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INTRODUCTION

This thesis attempts to unify within the same work two topics which are
central in the latest development of algebraic and arithmetic geometry.

The �rst topic is Grothendieck's notion of topology.
This concept arose to by-pass the problem of the Zariski topology being too
coarse.
In fact, when we deal with complex algebraic varieties, the complex topology
is available. This provides us all the method of classical algebraic topology
and cohomology. When we consider an arbitrary base �eld, though, we just
have the Zariski topology. This has much less open sets, hence in many cases
cohomology groups fail to give interesting information.
The idea of Grothendieck was easy as much as brilliant: instead of consider-
ing coverings of open subsets we consider collection of morphisms with �xed
codomain.
Not only Grothendieck topologies generalize the notion of topological space.
They also allow, paralleling classical sheaf theory, to speak about sheaves
on rather general categories (�bered product being the natural substitute of
intersection).
Moreover Grothendieck proved that the category of sheaves for a Grothendieck
topology has enough injective objects. This allows to de�ne the q-th coho-
mology group of an object U with values in a sheaf F : this is RqΓU(F ), the
image of F via the right derived functors of the global section functor.
This is probably the most general approach to cohomology theory.

Galois Categories are the second topic.
This is the classical example of theory that bridges the gap among many
di�erent situations.
It widely clari�es the notion of fundamental group, which appears in nearly
all �elds of mathematics. For example the well known topological fundamen-
tal group and the absolute Galois group of a �eld are two manifestations of
it (see [21] for a comprehensive treatment about fundamental groups). In
both these situations we have a group (de�ned as the automorphism groups
of some object) classifying some object (covers of a topological space in the
�rst case, Galois extension of the �eld in the second).
This is brilliantly explained by the abstract theory of Galois categories: the
group is the automorphisms group of a functor with images in the category
of �nite sets; the classi�cation is given by an equivalence induced by this
functor.
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We treat this topics in the abstract framework of categories.
This is not mere desire of generalization: dealing with general categories is
often easier then considering more concrete objects.
Just think about the de�nition of morphism of schemes: there are involved
two topological spaces Y and X, two sheaves of rings OY and OX which
locally looks like the spectrum of a ring, a continuous map f : Y → X, a
morphism of sheaves from OX to the direct image of OY via f .
In categorical language this is just an arrow between two objects.
It does sound easier.

In the last chapter we carry over the abstract theory to the category of
schemes.
Firstly we give a general method to construct Grothendieck topologies in this
category. The idea is that we relax the condition of being an open immersion
and we consider wider class of morphisms to form coverings.
Secondly we prove that the category of �nite étale morphisms over a con-
nected scheme is a Galois category.
For example this gives a new insight into Galois cohomology: this is just
étale cohomology when we choose the base scheme to be the spectrum of a
�eld.
Finally we revisit a classical result, Hilbert theorem 90, and we state and
prove it in a much more general form using étale cohomology.
This is yet another example of an arithmetical result which has a deep geo-
metric interpretation.
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PREREQUISITES AND CONVENTION

The (real) basics of commutative algebra, scheme theory and category theory
are assumed to be known. Any classical books on the topic will do.
For example: for commutative algebra [2]; for scheme theory [7]; for category
theory [16].

We denote with Set, FSet, Ab and Rng the category of sets, �nite sets,
abelian groups and rings respectively.

All rings are assumed to be commutative Noetherian with identity.
All schemes are assumed to be locally Noetherian.
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1 GROTHENDIECK TOPOLOGIES

Roughly speaking a site on a category is a way to see its object as open
subsets of a topological space. In fact the prototype of a site is the category
O(X) of open subsets of a topological space X, with inclusions as arrows.
More precisely, instead of usual coverings {Ui ⊆ U}i∈I of open subsets we
consider collection of arrows {Ui → U}i∈I with �xed codomain. A site on a
category consists of a collection of coverings for each object, satisfying some
axioms.
The point in doing so is that it allows to de�ne (abelian) sheaves in a nat-
ural way, i.e. as presheaves satisfying the sheaf condition on any covering.
Of course, in order to state such a condition, we have to consider �bered
products instead of intersections (this make sense since the �bered product
in O(X) is intersection).
Clearly the collection of sheaves on a site with morphisms of presheaves as
arrows form a category. This turn out to have all the nice properties of the
usual category of sheaves on a topological space. In fact we will prove that
it is a Grothendieck category (see the Tohoku paper [8]).
In particular this implies it has enough injective object and this allows to
speak about cohomology groups of an object with value on a sheaf F . These
are the images of F via the right derived functors of the section functor on
U .
Finally we will introduce the canonical topology, which is the �ner such that
all representable presheaves are sheaves. In particular we will consider the
category of sets endowed with a continuous action of a pro�nite group, which
will be of central importance in the rest of the thesis.

The notion of site was invented by Artin and Grothendieck to formalize
the latter's intuition about étale cohomology.
Artin was probably the �rst teaching and writing about the topic in the
abstract categorical form ([1]). Afterwards the theory was systematically
treated in SGA III ([4]).
A modern book dealing with the categorical theory of sites, which approach
I will mostly follow here, is [22]; another precious source was [27].

1.1 Sites, sheaves, cohomology

In this section we de�ne sites. The prototype of a site is the category O(X)
of open subsets of a given topological space, with the inclusions as arrows.
While we give the axioms de�ning sites we look at their meaning in this cat-
egory, to keep always clear in mind how they came from geometric intuition.
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For simplicity, in the whole section we assume categories to have �bered
products.

De�nition 1.1.1 We call covering of an object U ∈ C a collection of mor-
phism {Ui → U}i∈I .
We call coverage on C a collection of coverings for each object U ∈ C satis-
fying the following condition

(T1) for any covering {Ui → U}i∈I and any morphism
V −→ U , the collection {Ui ×U V → V }i∈I is a covering for V .

If T is a coverage on a category, we will denote with CovT (U) (or simply
with Cov(U) if the coverage is clear from the context) the collection of
coverings of U in T .

