☐ MATRICOLA:	2 : $\mathbf{B}^{\geq 3}$: $\mathbf{C}^{\geq 2}$: Voto:
Cognome:	Nome:
${\bf Algebra~1-Esame~12.06.13}$	

Rispondere alle domande su questo foglio usando gli appositi spazi e giustificando brevemente

 \mathbf{A} Sia X un insieme non vuoto e sia \leq una relazione d'ordine totale su X. Consideriamo l'insieme

$$M(X) \stackrel{\mathrm{def}}{=} \{f: X \to X \mid f \text{ monotòna}\}$$

1. Se X è infinito allora M(X) è infinito? Inoltre, se X è finito allora M(X) è finito? [Sì; Sì]

L'insieme delle applicazioni costanti è contenuto in M(X) ed ha ovviamente la stessa cardinalità di X, pertanto se X è infinito anche M(X) lo è. Qualora invece X sia finito, allora l'insieme di tutte le applicazioni di X in sé è finito e pertanto lo è anche M(X).

3

 2

2

2. Mostrare che se $f \in M(X)$ è bigettiva allora $f^{-1} \in M(X)$.

ma esaurientemente tutte le risposte.

Supponiamo che f sia monotona crescente (ovvero, per ogni $x, y \in X$, $x \leq y$ implica $f(x) \leq f(y)$), e siano $x, y \in X$ con $x \leq y$. Se vale $f^{-1}(y) \leq f^{-1}(x)$, allora $y = f(f^{-1}(y)) \leq f(f^{-1}(x)) = x$, da cui y = x e dunque $f^{-1}(y) = f^{-1}(x)$. In ogni caso si ha $f^{-1}(x) \leq f^{-1}(y)$.

3. Consideriamo la relazione d'ordine sull'insieme M(X) definita da $f \leq g$ se $f(x) \leq g(x)$ per ogni $x \in X$. È vero che $(M(X), \leq)$ è totalmente ordinato? [No]

Sia $X = \{0, 1, 2\}$, con l'ordinamento standard indotto da \mathbb{N} . Sia f l'identità, e g la funzione che vale ovunque 1. Si vede immediatamente che $f, g \in M(X)$, $f \not\leq g$ e $g \not\leq f$.

1. Mostrare che M è un monoide e trovare gli elementi invertibili in M.

Osservando che $(\mathbb{Z}_2, +, [0]_2)$ e $(\mathbb{Z}_6, \cdot, [1]_6)$ sono monoidi, e che l'operazione \odot è definita componente per componente, segue immediatamente che $(M, \odot, ([0]_2, [1]_6))$ è un monoide, i cui elementi invertibili sono le coppie con entrambe le componenti invertibili (quindi, gli elementi (x, y) con $x \in \mathbb{Z}_2$ e $y \in \{[1]_6, [5]_6\}$).

3

3

 2

2. Sia $f(n) \stackrel{\text{def}}{=} ([n], [n+1]) \in M$ per $n \in \mathbb{N}$. È vero che $f: \mathbb{N} \to M$ è un omomorfismo da $(\mathbb{N}, +)$ in (M, \odot) ? [No]

Si ha $f(1+1) = f(2) = ([0]_2, [3]_6)$, ma $f(1) + f(1) = ([1]_2, [2]_6) \odot ([1]_2, [2]_6) = ([0]_2, [4]_6)$.

3. Esiste un unico omomorfismo f da $(\mathbb{N},+)$ in (M,\odot) tale che $f(1) \stackrel{\text{def}}{=} ([1],[2])$? [Si]

Poichè ogni elemento del monoide $(\mathbb{N}, +, 0)$ si scrive come potenza additiva di 1 (cioè, $n = n \cdot 1$ per ogni $n \in \mathbb{N}$), assegnando ad 1 un valore m preso in un fissato monoide (M, \cdot, e) , resta definito un unico omomorfismo di monoidi f da $(\mathbb{N}, +, 0)$ a (M, \cdot, e) (ovvero, $f(n) = m^n$, dove la potenza al secondo membro è effettuata rispetto all'operazione \cdot in M).

