously that  the passage of 
the pulse through the active medium narrowed the spectral 
width of the pulse or alternatively changed the width of 
the pulse. One can now visualize this pulse going through 
an amplitude  modulator where the pulse is shortened  due 
to  the time-varying transmission of the modulator. The 
equilibrium condition between the lengthening  due to  the 
active medium and shortening  due to  the modulator 
determines  what the  steady-state pulsewidth will be. A 
similar interpretation can be given for FM modulation, 
but it is now easier to visualize the process in the frequency 
domain. When  the pulse passes through  the FBI modulator, 
a frequency chirp is put on the pulse. This frequency 
chirp increases the spectral  width of the pulse and  an 
equilibrium state is reached where the increase in spectral 
width  due to  the modulator is equal to  the narrowing of 
the spectral  width  due to  the active medium. It is interest- 
ing to notice that this equilibrium condition requires  a 
steady-state frequency chirp on the pulse and  further that 
the pulse envelope and frequency chirp contribute equally 
to  the spectral  width of the pulse (Le., a! = 0). The 
interpretation that is usually given for mode locking in 
an inhomogeneously broadened laser is that  the modulator 
introduces some coupling between adjacent axial modes 
and  that this coupling locks the phases of these modes in 
such a way as  to give short pulses (and hence the  terms 
mode locking or phase locking). This  interpretation is not 
useful for the homogeneously broadened laser, since most 
of the axial modes are  not present  in the free-running laser. 
There  are usually only a few axial modes, mostly due to 
spatial inhomogeneity and hence the  term mode locking 
is somewhat of a misnomer, but we  will retain it with a 
somewhat broadened meaning. 

For  a  typical Nd:YAG laser with 10 percent  round-trip 
loss  (i.e., R = 0.9), a cavity  length of 60  cm, and a line- 
width of 120 GHz, the pulse length and bandwidth  are 
given by 7,0(Fn!t) = 39.0 (l/S,)'/" ps and Af,(FM) = 

16.1 (6,)'14 GHz and for 6, = 1 radian, which is easily 
obtainable, pulses of 39 ps can be generated. 

VI. COMPARISON WITH FREE-RUNNING LASER 
There  are basically two quantities of interest  in com- 

paring the free-running and mode-locked laser. First is the 
change in output power from the free-running to  the 
mode-locked laser,  and second how the axial-mode beats 
of the free-running laser compare with  the modulation 
frequency  for  ideal mode locking as discussed in  the 
previous section. 

The basic condition for steady-state oscillation in a 
free-running laser is that  the  total round-trip gain must 
be exactly unity, i.e.,3 

As before, we usually have that Afro << f m ,  and The subscript f indicates  parameters for the free-running  laser. 
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From the magnitude  portion of the oscillation condition 
we get 

g, = $[1 + 4(0 - ua)'/Aw2] In (l/R,). (39) 
Usually the free-running  axial modes are close to  line 
center  and  hence g, N 4 In (l/Rf), where R, is the effective 
power reflection of a  mirror to  account  for all losses. 

The change in  output power can be obtained from the 
discussion in Appendix I and (116). If P, is the free- 
running power and Pml is the mode-locked power, then 

where R, is the normalized pump power to  the laser 
and X(0, AfBo) is the  saturation function  as defined by 
(113) and  in  this case we get  that 

From (41), we see that small changes in go will affect 
the power output,  and hence we should use the complete 
equation  for go given by (33). The power output is thus 
given by 

are given by 

Af, = 1/[2L/c + In (l/R,)/Ao]. (44) 

Comparing this  with  the modulation  frequency  for 
the  FM laser, (32), we get  that  the axial-mode beat will 
be exactly  between the modulation frequencies for the 
two modes of the  FM laser if go = + In ( l/Rf). This 
condition  can be satisfied if etalon effects and pulling 
of the modulation  frequency  due to changes in go [as 
given  by (33)] are neglected. Due to  etalon effects, how- 
ever, R, > R, and  the modulation  frequency will be 
lower than  the axial-mode beat.  Pulling of the modulation 
frequency  due to  additional changes in go will further 
lower the modulation  frequency. For  the  AM mode- 
locked laser, we  will have  the  same effect as  for the FM 
case. 

In  the  actual  free-running  laser, the axial-mode beat will 
not  be  a single frequency, but due to mode pulling of the 
etalon effects, and dispersion of the  host  material  and 
other  crystals in  the  cavity,  the axial-mode beats will be 
spread  out. 