Remark 1.1.2 In O(X) axiom (T1) means that if {Ui ⊆ U}i∈I is a covering
for U and V ⊆ U , then {Ui ∩ V ⊆ V }i∈I is a covering for V.
Of course usual coverings of open subsets de�ne a coverage on O(X).

This de�nition is already enough to de�ne sheaves:

De�nition 1.1.3 Let T be a covering on a category C.
We say that a presheaf F (of set, abelian group, ring etc.) on C is a sheaf
for T (of set, abelian group, ring etc.) if for any U ∈ C and any covering
{Ui → U}i∈I ∈ T the following sequence is exact

F (U)
∏
i∈I

F (Ui)
∏
i,j∈I

F (Ui ×U Uj)

(the arrows to be understood).
We denote the category of (abelian, if not mentioned) sheaves for a coverage
(C, T ) with S(T ).

Of course applied to O(X) this correspond to the usual de�nition of sheaf.

To obtain the de�nition of site we need to add two axioms. These corre-
sponds to the idea that "composition" of coverings is again a covering and
that any isomorphism is itself a covering.

De�nition 1.1.4 A site (or topology) on a category C is a coverage sat-
isfying the following extra conditions

(T2) if {Ui → U} is a covering and for all i {Uij → Ui} is a covering, then
{Uij → Ui → U} is a covering.
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(T3) any isomorphism form a covering itself.

Remark 1.1.5 We rephrase these condition in O(X).
(T2) means that if {Ui ⊆ U} is a covering for U and for all i {Ui,j ⊆ Ui} is
a covering for Ui, then {Ui,j ⊆ U} is a covering for U .
(T3) correspond to the fact that any open set cover itself.
Once again O(X) together with usual coverings satis�es (T2) and (T3).

Remark 1.1.6 Sometimes in literature this is called a pretopology. Actually
this was the name when it �rst appeared in Grothendieck's and Demazure's
work([4]). Here topologies are de�ned by means of sieves and not of coverings:
the reason in doing so is that it may happen that two di�erent pretopologies
generate the same category of sheaf, while a topology is uniquely determined
by the associated sheaf category.
Nevertheless in our de�nition the geometric aspect is more evident, and it is
enough for our scope.

Of course we need a good de�nition of functor between topologies.

De�nition 1.1.7 Let (C, T ) and (C ′, T ′) be sites. We say that a functor
F : C → C ′ is continuous if it satis�es the following propeties

i) {Ui → U} ∈ Cov(C) =⇒ {F(Ui)→ F(U)} ∈ Cov(C ′).

ii) For any covering {Ui → U} ∈ Cov(C) and any arrow V → U the
canonical morphism F(Ui ×U V ) → F(Ui) ×F(U) F(V ) is an isomor-
phism for all i.

We will say that F yields a morphism of site F : (C ′, T ′)→ (C, T ).

Remark 1.1.8 Consider a continuous map between topological spaces, say
f : X → Y . Then the functor [V → f−1(V )] : O(Y )→ O(X) is a continuous
functor.
In fact i) means that if {Vi ⊆ V } is an open covering of V ⊆ Y then
{f−1(Vi) ⊆ f−1(V )} is an open covering of f−1(V ) ⊆ X and ii) means that
f−1(Ui ∩ V ) = F (Ui) ∩ F (V ).

Remark 1.1.9 Let F : (C ′, T ′)→ (C, T ) be a morphism of sites and assume
that the underlying continuous functor F : C → C ′ is an equivalence of
categories with continuous quasi inverse.
Then it is easy to see that S(T ) is equivalent to S(T ′) via the functor

[G → F∗G := G ◦ F ] : S(T ′)→ S(T ).
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Finally we may use continuity to de�ne the notion of �ner topology:

De�nition 1.1.10 Let T , T ′ be sites on a category C. We say that T
is �ner then T ′ if the identical functor C → C yields a morphism of sites
(C, T )→ (C, T ′).
This just means that any covering in T ′ is a covering in T .

The few notion introduced up to now are already enough to de�ne coho-
mology groups.
Let [F 7→ ΓU(F ) := F (U)] : S(T )→ Ab be the section functor on U .
Assume for a moment that the category of sheaves on a site is an abelian
category with enough injective objects (all of these will be proven in the next
sections).
Then we make the following de�nition:

De�nition 1.1.11 Let F ∈ S(T ) and U ∈ C. We call

Hq(U,F ) := RqΓU(F )

the q-th cohomology group of U with value in F

1.2 Shea��cation

The aim of this section is to describe shea��cation, i.e. the left adjoint to
the inclusion i : S(T ) → P(T ). The existence of such an adjunction is of
central importance for proving that categories of sheaves are abelian.
Throughout the section we �x a site T on a category C. All covering will be
in T .

We sketch our strategy �rst.
Given an abelian presheaf F and a covering U = {Ui → U} de�ne

H(U ,F ) := ker

(∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj)

)
.

Consider the collection JU of coverings of a �xed object U ∈ C. We will
make this in a �ltered preordered category, and show that H(−,F ) can be
seen as a functor JU → Ab. Finally we will de�ne the presheaf

F -(U) := lim−→
JU

H(−,F )

and prove that (F -)- is the shea��cation of F .
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First we de�ne JU . What we're missing is a good notion for arrows.
Slightly more generally we can de�ne maps between arbitrary coverings.

De�nition 1.2.1 We call morphism of coverings from V = {Vj → V }j∈J
to U = {Ui → U}i∈I an arrow V → U together with a pair (ε, f) consisting
of :

• a map ε : J → I

• a collection of morphisms f = {fj : Vj → Uε(j)}j∈J such that

Vj Uε(j)

V U

commute for all j ∈ J .

We will denote this loosely with (ε, f).
In particular if V = U and V → U is the identity map, we say that V is a
refinement of U and we call (ε, f) refinement map.