C Sia
$$p(X) = X^5 - 2X^4 + 5X^3 - 3X^2 + 2X - 7$$
.

1. Fattorizzare p(X) in $\mathbb{Z}_2[X]$.

Il polinomio
$$p(X)$$
 in $\mathbb{Z}_2[X]$ diventa $X^5 + X^3 + X^2 + 1 = X^3(X^2 + 1) + X^2 + 1 =$
= $(X^3 + 1)(X^2 + 1) = (X + 1)(X^2 + X + 1)(X + 1)^2 = (X + 1)^3(X^2 + X + 1),$

con l'ultimo fattore irriducibile poiché privo di radici in \mathbb{Z}_2 .

2. È sufficiente che p(X) non abbia radici in \mathbb{Z}_3 per concludere che l'anello quoziente $\mathbb{Z}_3[X]/(p(X))$ è un campo ? [No]

3

3

Il polinomio ha grado maggiore di 3, dunque potrebbe spezzarsi pur non avendo radici.

3. Se $\mathbb{Z}_3[X]/(p(X))$ è un campo è vero che p(X) è irriducibile in $\mathbb{Z}[X]$? [Sì]

Supponiamo che p(X) si spezzi come a(X)b(X), con a(X) e b(X) polinomi in $\mathbb{Z}[X]$ entrambi diversi da ± 1 (dunque entrambi non costanti, visto che p(X) è monico). Se, per $f(X) \in \mathbb{Z}[X]$, denotiamo con $\overline{f}(X)$ il polinomio in $\mathbb{Z}_3[X]$ ottenuto riducendo modulo 3 i coefficienti di f(X), avremmo allora la fattorizzazione $\overline{p}(X) = \overline{a}(X)\overline{b}(X)$ in $\mathbb{Z}_3[X]$, il che implica (possiamo supporre) $\overline{a}(X) = \pm [1]_3$, visto che per per ipotesi $\overline{p}(X)$ è irriducibile in $\mathbb{Z}_3[X]$. Ma allora il coefficiente direttore di a(x), quindi anche di p(X), sarebbe un multiplo di 3, il che non è.

D Si consideri il sistema di congruenze
$$S: \left\{ \begin{array}{l} 8x \equiv_5 3 \\ 8x \equiv_7 3 \\ 8x \equiv_{11} 3 \end{array} \right.$$

1. Mostrare che il sistema
$$S$$
 è equivalente al sistema S' :
$$\begin{cases} x \equiv_5 1 \\ x \equiv_7 3 \\ x \equiv_{11} -1 \end{cases}$$

Tenendo conto del fatto che $8 \equiv_5 3$, $8 \equiv_7 1$ e $8 \equiv_{11} -3$ (e del fatto che 3 è invertibile sia modulo 5 che modulo 11), segue immediatamente ciò che si vuole.

2. Il sistema è anche equivalente all'equazione
$$8x \equiv_{385} 3$$
 ? [Sì]

Si ha che 8x-3 è divisibile per $385=5\cdot 7\cdot 11$ se e solo se è divisibile per ciascuno dei fattori primi 5,7,11.

2

3

3. La più piccola soluzione positiva del sistema S è [241]

Dalla prima congruenza si ricava x=5h+1 che, sostituendo nella seconda, dà $h\equiv_7 -1$, ovvero h=7k-1 e quindi x=5(7k-1)+1=35k-4. Sostituendo nella terza congruenza, si ottiene ora $2k\equiv_{11} 3$, da cui $k\equiv_{11} -4$ e quindi k=11w-4. A questo punto si ottiene x=35(11w-4)-4=385w-144, dunque -144 è l'unica soluzione del sistema (modulo 385). Si vede ora immediatamente che la più piccola soluzione positiva è 241.