VII. SELF-CONSISTENT  SOLUTION  WITH DETUNING 
Detuning is defined as  the frequency  shift  from the 

ideal mode-locking frequency (fmo) and is given by 

L 

where R, is the normalized pump power, R, the effective 
power reflection of the free-running  laser, and R the 
effective power reflection for the mode-locked laser. R, 
and  R  are defined to include all losses in the laser  in both 
cases. Equation (42) will give the small changes in power 
output when the laser is  mode locked. If we assume 
that  the losses in  the free-running and mode-locked laser 
are  the  same  and Af > Afpo and Afpo > f mo? then P,, = P,. 

In actuality,  however,  the  free-running laser will always 
maximize its  output power, and  particularly if there  are 
small  etalon effects in  the  cavity  there will  be some axial- 
mode selection  in the free-running  laser to minimize the 
losses. For  this  reason we may have that Rf > R  and 
there will  be a decrease in  output power for the mode- 
locked laser,  particularly close to threshold  and when 
6, is small. 

From the phase  portion of the oscillation condition 
(38), we get 

29f[(% - %>/Awl + w. 2L = $* 
1 + k-)? ( c  ) (43) 

where o, is the oscillation frequency of the qth  axial 
mode in  the free-running laser. Substituting  for g, from 
(39), it can  readily  be shown that  the axial-mode beats 

Afm = f m o  - fn. (45) 

This is consistent  with the definition of detuning  given 
by  Harris  and McDufT  [4]. Note that Af,,, is negative 
for f,,, > fmo and vice versa. 

The solutions  for FM and  AM  modulation are now 
considerably different,  and we  will consider them sepa- 
rately. 

A .  FM Modulation 
When the modulation  frequency is detuned  from  the 

ideal  frequency, the pulses pass  through the modulator 
a t  some phase angle 0 away from the extreme  phase 
variation  and the transmission  through the modulator is 
given  by (13). The pulses now experience some Doppler 
shift,  and  in  consecutive passes through  the modulator, 
the optical  frequency (0,) of the pulses is shifted  until 
some equilibrium is reached where the Doppler  shift 
of the modulator is canceled out  by  an  equal  and opposite 
frequency  shift  from the active medium. The pulse now 
has  a frequency w,, such that w, = o, + v and v is the 
frequency  shift of the pulse. 

In  all cases, we  will consider that  the detuning is small 
enough that  the laser  remains mode locked. For larger 
detuning, the  output of the laser  changes to  a FM laser 
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type of signal [4],  [6],  [18],  which  we  will not consider very  interesting effects of the active medium on  the 
in  this  paper. FM laser operation  has  been  observed pulses. 
for  the  Nd: YAG laser, and we will report  this  in  another 1) The delay of the pulse envelope has changed from 
paper [19]. 2g/Aw to 

be expanded  about any  frequency W, and  that  the line 2g(l - 4v2)/Aw(l + 4 ~ ' ) ~  + KJ2, 
I n  Section III., we showed that  the line shape could 

Ez(t) = E 0 G ' / ( 4 m )  exp [-( t  - Br)'/4A'] exp (jw,t), 

(46) 
where 

A' = 1/4y+ 4g/Aw2(1 + 2 j ~ ) ~  (47%) 

B' = 2g/Aw(l + 2jq)' (47b) 

G' = exp [g/(l + 2 ~ 3 1 .  (47d 

One important difference between the pulse as given 
by (46) and  the pulse without  detuning is that B' is 
now complex. Now consider the  term (t  - B')'/4Af, 
If we split B' in its real and imaginary part,  substitute 
it in the above expression and multiply out, we get 

Iator. 
3) The  last exponential shows the additional  attenua- 

tion  and phase  shift that  has been introduced. 
The self-consistency equation  can be obtained as before, 

and  with  the transmission through  the modulator given 
by (13), the following conditions will result: 

( t  - B32/4A' .Imp [K;/16Ar + 16g2q2/(Aw2(1 + 4v2)"A')]I = 1 (52d) 

29(1 - 4 q 7  
= [' - Aw(1 + 47') 4A' + Aw(1 + 4 ~ ~ ) ~  

16jm In  the last condition, we have  only considered the 
magnitude, since the phase angle d is of no consequence - 

2 8 ~ -  4721 /4A r - _______. 64g2q2 as discussed  before. Ct - Aw(1 + 477')  Aw'(1 + 4~ ' )~4A'  (48) From (52c) we can solve for y, and with the same . ,  
approximation as before we get 

y (wm Aw/4) d F j S c  cos 0(1 + 2jq)'/g 
Now consider the following expansion 

16jm - K1 
Aw(1 + 4q2)'4A' = 4A' + j K 2 '  (49) = (urn Aw/4)-\/6, COS 8 / g  (I f 4q2)3'4(cos fi + jsin fi) 

where K, and K, are  real.  After some algebraic manipula- 
tions, i t  can  be shown that where 