This makes Cov(C) into a category.
Moreover notice that a morphism of coverings induces maps∏

i

F (Ui) −→
∏
j

F (Vj)

(si) 7−→
(
Ffj(sε(j))

)
∏
i,i′

F (Ui ×U Ui′) −→
∏
j,j′

F (Vj ×U Vj′)

(sii′) 7−→
(
F (fj × fj′)(sε(j)ε(j′))

)
jj′

making the following diagram commute∏
i

F (Ui)
∏
i,i′

F (Ui ×U Ui′)

∏
j

F (Vj)
∏
j,j′

F (Vj ×U Vj′)
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Hence we get a well de�ned group map H(f,F ) : H(U ,F )→ H(V ,F ) and
we see that H(−,F ) is a presheaf on Cov(C).

The following lemma is very important for many computation.

Lemma 1.2.2 Let f, g : V → U be morphisms of coverings inducing the
same map V → U . Then H(f,F ) = H(g,F ).

Proof
It will su�ce to exhibit a map ∆ such that the following diagram commutes

∏
F (Ui)

∏
F (Vj)

∏
F (Ui ×U Ui′)

H(f,F )

H(g,F )

∆

Consider the product map fj × gj : Uj −→ Uε(j) ×U Uη(j). This makes the
following diagram commute

Vj

Uε(j) Uε(j) ×U Uη(j) Uη(j)

fj
fj×gj

gj

π1
j π2

j

Thus applying F we see that

F (fj × gj) ◦F (π1
j ) = F (fj)

F (fj × gj) ◦F (π2
j ) = F (gj)

for all j.
Then it su�ce to de�ne the j-th component of ∆ to be the map F (fj × gj)
precomposed with the projection

∏
F (Ui ×U Ui′)→ F (Uε(j) ×U Uη(j)) .

Now we focus on the category JU , the category Cov(U) with re�nements
as arrows.
We can order JU by saying that U ≤ U ′ (we'll say that U ′ is �ner then U) if
there exists a re�nement map (ε, f) : U ′ → U .
JU is a �ltered partially ordered category, since for coverings U = {Ui → U}
and U ′ = {U ′i → U} we have that U ,U ′ ≤ {Ui ×U U ′j}.
Now, thanks to lemma 1.2.2, we can see H(−,F ) as a contravariant functor
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JU → Ab. For all U ∈ C we just de�ne F -(U) to be the direct limit of
groups

F -(U) := lim−→
JU

H(−,F )

This is indeed a presheaf:
for any map V → U in C and any covering U = {Ui → U}, there is a
natural morphism of coverings V = {Ui × V → V } → U , thus a group map
H(U ,F )→ H(V ,F ). These maps, for varying U , give a morphism of direct
system of groups, thus a group map F -(U)→ F -(V ). This is easily veri�ed
to be functorial in U and the following diagram commute by construction.

H(U ,F ) F -(U)

H(V ,F ) F -(V )

Moreover notice that (−)- is a functor P(T ) → P(T ). In fact for any
presheaf morphism η : F → G and any covering U we get a commutative
diagram

∏
i

F (Ui)
∏
i,j

F (Ui ×U Uj)

∏
i

G (Ui)
∏
i,j

G (Ui ×U Uj)

η(Ui) η(Ui×UUj)

and thus group maps H(U , η) : H(U ,F ) → H(U ,G ). Again for varying U
these give a morphism between direct system of groups, thus a group map
F -(U)→ G -(U).

Remark 1.2.3 At this point it's de�nitely worth to spend a couple of word
about �ech cohomology.
The groups H(U ,F ) are usually denoted by H0(U ,F ).
It is easy to see that the functor H0(U ,−) : P(T ) → Ab is left exact, thus
the right derived functor H0(U ,−) are de�ned.
The groups Hq(U ,F ) are referred to as q-th �ech cohomology groups
of F with respect to U .
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There's an alternative way, more technical but more concrete, to de�ne these
groups.
For a covering U = {Ui → U}i∈I de�ne

Cq(U ,F ) :=
∏

(i0,...,iq)∈Iq+1

F (Ui0 ×U · · · ×U Uiq).

Now de�ne di�erentials dq : Cq(U ,F )→ Cq+1(U ,F ) by

(dqs)i0,...,iq+1 =

q+1∑
ν=0

(−1)νF (πν)(si0,...,îν ,...,iq+1
)

where πν is the projection Ui0×U · · ·×U Uiq+1 → Ui0×U · · ·×U Ûiν×U×UUiq+1 .
It can be shown that this yields a chain complex and that the groupsHq(U ,F )
are its q-th cohomology group (see [22] I 2.2 for details: in fact since C∗(U ,−)
coincide with H∗(U ,F ) in degree 0, it is enough to show that it is a universal
∂-functor).
The group F -(U) is usually denoted with Ȟ0(U,F ).
We will see (proposition 1.2.7) that the functor Ȟ0(U,−) : P(T ) → Ab is
left exact and thus its right derived functors Ȟq(U,−) are de�ned.
The groups Ȟq(U,F ) are called q-th �ech cohomology groups of F
over U .
Moreover one can actually prove (using the same technique we mentioned
before) that Ȟq(U,F ) ' lim−→

U
Hq(U ,F ).

Lemma 1.2.2 implies another result useful for computations.

Lemma 1.2.4 Let V ,V ′ ∈ Cov(V ) and let V → U and V ′ → U be mor-
phisms of coverings inducing the same arrow V → U .
Then the images of (si) ∈ H(U ,F ) in H(V ,F ) and H(V ′,F ) represent the
same element in F -(V ).

Proof
Let V = {Vj → V } and V ′ = {Vj′ → V } and let (ε, f) and (ε′, f ′) be the
re�nements map.
Form the covering W = {Vj ×V Vj′ → V }. This is a common re�nement for
V and V ′, and we have naturally induced map of coverings W → V → U
and W → V ′ → U . These clearly induce the same arrow V → U then by
lemma 1.2.2 they induce the same arrow H(U ,F )→ H(W ,F ), i.e. there is
a commutative diagram
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H(V ,F )

H(U ,F ) H(W ,F )

H(V ′,F )

Then the images of (si) ∈ H(U ,F ) in H(V ,F ) and H(V ′,F ) map to the
same element in H(W ,F ), which means they represent the same element in
F -(V ).

Now we will prove that applying (−)- twice is actually left adjoint to the
inclusion S(T )→ P(T ).
By de�nition of adjunction this amount to prove that:

•
(
F -
)- is a sheaf;

• for any F ∈ P(T ) we have a map θ : F →
(
F -
)-;

• any morphism from F to a sheaf G factors as F →
(
F -
)- → G.

First of all notice that we have natural maps functorial in U

F (U) = H({U → U},F ) −→ lim−→
JU

H(−,F ) = F -(U)

This gives a morphism θ : F → F -. Moreover if F → G is a morphism of
presheaves, this makes the following diagram commute

F F -

G G -

If moreover G is a sheaf then H(U ,G) = G(U) for any U ∈ JU , and we see
at once that the map G → G - is an isomorphism.
Hence for any sheaf G, any morphism F → G factors as F → F - → G.
This factorization is actually unique, since the 0 morphism F → G maps to
the 0 morphism F - → G - just by de�nition.
Applying twice this reasoning, we see that any morphism form F to a sheaf

9



G factors in a unique way as as F →
(
F -
)- → G.

From now on we shall write F # :=
(
F -
)-.

So �nally we just need to prove that F # is a sheaf.
The next proposition does the job

Proposition 1.2.5

i) F - is a separated presheaf, i.e. the map F -(U) →
∏

i F
-(Ui) is injec-

tive for any covering U = {Ui → U}.

ii) if F is separated then F - is a sheaf.

Proof
i) Take s̄ ∈ ker

(
F -(U)→

∏
F -(Ui)

)
. We have to show that s̄ = 0.

Let s̄ be represented by an element (sj) ∈ H(V ,F ) with V = {Vj → U}. We
have to exhibit a re�nement g :W → V such that H(g,F )

(
(sj)

)
= 0.

Applying lemma 1.2.4 (take V = {Vj′×V Vj → Vj}j′ and V ′ = {Vj → Vj}) we
see that s̄|Vj = θ(sj). Now consider a common re�nement of U and V , say
W = {Wr → U}, with re�nement maps (ε, f) :W → U and (ε′, f ′) :W → V .
We have that for all r{

s̄|Wr = (s̄|Uε(r) )|Wr = 0

s̄|Wr = θ(sε′(r))|Wr = θ(sε′(r)|Wr)
=⇒ θ(sε′(r)|Wr) = 0 ∈ F -(Wr)

This means there are coverings Wr = {Wrt → Wr}r such that sε′(r)|Wr

maps to 0 via the map F (Wr) = H({Wr → Wr},F ) → H(Wr,F ), i.e.
(sε′(r)|Wrt)r = 0.
Now consider the covering W = {Wrt → Wr → U}. This is a re�nement of
V in a natural way and via the map H(V ,F )→ H(W ,F ) we have that

(sj) 7→ (sε′(r)|Wrt) = 0.

We're done.

ii) Let U = {Ui → U} be a covering and take

(si) ∈ ker
(∏

F -(Ui) ⇒
∏

F -(Ui ×u Uj)
)
.

Let si ∈ F -(Ui) be represented by (sir)r ∈ H(Ui,F ), where Ui = {Uir → Ui}r.
Once again (si)|Uir = θ(sir). Moreover we have the following commutative
diagram
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Uir Ui

Uir ×U Ujt Ui ×U Uj

Ujt Uj

Thus we �nd that


si|Uir×UUjt =

(
si|Ui×UUj

) ∣∣
Uir×UUjt

=
(
sj |Ui×UUj

) ∣∣
Uir×UUjt

= sj |Uir×UUjt

si|Uir×UUjt =
(
si|Uir

) ∣∣
Uir×UUjt

= θ(sir)|Uir×UUjt = θ(sir |Uir×UUjt )

sj |Uir×UUjt
=
(
sj |Ujt

) ∣∣
Uir×UUjt

= θ(sjt)|Uir×UUjt = θ(sjt |Ujt×UUjt )

=⇒ θ(sir |Uir×UUjt ) = θ(sjt |Ujt×UUjt )

But θ is a monomorphism. In fact if s ∈ F (U) maps to 0 ∈ F -(U) then
there exists a covering {Ui → U} such that s|Ui = 0 for all i. But F is
separated, thus s = 0.
Then we get sir |Uir×UUjt = sjt |Uir×UUjt , which means that

(sir) ∈ ker
(∏

F (Uir) ⇒
∏

F (Uir ×U Ujt)
)

= H({Uir → U},F ).

Denote with s̄ the image of (sir) in F -(U). We claim that s̄|Ui = si. But this
is straight forward since we have a natural map of coverings {Uir → Ui}r →
{Uir → U}ir which gives the commutative diagram

H({Uir → U},F ) H({Uir → Ui},F )

F -(U) F -(Ui)

Now we readily see that (sir) 7→ s̄|Ui via

H({Uir → U},F )→ H({Uir → Ui},F )→ F -(Ui)

and (sir) 7→ si via

H({Uir → U},F )→ F -(U)→ F -(Ui).

We're done.
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Corollary 1.2.6 The functor # : F 7→ F # is left adjoint to the inclusion
S(T )→ P(T ).

It is useful to study the exactness property of shea��cation.

Proposition 1.2.7 (−)- is left exact.

Proof
Let 0 → F

η→ G
µ→ C ∈ P(T ) be an exact sequence of presheaves, i.e.