(53) 

K -  1 6 d a 2  + P ' ) ( l  4- 477') (5Oa) $ = F 7r/4 + 3/2 taf1(2q). (54) 

From (53)  we get aFM and  and hence the pulsewidth 
- 16g(a2 + P')(l - 127') + a Aw2(1 + 4q2F 

P (Sob) 

We can now substitute (49) back  in (48), complete 

and  bandwidth  are given by 

T~(FM) = 
7r 8, cos 8 

the  square,  and  thus finally the pulse can be written  as 

E,(t) = 0 E G' *(&ys(fm Af cos fi )I" (55) 
4 m  

AfP(FAI) = (--%r) 6 COS e 1/4 (1 + 4 q 2 ) a / 8 ( s )  fm Af . 
eexp - t - 2g(1 - 411') "'1' / 4A' [ Aw(1 + 4 ~ ' ) ~  + 2 (56) 

6 4 g ' ~ ~  
i- Aw"(1 + 4$)44A' 1 

Note  that  the pulsewidth-bandwidth product is  now 

2 In 2 
TP.AfD = - a  

7r cos 11. 

With  the assumption that Aw/w, >> 1, it can be shown 
The expression we have  obtained here reveals some that K1 and K, are given by  the following approximate 
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expressions: 

From (52a) we now get  the modulation  frequency 

f m ( F M )  

(58) 

Substituting K z  in (52b) it can be  shown that 

-- sin 8 1 

d G  6, (1 + 47)2)5’4 cos $ ’ 
and from this  equation it follows that 

Finally, we can consider (52d),  and  substituting  from 
(49),  this  equation  can be simplified to 

lrG/2 -1 jexp K2A’I = 1 

and g is given by 

q = (1 + 411’)[+1n(l/R) + iln4yA’ - KiA’] (604 

and with the same  approximations  as before, it can be 
shown that g is approximately  given^ by 

q N +(1 + 4q2)ln(l/R). (Gob) 

We should note  here that’  the ideal mode-locking fre- 
quencies for  the positive  and  negative modes are different. 
From (58) this  frequency difference is 

4(6,~a/7&0 

and for fm0 = 250 MHz, the frequency difference is 
0.28 6, kHz,  and hence this difference is small, but it is 
significant because it splits the degeneracy of the two 
possible  modes of the FM mode-locked laser. 

We have now obtained all the equations to describe 
the behavior of the FM mode-locked laser  with  detuning. 
In  obtaining  these  equations,  several  approximations 
were made in going from the self-consistency conditions 
given  by (52a)-(52d) to  the final equations.  However, 
starting with  these  approximate  values of 9, g, y, etc., 
one can  get the exact  solutions of (52a)-(52d) by  a  suitable 
iterative  procedure.  This was done for some typical 
cases of the Nd:YAG laser,  and  in all cases it was found 
that  the approximations given by (55)-(60)  were within 
a few percent of the exact  solutions of the self-consistency 
Conditions. 

In  particular, we can  again consider the case of the 
Nd:YAG laser  with 10 percent total round-trip loss, 
a 60-cm-long cavity  (optical  length), and  a 120-GHa 
linewidth. The results are shown in Figs. 2-7. These 
results  clearly  illustrate some of the  interesting pecu- 
liarities of the theory. We  will consider these  results  in 
some detail  and  try  to  obtain some physical  insight of 
what  happens  in the mode-locked laser. 

Fig. 2 shows the phase  shift of the pulse with  respect 
to  the modulation  signal  versus  detuning.  Note the 
distinct  asymmetry in these  curves. Fig. 3 shows the 
frequency  shift of the optical  frequency of the pulse. 
We note  that  the frequency  shifts of the positive and 
negative modes are  in opposite  directions. This is toy, be 
expected, because when the pulse  goes through  the 
modulator a t  a  phase angle 8 from the extremes of the 
phase  variation, the Doppler  frequency  shift is in opposite 
directions for the two modes [see (13)J. We  also note 
the  asymmetry of tlie curves. The  reason  for  this we 
will see later. 

Fig. 4 shows the variation in pulsewidth  with  detuning 
for several 6,. The most surprising  observation  here  is 
that  the pulses continue to  get  shorter  for  negative 
detuning. Fig. 5 shows the  variation of the  bandwidth 
with  detuning,  and we notice that  the  bandwidth keeps 
on increasing  for  positive  detuning,  even  though the 
pulses get longer as shown in Fig. 4, which is somewhat 
surprising.  Fig. 6 shows the  variation of p with  detuning, 
and  this figure provides the clue to  what is happening 
in the laser.  Consider,  say, the positive mode and  negative 
detuning. We notice that p decreases from its value  for 
ideal mode locking. At  the same  time, we notice  from 
Fig. 4 that  the pulses get  shorter. What  is happening 
is that  the pulses are being compressed as  described  by 
Giordmaine et al. [18]. They show that when a pulse 
with  a  linear  frequency  chirp  is  passed  through a dis- 
persive medium, and  the frequency  chirp  has the correct 
sign so that  the leading edge of the pulse is retarded, 
the pulse is compressed. This is precisely what happens 
in the mode-locked laser.  When the modulation  signal 
is detuned, the pulse shifts  towards the side of the line. 
The so-called “anomalous  dispersion” of the  active 
medium now provides the dispersion to  compress the 
pulses. It turns  out that we get  the correct sign for 0 
for pulse compression when the detuning is negative. 
It can be seen  from  Fig.  6 that p actually goes through 
zero. When f l  N 0 we get  optimum compression, and we 
actually see from  Fig.  4 that  the pulse length  has  a 
minimum when p ‘V 0. For large enough negative de- 
tuning, f l  changes sign. It is interesting that  the mechanism 
of mode locking, as described earlier, is  now completely 
changed  around.  When the pulse  now passes through 
the modulator, the linear  frequency  chirp  induced by 
the modulator  substracts  from  the  frequency  chirp on 
the pulse,  and the spectral  width of the pulse is decreased. 
The pulse then passes through  the  active  medium  in 
such  a way that  the dispersion increases p, and hence 
the active medium increases the  spectral  width.  The 
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DETUNING, KHz DETUNING, KHz 

Fig. 2. Phase  shift of pulse with  respect  to  modulation  signal Fig. 3. Frequency  shift of pulse off line  center  versus  detuning 
vemw  &tuning for laser  with  internal FM modulation.  Condi- for laser  with  internal FM modulation.  Same  conditions  as for 
tions  are for B typical  Nd:YAG  laser  with.  a 60-cm cavity, 10 Fig. 2. Dependence  on 6, too  small to show on  the  scale of this 
percent  round-trip loss, and 120-GHz  linewldth. figure. 

IDoo[ I 

L40 I -20 0 20 40 60 80 

DETUNING, KHz DETUNING, KHz 

Fig. 4. Pulsewidth  versus  detuning (FM modulation).  Fig. 5. Bandwidth of pulse  versus  detuning (FM modulation). 

roles of the modulator  and  active medium have thus positive and negative mode, respectively. When this 
been switched  around. condition is approached, mode locking becomes impossible. 

For positive  detuning, we get pulse stretching,  and We note  from (58), that  as 191 4 90" the detuning will 
the pulses keep  on  getting longer as  the  detuning in- also approach  infinity,  and  hence  as we keep on increasing 
creases. From (55) we note that  the pulse length  ap- the positive  detuning, the optical  frequency of the pulse 
proaches infinity as l$l 4 90°, and  from (54) we see that will not  shift beyond q = F 0.288. For negative  detuning, 
this  condition is satisfied when 7 -+ =F 0.288 for the however, the pulse rapidly shifts off line  center as shown 
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Fig. 7. Power output from  lmer  versus  detuning  for various 
depths of modulation  and  normalized  pump  powers (FM modu- 
lation). ' 

-I5 -40 -20 0 20 40 60 80 
DETUNING - KHz 

Fig. 6. f i  (frequency  chirp)  versus  detuning (FM modulation). 

in Fig. 3. For  large enough positive or negative  detuning 
the laser will  go into  the FM-laser mode of operation 

We noted  previously that  the  bandwidth  kept increasing 
for  positive  detuning,  even  though the pulse length  got 
longer. To explain  this, we consider the expression for 
bandwidth (5) , 

[181, ~ 9 1 .  

~ f ,  = - 4 2  In 2[(a' + @)'/a]. 
1 -  
a 

For  no  detuning, a = p, and  for  positive  detuning, P > a 
and  hence 

hf, N - 4 2  In 2P2/a = T,@/T). 
1 
a 

We see that for  a pulse with  a  linear  frequency  chirp, 
the bandwidth keeps on increasing  even  though the 
pulse gets longer. 

We can also obtain  the change in  output power with 
detuning  from (116) in  Appendix I. If Pm,(Afm) is the 
power output with  detuning Af,,,, we obtain 

Prn*(Afnln) 
Pd (0) 

-~ - 

[R'(E)-1]{(i&)[1-2 In 
(61) 

where R, is the normalized pump power for  the  free- 
running  laser,  and gl, go,  and g are  the  saturated single-pass 
gains through the active medium for the free-running 
laser, mode-locked laser  with no detuning,  and mode- 
locked laser  with  detuning,  respectively. 