0 → F (U) → G (U) → C (U) is exact for all U ∈ C. We have to show that
0→ F -(U)→ G -(U)→ C -(U) is exact for all U .
Let s̄ ∈ ker

(
F -(U)→ G -(U)

)
be represented by (si) ∈ H(U ,F ), U = {Ui →

U}.
Then there exists a re�nement f : U ′ = {U ′j → U} → U such that H(f,G ) ◦
H(U , η)

(
(si)
)

= 0.
But the following diagram commute

H(U ,F ) H(U ,G )

H(V ,F ) H(V ,G )

H(U ,η)

H(f,F ) H(f,G )

H(V,η)

so that H(V , η) ◦H(f,F )
(
(si)
)

= H(f,G ) ◦H(U , η)
(
(si)
)

= 0.
But recalling how H(V , η) is de�ned and using the fact that η(Ui) is injective
for all i we get that H(f,F )

(
(si)
)

= 0 which means that s̄ = 0.
It is quite clear that im

(
F - → G -

)
⊆ ker

(
G - → C -

)
.

Finally let s̄ ∈ ker
(
G - → C -

)
be represented by (si) ∈ H(U ,G ).

Once again we �nd a re�nement f : U ′ → U such thatH(V , µ)◦H(f,F )
(
(si)
)

=
0. Recalling howH(V , η) is de�ned and using exactness of F (Ui)→ G (Ui)→
C (Ui), this time we get an element (tj) ∈ H(U ′,F ) such thatH(U ′, η)

(
(tj)
)

=
H(f,F )

(
(si)
)
. Then the image of (tj) in F -(U) maps to s̄.

We're done.

Corollary 1.2.8 Shea��cation is an exact functor.

Proof
Since it is a left adjoint, it is right exact.
Plus the composition i ◦ # = - ◦ - (i being the inclusion S(T ) → P(T )) is
left exact by what we have just proved. But since i is fully faithful # has to
be left exact as well.
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1.3 S(T ) is abelian

It's easy to prove that P(T ) is an abelian category.
Since S(T ) is a full subcategory of P(T ), it inherits from it the additive
structure.
Let α : F → G be a morphism in S(T ) and denote with K and C its kernel
and cokernel in the category of presheaves.
The following proposition shows that S(T ) is abelian.

Proposition 1.3.1 The following are true in S(T ):

i) K = ker(α).

ii) C # = coker(α).

iii) ker
(
coker(α)

)
' coker

(
ker(α)

)
.

Proof
i) First we show that K is in fact a sheaf.
Consider the following commutative diagram

0 0 0

K (U)
∏

K (Ui)
∏

K (Ui ×U Uj)

F (U)
∏

F (Ui)
∏

F (Ui ×U Uj)

G (U)
∏

G (Ui)
∏

F (Ui ×U Uj)

Since all the columns and the two bottom rows are exact, the �rst row is
exact as well, which means that K is a sheaf.
Next we show that K = ker

(
F → G

)
, i.e. that 0 → K → F is exact in

S(T ). But this is exact in P(T ) and since # is exact (Corollary 1.22) and
K and F are sheaves, we get that 0→ K → F is exact in S(T ).
We're done.

ii) This is true since shea��cation is a left adjoint and thus it's right exact.

iii) Let I = ker
(
coker(α)

)
and J = coker

(
ker(α)

)
in the category of

presheaves. Then there exist a unique isomorphism of presheaves ᾱ such
that α factorize as F →J

ᾱ→ I → G .
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Applying shea��cation we get a factorization F →J # ᾱ#

→ I # → G where
ᾱ# is again an isomorphism.
Then we just need to show that I # = ker

(
coker(α)

)
and J # = coker

(
ker(α)

)
in the category of sheaves.
The assertion for J # follows from i) and ii).
For I # notice that we have an exact sequence of presheaves 0→ I → G →
C . Since shea��cation is exact (Corollary 1.22) we get a sequence of sheaves
0→ I # → G → C # which is exact in the category of presheaves.
Thus I # = ker

(
G → C #) = ker

(
coker(α)

)
in P(T ). But kernel in the

category of sheaves are just kernels in the category of presheaves.
We're done.

Now that we proved that S(T ) is abelian, we may wonder whether the
section functor is exact.

Lemma 1.3.2 The section functor is left exact.

Proof
Notice that ΓV factor as

S(T ) −→ P(T )
ΓV−→ Ab.

Now the inclusion S(T ) → P(T ) is a right adjoint and thus left exact and
the section functor is clearly exact on P(T ). Thus ΓV : S(T ) → Ab is left
exact.

In addition we show that S(T ) satis�es axioms Ab3, Ab4 and Ab5 intro-
duced by Grothendieck in its Tohoku paper ([8]). We recall them here.

(Ab 1) C admits arbitrary direct sum.

(Ab 2) Direct sum of monomorphisms is a monomorphism.

(Ab 3) If {Ai} is a direct system of subobject of A ∈ C together with arrows
ui : Ai → B for each i, such that uj extend ui whenever Ai ⊆ Aj, then
there exists a unique arrow

∑
iAi → B extending all the ui.

Lemma 1.3.3 S(T ) satis�es Ab 3.

Proof
Let {Fi} be a collection of sheaves. Clearly the presheaf de�ned by

F (U) =
⊕
i

Fi(U)

14



together with the natural injections Fi → F is the coproduct of the Fi in
the category of presheaves. But # is a left adjoint, thus it preserve colimit.
It follows that F # is the direct sum of the Fi in the category of sheaves.

Lemma 1.3.4 S(T ) satis�es Ab 4.

Proof
Let {ui : Fi → Gi} be a collection of monomorphism in S(T ). Then
⊕ui : ⊕Fi → ⊕Gi is a monomorphism in P(T ). Clearly the direct sum
of the ui in S(T ) is (⊕ui)#, which is a monomorphism since # is exact.

Lemma 1.3.5 S(T ) satis�es Ab 5.