Note that we should use the  complete expressions 
for g and go here. It will be difficult to  get  the value of 
gf due  to  the complicated nature of the etalon effects, 

but we can define R;, where R; = R,(g,/go), and  then Ri 
is the normalized  pump power of the mode-locked laser 
with no detuning that can be determined. If we assume 
that Ai >> Af,, and use the approximate expression for 
g and go, (62) simplifies to  

The  variation of power output with  detuning  is shown 
in Fig. 7. For negative  detuning, we ,found that  the 
pulse rapidly moves off line center, and hence the power 
output drops  rapidly. For positive  detuning, the power 
output changes much slower, particularly far above 
threshold. It can be seen that  the power output does 
not  depend  very much on 6,. 

We note  that for 6, = 10 and R, = 3, there is an 
initial power increase for negative  detuning. To under- 
stand  this, we should  note that there  are  mainly two 
effects contributing to  the change in  output power. First, 
there is the  shift off line  center that causes a decrease in 
output power but  this effect  becomes smaller as we get 
further above  threshold.  The second effect is the change 
in  spectral  width of the pulse. A narrow  spectrum more 
effectively saturates  the line,  and  hence the power output 
can  increase as the  spectrum becomes. narrower.  For the 
above-mentioned condition, the laser is far above  threshold 
and  the  spectral  width  with no detuning is large. Hence, 
the second effect can  dominate  for  negative  detuning, 
and give rise to  the increase in power output. 

B. AM Modulation 
Consider now what  happens when we detune  the 

modulation  frequency  with an amplitude modulator., 
We  saw previously that when the pulse  frequency  shifts 
off line center,  there is a small  frequency  pulling by  the 
active medium and  that a FM modulator could com- 
pensate  for  this  frequency change. However, an amplitude 
modulator  can  not  introduce a frequency  shift,  and hence 
we can conclude that with an amplitude  modulator, 
the pulse frequency  remains on line center, i.e., v = 0. 

Also, with an amplitude  modulator there is no frequency 
chirp  during  the pulse, and hence = 0. Thus  the pulse 
coming out of the active  medium is the same as we 
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The theory we have developed does not  tell us whether 
there will  only  be  one pulse traveling around inside the 
laser cavity, or whether there will  be p pulses, spaced 
at the period of the modulator.  This will depend on the 
detailed  saturation mechanism of the active medium, 
and where the pulses cross in the active medium and 
hence the position of the active medium will  be of impor- 
tance. We  will not  attempt  to find an answer to  this 
question that can best be answered experimentally. 

IX. ETALON EFFECTS 
Fabry-Perot  etalons  are commonly used inside laser 

cavities for axial mode selection [all, [22]. The effect of 
the etalon is to reduce the bandwidth of the system  to 
produce the required mode selection. 

It is  possible to use an etalon inside a mode-locked 
laser to reduce the system  bandwidth and  obtain longer 
pulses. This etalon will usually consist of a parallel 
uncoated glass flat. It is  shown in Appendix I1 that  the 
transmission can be expanded about  the peak, to give 

obtained before with no detuning (21). When this pulse 
passes through  the amplitude  modulator with a general 
modulation  characteristic as given by ( B ) ,  the pulse 
we obtain is given by 

E8(ij = E,G/(4-) exp [ - ( t  - B2/4A] exp (ju,t) 

*exp - [260 +- 261w,(t - B) + 262u:(t - B)2].  (63) 

If we let K = [1/4A + 26,&] and include the round- 
trip time (2L0/c) and effective reflectivity, the pulse 
after one round trip can be written  as 

exp +.(t - %) exp [+ (61u,)2/K] exp (- 26,). (64) 

The self-consistency conditions now  become 

K = 1/(4A) + &w: = a (654 

T ,  = 2[2Lo /~  + B - 61w,/K] (65b) 

r G / ( 2 d a )  exp  [(61u,)2/K]  exp - 8" = 1. (65c) 

From  the  first  equation, we can solve for a, and from 
this we can get  the pulsewidth and bandwidth, which 
will be the same  as the case with no detuning F1 replaced 
by 6, [(36) and (37)]. For a second equation, we can 
substitute for K and B, and show that the modulation 
frequency is given by 

For the  last equation, we can show that (81w,)2/K << g 
assuming u,/Au << 1, and hence we find 

g N 8, + 3 ln(l/R). (67) 

For any  particular amplitude  modulator, we can evaluate 
6,, 6,, and 82 as  a  function of e and  get  the  output charac- 
teristics of the laser from the above equations. One  will 
usually find that  the pulses get longer with  detuning, 
and  the  output power decreases, and is the same  for 
positive and negative  detuning. 

VIII. HIGHER ORDER M0DULA4TIOX 

We have so fa,r only considered the case where the 
modulator goes through  only one cycle per round-trip 
time of the pulse. It is, however, possible that  the modu- 
lator goes through several cycles per  round-trip  time. 
In general, we can  have  a modulation frequency p times 
the  fundamental  modulation frequency or axial mode 
spacing. We  will call p the order of the modulation. All 
the previous theory we have developed is still good, with 
the only modification being that  the modulation fre- 
quencies we have  obtained  are multiplied by p .  For the 
particular example of the FM mode-locked Nd:YAG 
laser we considered, the detuning is multiplied by p .  

The  advantage in going to higher order  modulation 
is that we can use much higher modulation frequencies 
and consequently obtain much shorter pulses. 

where Am, is the bandwidth of the etalon and 

Awe = (c/2h') ds/Iz (1 - R)  . 
The one important  requirement is that  the bandwidth 
is large compared to  the axial mode spacing so that there 
will  be several axial modes under  the transmission peak. 

If we multiply the gain of the active medium and t,, 
we can obtain an effective gain of the system, given by 

and we assume that  the transmission peak of the etalon 
is on line center. 

'The two effects of the etalon  are to change the band- 
width of the system, and  to introduce some phase shift 
-v'% R/Au,,  which slightly changes the modulation 
frequency. This is in  addition  to  the change in modulation 
frequency due  to the change in optica.1 length of the 
cavity when the etalon is introduced. 

In particular, we can consider the FM mode-locked 
laser with no detuning. The pulsewidth is  now given by 

The case of particular  interest is where the  bandwidth 
of the etalon is  much  less than  the linewidth, i.e., 

l / A f t  > go/Aff". 

The pulsewidth now  becomes: 
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and we note that  the pulsewidth  is now entirely  deter- 
mined by the etalon and modulator. 

We can consider the same Nd:YAG laser  as before 
with an uncoated  quartz  etalon of thickness h. The 
pulsewidths that can be obtained  from  this  system as a 
function of h are shown in Fig. 8. Note that  the bandwidth 
of the etalon  can be written  in  terms of the index of 
refraction  and the thickness 

~ f ,  = (diic/rh)n/(n2 - 1). (72) 

Substituting  in (71) and  evaluating the constants, we 
get 

Tp = 150dh/(6 , )~’~  ps. 

From  Fig. 8 we note that for  etalon thicknesses between 
1 mm and 1 cm, we obtain good control of the pulsewidth. 
For  etalon  thickness less than 1 mm, the linewidth of 
the active medium begins to  take over,  and thus  there 
is no  advantage  in using an  etalon less than 1 mm thick 
inside the Nd:YAG laser. Another  advantage of the 
etalon is that  it usually  improves the  stability of the 
mode-locked laser. 

X. EFFECTS OF HOST MEDIUM DISPERSION AND 

DISPERSION OF OTHER COMPONENTS 
The index of refraction of the host medium or any 

other  optical  components in  the  cavity such  as the modu- 
lator  crystal  can be written  as 

n = n + n’(w - a,) + (n”/2)(w - w,)’ . . (73) 

For YAG at  1.064 p ,  n’ = 12 X and n”.? 2 X 
[23] and  for LiNbO, (modulator  crystal) n: = 3.1 X lo-’’ 
and n:l ‘v 0, n; = 3.8 X 1O-l’ and nAf N 0 [24]. 

The M a l  optical  length now  becomes 

L,, = Lo + L&J - w,) + LY(W - ma), - * * , (74) 

where 

Lo = lo,, + (nl - 1) I,, + (nz - 1)lC2 + . . - 
Li = n;Zcl + n2lCz + - . . 

LA‘ = (n;‘/2)Zc1 + (n;’/2)Ec, + . . 
Lo is just  the optical  length we considered before. 

The  other  two  terms now introduce  an  additional  phase 
shift  per  round  trip  given  by 

(w/c)[2L:(w - w,) + 2LA’(w - w,j2] 

‘v (w./c)[2LO’(w - w.) + 2LAf(w - w,J2]. 

We can add  this  to  the  active medium and  obtain 
an effective gain 

where 

l 0 O 0 F  t / 8, = 10-2 

I I 

THICKNESS OF ETALON, em 
0.5 1.0 

Fig. 8. Pulsewidth in FM mode-locked  laser  with uncoated 
quartz etalon. 