Proof
First notice that the property hold in P(T ).
In fact consider a direct system {Fi} of subobject of a given presheaf F ,
together with morphisms ui : Fi → G into another presheaf. Let

∑
i Fi

be the supremum of the Fi in the category of presheaves. By de�nition∑
i Fi = im(

⊕
i Fi → F ) is the presheaf U 7→

∑
i Fi(U) (the subgroup of

F (U) generated by the Fi(U)). Obviously there exists a unique morphism of
presheaves u :

∑
i Fi → G extending the ui (de�ne u(U) :

∑
i ai 7→

∑
ui(ai)).

Thus P(T ) has property (Ab5).
Now consider a direct system {Fi} of subobject of a given sheaf F , together
with morphisms ui : Fi → G into another sheaf. By proposition 1.3.1(∑

i Fi

)# is the supremum of the Fi in the category of sheaves (as before∑
i Fi is the supremum in the category of presheaves).

Now in P(T ) there exists a morphism u :
∑

i Fi → G extending the ui, and

since G is a sheaf this factors as
∑

i Fi →
(∑

i Fi

)# u#→ G .
Clearly u# is the unique morphism extending the ui.

1.4 Injective objects in S(T )

The last task we need to accomplish is proving that the category of sheaves
over a site has enough injective objects.
To do so we will use a theorem proven by Grothendieck in its Tohoku paper
([8]).

First we shall recall the de�nitions of subobjects and generators.
Consider two monomorphism u : B → A and u′ : B′ → A. We say that
B ≤ B′ if there is a factorization
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B

A

B′

u

w

u′

De�ne an equivalence relation∼ on the collection of monomorphisms with
codomain A by saying that u ∼ u′ if and only if u ≤ u′ and u′ ≤ u.

De�nition 1.4.1 We call subobject of A an equivalence class of ∼.

Now we recall what a family of generator is:

De�nition 1.4.2 We say that a collection {Ui} of object in C is a family of
generators for C if for any subobject B ⊆ A we have

im(Ui → A) ⊆ B ∀ Ui → A =⇒ B ' A

We're ready to state the theorem:

Theorem 1.4.3 A Grothendieck category (i.e. an abelian category with gen-
erators satisfying axioms Ab 3, Ab 4 and Ab5) has enough injective objects.

Proof (sketch)
We brie�y review the steps of the proof. For details see the original source
[8] or [17].
First of all is not di�cult to see that if {Ui} is a family of generators then
U =

⊕
i Ui is a generator.

Next one can show that the lifting property for injective objects just need
to be checked on maps V → U . Precisely an object I is injective if for any
subobject V → U , any map V → A extends to a map U → A. This is
analogous to the Baer's criterion for injective modules (see [30] 2.3.1).
Now �x an object A. We want to prove it is a subobject of some injective
object.
De�ne

I = {V → A|V ⊆ U}

and consider the map ⊕
i∈I

Vi → A×
(⊕
i∈I

U
)
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which (Vi → A)-component is the the product of Vi → A and the inclusion
Vi →

⊕
i∈I U in the (Vi → A)-component.

De�ne M1(A) to be the quotient of this map.
We clearly have a canonical map A → M1(A) and one can prove this is an
injection.
Now we de�ne by induction Mα+1(A) := M1

(
Mα(A)

)
for all α ≥ 1.

Further using trans�nite induction we can de�neMα for α an ordinal number.
Finally one choose the smallest in�nite ordinal Ω which cardinality is strictly
grater then the cardinality of the collection of subobject of U .
It can be proved that MΩ(A) is injective and this conclude the proof.

To apply the theorem we still need to prove that S(T ) admit a family of
generators.
For doing so it su�ces to show that the section functors are representable.
In fact assume that ΓV is represented by a sheaf FV for all objects V . We
claim that {FV }V ∈C is a family of generator for P(T ).
In fact if G ( F is a proper subobject then G (V ) ( F (V ) for some V ∈ C
and by representability we have a commutative diagram

F (V ) HomP(T )(FV ,F )

G (V ) HomP(T )(FV ,G )

∼

∼

Thus the element in F (V )\G (V ) correspond to a morphism FV → F which
does not factorize as FV → G → F .

The next lemma does the job.

Proposition 1.4.4 Every section functor is representable.

Proof
De�ne FV as follow. Let

FV (U) =
⊕

HomC(U,V )

Z.

and for any u : U ′ → U de�ne

FV (u) :
⊕

HomC(U,V )

Z −→
⊕

HomC(U ′,V )

Z

to be the map whose h component (h ∈ HomC(U, V )) is the injection on
the h ◦ u component (from now on if h : U → V , we will denote with

17



Z h→
⊕

HomC(U,V ) Z the injection in the h component).
In other words FV (u) is the unique arrow such that the following diagram
commute for all h

⊕
HomC(U,V )

Z

Z ⊕
HomC(U ′,V )

Z

h

h◦u

Clearly G (V ) ' HomAb

(
Z,G (V )

)
, thus it will su�ce to construct an iso-

morphism
HomAb

(
Z,G (V )

) ∼−→ HomP(T )

(
FV ,G

)
functorial in G .
To any arrow v : Z→ G (V ) we associate a natural transformation ηv whose
component ηv(U) is the map

⊕
Hom(U,V ) Z → G (U) whose h component is

Z→ G (V )
G (h)→ G (U).

In other words ηv(U) is the unique arrow such that the following diagram
commute for all h

Z
⊕

Hom(U,V )

Z

G (V ) G (U)

h

v
ηv(U)

G (h)

Conversely to any natural transformation η : FV → G we associate the 1V
component of the map η(V ) : FV (V )→ G (V ), i.e. the composition

vη : Z
⊕

Hom(V,V )

Z G (V )
1V η(V )

This is easily seen to be functorial.
We show now that these are mutually inverse.
vηv is the 1V component of the map ηv(V ) : FV (V ) → G (V ), i.e. the
composition
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Z
⊕

Hom(V,V )

Z G (V )
1V ηv(V )

But by de�nition of ηv the following diagram commute

Z
⊕

Hom(U,V )

Z

G (V ) G (V )

1V

v
ηv(V )

G (1V )

and thus the composition above it's just v.
On the other hand consider ηvη .
By de�nition of vη we obtain for all h : U → V the commutative diagram

Z
⊕

Hom(V,V )

Z
⊕

Hom(U,V )

Z

G (V ) G (U)

1V

vη

FV (h)

η(V ) η(U)

G (h)

But the composition on the �rst row is the 1V component of FV (h), which
by de�nition is the injection Z→ FV (U) in the h component.
By the uniqueness property in the de�nition of ηvη we see at once that ηvη =
η.