We can now consider the mode-locked laser  without 
detuning. The results we obtained  previously are  still 
valid,  with g’ and g” replacing g in the  appropriate places. 
In  particular,  the FM modulation  frequency becomes 

fmo(FM) = 1 / [2Lo/c f 2(:) ) + 2 + %] , (76) 

and  a similar  result is obtained  for AM. This is not a 
very important change; however, the  factor y as given 
by (29) becomes 

y = (wm Aw/4) d 6 g / ( g o  + j L‘f;cAw2)- 

We  will usually  have that 

go > LAfw,Ao2/2c 

and y can be written as 

For  the FM case, 6, = =I= j6, and for YFM we get 

(77) 

(79) 

We note that aFM and PFM now have  different values 
for  the positive  and  negative modes and  that for the 
positive mode the dispersion has caused some pulse 
stretching, while for the negative mode there is some 
pulse compression. Thus  the dispersion is another effect 
that tends to  lift  the degeneracy of the two modes. 
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For the AM case 6, = 26( and Y A M  is essentially given 
by (77) and we see that  the dispersion has  introduced 
some frequency  chirp  in the pulse. 

One can now consider the whole problem of detuning 
again, including the effects of dispersion. However, the 
results will probably differ very  little from those we have 
obtained already. For the  FM case with a slight  shift off 
line cent,er, the dispersion of the active medium will 
be much larger than  the host dispersion. 

In  cases where it becomes necessary, the whole problem 
ean be solved by  the methods described in  this  paper. 

XI. LIMITATIONS OF THE THEORY 
The two main  limitations of the theory are  that we 

assume the line shape is Gaussian, and  the pulse is Gaus- 
sian  with a linear  frequency chirp under  all conditions. 

The first assumption will break down  when the band- 
width of the pulses becomes comparable to  the linewidth. 
This will happen as one goes to higher modulation fre- 
quencies to generate  shorter pulses. Exactly where the 
theory will break down  is hard  to  say  and can best be 
determined experimentally. 

The second assumption  may seriously affect some of 
the results,  particularly the behavior of the FM mode- 
locked laser with detuning. Small distortions  in the pulse 
shape  may change the results considerably. However, 
many of the characteristics described here have been 
observed in a Nd:YAG laser with a FM modulator, and 
these results will  be presented  in Part I1 of this  paper. 

IEEE JOURNAL OF QUANTUM ELECTRONICS, NOVEMBER 1970 

in the same direction, we can drop the vector  notation. 
When a laser is above  threshold, the population in- 

version has a constant  value No and a time-dependent 
component AN(tj that depends on the changes in E and P. 
We will assume that this component AN(t) is negligible 
compared to No, and hence that N is constant.  With 
this approximation, we neglect changes in  the pulse 
shape of a mode-locked laser due to  saturation  during 
the pulse, and also such effects as a pulses [as]. 

We now consider an electric field E(t )  with a Fourier 
transform E ( w ) .  Hence we get 

~ ( t )  = ~ ( w )  exp (jut> d ~ .  (82) 
- m  

Similarly for the polarization 

P(t) = lrn P(wj exp (jut) dw. (83) 

We can substitute  in (80), and since N is constant, 
(80) is linear, and we can get an expression for the suscepti- 
bility x ( w ) ,  where P(w) = eoX(wjE(w) 

-m 

APPENDIX I 

GAIN 'AND SATURATION OF HOMOGENEOUS LINE 
In this appendix we consider the basic equations for a 

homogeneously broadened line, and from these equations 
we derive an expression for gain of the medium. We also 
investigate how the line saturates for some general 
signal. In  particular, we consider how the line is saturated 
by Gaussian pulses with a frequency not necessarily a t  
line center. 

The equations for a homogeneously broadened line 
are given by [25] 

where P is the polarization of the medium, E the electric 
field of the applied signal, w,  the center frequency of 
the line, 1 ~ 1  the dipole matrix element, L the Lorentz 
correction factor  to  relate local fields to macroscopic 
fields, and N the population inversion ( N ,  - N l ) .  The 
full  atomic linewidth is given by Aw = 2/T,. N ,  is the 
population inversion with no applied signal and is pro- 
portional to  the pump  rate. Since P and E are polarized 

We  now consider the propagation of an electromagnetic 
wave through  a medium with a susceptibility given by 
(84). If we neglect losses in the medium, the propagation 
is governed by Maxwell's equation  in the following form 

3% n2 a2E a2P -+ -_-= -~ - 
a 2  C' at2 O at2 (85) 

where n is the index of refraction of the medium. 

total field E(t) at point z is given by 
The propagation  constant /3 is  defined such that  the 

~ ( t )  = l: ~ ( w )  exp [ i (wt  - px)] dw. (86) 

It can be shown [25] that  the propagation  constant p 
is given by 

Considering only the effects of the active medium, 
i.e., the second term in (87), the gain  due  to the active 
medium is given by 

where LC is the length of the  active medium. 
If we further  make  the approximation for x ( w )  that 

(02 - w',) N 2w(w - mu), it follows that g in (7) is given by 

We next consider how the homogeneously broadened 
line is saturated  by a repetitive train of mode-locked 
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pulses. The  spectrum of the mode-locked pulses is now pulse given  by 
no longer narrow  compared to  the linewidth, and hence 
we must consider how this changes the expression  for 
the  saturation of a homogeneous line  obtained by several It be shown that 
others [25],  [27],  [28]. 

E(t) = E, exp (- art2) C O S ( U , ~  + pt'). (99) 

Since we have assumed that N is constant, (81) becomes E(@) = exp [-& - wp)2//4.u] 
2 

N - N e  2 -  
= - P(t)E(t), TI h a  

and we have  taken  the  average  over P(t)E(t). When 
we have  a periodic signal,  such as a repetitive  train of and  substituting in (98) and (97), we get 
pulses with  a  periodicity T,, then (90) becomes 

P(t)E(t) dt ,  

where P(t) and E(t) are now for  a single pulse. 

the power [16] for Fourier The  integral  has no exact  analytical  solution. However, 

the Fourier  transform of the function in parentheses, is small to the full linewidth, we expand 
(90) can  be  written as the Lorentzian  line  shape about up. If we let w, = w, + Y 

and noting that FIP(t)l = iwFIP(t)l  where F[ 1 indicates with the assumption that  the width of the 

N - N , - - -  - 1" iwF[P(t)]-F[E(--t)] dw. (92) and u/Aw = q, it follows that 
TI h a T m  27r 1 1 r  Q, 

Substituting (81) and (82) we get 

- N e  - - - s iox(w)E(w)E(--w) did. (93) 2 1 "  
TI h , T ,  27r -- 

- 

From (84) we note that  the real part of x(~), ~ ' ( w )  is 
even in w ,  while the imaginary part x"(u) is odd. Hence 
(93) can finally be written  in  the  form 

We can now substitute for ~ " ( w )  and solve for N 

and we have  again  made the approximation that (w2 - 

From (111) we now get 

where Af, is the  spectral width of the pulse. The  function 
in the  square  brackets shows  how the line saturates, 
and we will call this  the  saturation  function S(q, Ajf3. 

From (113) it follows that  the laser output power (P)  
is given  by 

ut) N 2w(w - w,). 
The average power density inside the laser  cavity is P = .*E - 11 1 

S(% AfP) (104) 
given by 

When the laser is free  runping, S(q, Af,) = 1 and 
I = naOc -- 1 IE(t) 1' dt = nE im E(m)E(--w) dw (96) N , / N  is equal to the  ratio of the pump power to  the 

pump power a t  threshold R,. We have shown that  the 
and if we define the  saturation power density I ,  [25] by  gain  through the active  medium is ProPodional the 

population  inversion N ,  and if the gain of the free-running 

P = P 8 [ R p ( f )  - 1 ] [ &'(q ,l A j p ) ]  . (lo5) 

1 "  
T ,  -- 

3ne% ' Aw 
Is = 4L IpI' T ,  ' 

(97) laser is g,, then (114) becomes 

then (95) can finally be written as 

N = N e  n w  1 " E(w)E(--w) Finally, the  ratio of the  output power for  any two / [l 4- T,?r 1 1 + 4[(w - wa)/AwI2 conditions is given by 
(9% 

PI [R,(g,/gJ - lIX(?lz, A f P 2 ) .  = (106) 
We can now consider the special case of a  Gaussian p2 [R,(g,/gJ - lI&'(?ll t A f P l )  

- 
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This equation will give the variation  in output power 
for any condition of the mode-locked laser. 

APPEKDIX I1 

ETALON EFFECTS 
The amplitude transmission through  a lossless Fabry- 

Perot etalon is given by [29] 

T. = (1 - R)/(1 - Reis), (107) 

where 

6 = ( 4 n / ~ ) n ~  COS e (108) 

and R is the reflection of both reflecting surfaces. The 
effective length of the etalon is given by h’ = nh cos e. 
We will consider the transmission of the  etalon  near a 
particular transmission peak at w e .  From (118)  we get 

6 = w,  (%’/e) + (w - w,)(2h’/c). (109) 

Since we is at the transmission peak, we(2h’/c) = 2mn, 
and hence (117) can be written  as 

We want  to approximate the transmission of the  etalon 
near we by a Gaussian of the form exp - [ib(w - a,) + 
a(o - Expanding the exponential in 

Expanding the Gaussian 

7. ‘v 1/[1 + i b (w  - w e )  

+ [a - (b2/2)l(w - 0e)21 + 
Equating coefficients, we get 

b = -R/(l - R)(2h’/c) 

a = “ R  /(1 - R)’(2h’/~)’. 
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