Then we obtain

Corollary 1.4.5 {FV }V ∈C is a family of generator for P(T ).

Furthermore we easily obtain

Corollary 1.4.6 {F #
V }V ∈C is a family of generator for S(T ).

Proof
By the adjoint property of shea��cation we see that for any sheaf G

HomS(T )

(
F #
V ,G

)
' HomP(T )

(
FV ,G

)
' G (U).

The proof now runs as before.
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1.5 The canonical topology

It is an interesting question whether representable presheaves are sheaves for
a given site.
Actually there is a topology, called canonical, which is the �ner such that all
representable presheaves are sheaves.
We're going to construct this now.
From now on we write Z(U) for HomC(U,Z).

De�nition 1.5.1 We say that a covering {Ui → U}i∈I is surjective if

Z(V ) −→
∏
i

Z(Ui)

is injective for all Z ∈ C.
We say that it is universally surjective if for any arrow V → U the covering
{Ui ×U V → V } is surjective.

Remark 1.5.2 This generalizes the notion of (universal) epimorphism: in
fact a (universal) epimorphism is just a (universally) surjective covering con-
sisting of a single arrow.

Remark 1.5.3 If C has arbitrary coproduct this condition can be stated in
a nicer way. In fact

∏
i Z(Ui) ' Z(qiUi) so that {Ui → U}i∈I is surjective if

and only if qiUi → U is an epimorphism.
In many concrete category this means that U =

⋃
i im(Ui → U).

De�nition 1.5.4 We say that a covering {Ui → U}i∈I is effectively
surjective (or strictly surjective) if

Z(U)
∏
i

Z(Ui)
∏
i,j

Z(Ui ×U Uj)

is exact for all Z ∈ C.

Remark 1.5.5 When we consider coverings consisting of a single arrow, this
time we get the notion of strict epimorphism.
Precisely this is an arrow U ′ → U such that the sequence

U ′ ×U U ′ ⇒ U ′ → U

is exact.
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Example 1.5.6 We claim that {ϕi : Ui → U}i∈I is e�ectively surjective in
Set if and only if U = ∪iϕi(Ui).
We already proved the only if implication.
Conversely assume that U =

⋃
i ϕi(Ui).

We already know that Z(U)→
∏

i Z(Ui) is injective and it's quite clear that
im
(
Z(U)→

∏
i Z(Ui)

)
⊆ ker

(∏
i Z(Ui) ⇒

∏
i,j Z(Ui ×U Uj)

)
.

We're just left to prove that a map h : qiUi → Z on which the last two arrow
agree come from a map h′ : U → Z.
But for any x ∈ U , x = ϕi(xi) for some xi ∈ Ui, so we may de�ne h′(x) :=
h(xi). It is straight forward to see that this doesn't depend from the choice
of xi, thus everything work.

Clearly every covering in the canonical topology must satisfy these con-
ditions. Thus the set of coverings of an object U must be a subset of its
e�ectively surjective coverings.
Since in addition we need the condition (T1) to be satis�ed, we make the
following de�nition:

De�nition 1.5.7 We say that an e�ectively surjective covering {Ui → U}i∈I
is universal if for any arrow V → U the covering {Ui×U V → V }i∈I is again
e�ectively surjective.

Example 1.5.8 Again universal e�ective surjective coverings in Set are the
one such that U = ∪iϕi(Ui).
In fact let ϕ : V → U . For any x ∈ V we have that ϕ(x) = ϕi(xi) ∈ U for
some xi ∈ Ui. Thus (xi, x) ∈ Ui ×U V maps to x ∈ V , which means that
V =

⋃
i im(Ui ×U V → V ).

We just de�ne Cov(U) to be the collection of all universal e�ectively
surjective covering of U .
It is quite clear, provided this is a topology, that it is the �nest such that all
representable presheaves are sheaves.
We just need to prove that this de�nes indeed a topology.

Proposition 1.5.9 Taking coverings as above de�ne a topology.

Proof
(T1) is clearly satis�ed.
(T3) is ful�lled as well, since if U ′ → U is an isomorphism then U ′×UU ′ ' U ′

and for any arrow V → U we have that U ′ ×U V ' V .
Finally we need to prove that (T2) holds true.
Let {Ui → U}i∈I and {Uij → Ui}j∈Ji be universal e�ectively surjective cov-
erings.
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First of all we easily see that {Uij → Ui → U} is universally surjective. In
fact for any V → U we have a factorization

Z(U)
∏

i

∏
j Z(Uij)

∏
i Z(Ui)

the diagonal arrows being injective by hypothesis, and for any arrow V → U
we have that Uij ×U V ' Uij ×Ui (Ui ×U V ).
Secondly we show that {Uij → Ui → U} is e�ectively surjective.
Form the following commutative diagram:

U
∏
i

Ui
∏
i,j

Ui ×U Uj

∏
i

∏
s

Uis
∏
i,j

∏
s,t

Uis ×U Ujt

∏
i

∏
s,t

Uis ×Ui Uit

(the arrows to be understood).
In it the �rst row is exact by hypothesis and the �rst column is exact since
it is product of sequences exact by hypothesis.
Then we get the following commutative diagram

X(U)
∏
i

X(Ui)
∏
i,j

X(Ui ×U Uj)

∏
i

∏
s

X(Uis)
∏
i,j

∏
s,t

X(Uis ×U Ujt)

∏
i

∏
s,t

X(Uis ×Ui Uit)

22



in which the �rst row and column are exact.
The proof now follows by diagram chasing.
Take an element (αij) ∈ ker

(∏
i

∏
sX(Uis) ⇒

∏
i,j

∏
s,tX(Uij ×U Ust)

)
.

Since the triangle commute, (αij) ∈ ker
(∏

i

∏
sX(Uis) ⇒

∏
i

∏
s,tX(Uis ×U Uit)

)
as well.
Thus there is an element (αi) ∈

∏
iX(Ui) mapping to (αij).

But since the square commute, (αi) is in the kernel of

∏
i

X(Ui)
∏
i,j

X(Ui ×U Uj)
∏
i,j

∏
s,t

X(Uis ×U Ujt).

If we prove that the second arrow is injective, it will follow that (αi) ∈
ker
(∏

iX(Ui) ⇒
∏

i,j X(Ui ×U Uj)
)
.

Then we would �nd an element α ∈ X(U) mapping to (αi), and thus to (αij),
and we would be done.
Since the map

∏
i,j X(Ui ×U Uj)→

∏
i,j

∏
s,tX(Uis ×U Uit) is the product of

the maps X(Ui ×U Uj) →
∏

s,tX(Uis ×U Uit), the following lemma does the
job.

Lemma 1.5.10 {Uis ×U Ujt → Ui ×U Uj} is a surjective covering.

Proof
It is easy to see that the following squares are cartesian

Uis Ui

Uis ×U Ujt Ui ×U Ujt Ui ×U Uj

Ujt Uj

Thus the coverings {Ui ×U Ujt → Ui ×U Uj}t and {Uis ×U Ujt → Ui ×U Ujt}s
for all t are surjective by hypothesis.
Finally {Uis×UUjt → Ui×UUj} is surjective (being �composition� of surjective
coverings).

We're just left to show that {Uij → Ui → U} is a universal e�ective
surjective covering, i.e. that for any arrow V → U the covering {Uij×U V →
Ui ×U V → V } is e�ectively surjective.
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But Uij ×U V ' Uij ×Ui (Ui ×U V ) and by hypothesis {Uij ×Ui (Ui ×U V )→
Ui ×U V }j and {Ui ×U V → V } are e�ectively surjective.
We're done.

1.6 Pro�nite groups

Pro�nite groups will play a central role in what follows and this seems a
suitable place to introduce them.
They are a special kind of topological groups, and the category G-Set of �-
nite sets (or modules) equipped with a continuous action of a pro�nite group
G has nice topological properties.
In particular the main result we shall prove is that every sheaf for the canoni-
cal topology on G-Set is representable. This means that G-Set is equivalent
to the category of sheaves on its canonical topology.

Consider an inverse system of �nite groups {Gi}i∈I , each group endowed
with the discrete topology. Then we can consider the inverse limit G = lim

←−
Gi

as a topological group, with the topology induced by the product topology.

De�nition 1.6.1 We say that a topological group is pro�nite if it is obtained
by the above construction.

Let's state some topological property of pro�nite groups.

• G is a closed subset of the product
∏

iGi.
In fact it is easy to see that

G =
⋂
i∈I

(⋃
g∈Gi

(⋂
j≥i

π−1
j µ−1

ji (g)

))

(πj being the projections and µji the maps in the inverse system). Thus
G is an intersection of closed subsets.

• G is Hausdor� and compact.
This is true since both properties are stable under product and remains
true for closed subsets.

• It is totally disconnected, i.e. its only connected components are its
points.
First note that an arbitrary product of �nite discrete groups is totally
disconnected.
Indeed consider U ⊆ G which is not a singleton. Then there exists
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(gi) 6= (g′i) ∈ U . So it will be gj 6= g′j for some j. Thus for varying
g ∈ Gj the sets Ug := U ∩ π−1

i (g) are open disjoint subset of U such
that U =

⋃
g∈Gi Ug.

Now just note that closed subsets of totally disconnected spaces are
totally disconnected.

• The open normal subgroup of G form a fundamental system of neigh-
borhood of 1.
To see this notice that the subgroups Hi := ker(πi) are normal and
open, being the kernel of continuous maps, and intersect trivially.
As a consequence we see that G ' lim

←−
G/H, where the limit is taken

over all open normal subgroups of G.

• The open subgroups of G are exactly the closed subgroups of �nite
index.
In fact if U ⊆ G is open, then the corresponding cosets are open (for
the map [u 7→ gu] : U → gU is a homeomorphism) and the complement
of U is the union of such cosets. Plus these are in �nite number since
they cover G and G is compact.
Conversely the complement of a closed subgroup of �nite index is the �-
nite union of the corresponding cosets (once again being homeomorphic
to the subgroup itself).

Actually some of this properties characterize pro�nite groups. Namely:

Proposition 1.6.2 A topological group is pro�nite if and only if it is com-
pact, Hausdor� and totally disconnected

Proof
See [19] I 1.1.3 .

Next de�ne a category which objects are �nite sets endowed with the
discrete topology on whichG act continuously from the left, and which arrows
are G-equivariant maps. We shall call it the category of continuous left G-set
and denote it with G-Set .

As we mentioned before, an interesting result holds for the category of
sheaves over the canonical topology on G-Set , namely that all sheaves are
representable.
Precisely:

Proposition 1.6.3 Denote with TG the canonical topology on G-Set .
The functor Z 7→ Z(−) is an equivalence G-Set → S(TG) (sheaves of set).
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Proof
We de�ne the quasi-inverse.
Let F ∈ S(TG) be a sheaf for the canonical topology. Notice that for any
H ≤ G open and normal the group G/H is naturally a left G-set. De�ne a
G-action on F (G/H) as follows:

gs = F (·g)(s) ∀g ∈ G, s ∈ F (G/H)

(·g : G/H → G/H denotes multiplication by g).
The collection F (G/H) form a direct system of left G-set, the maps being
F (G/H → G/H ′) for all H ⊆ H ′. We may then consider the direct limit
lim
−→

F (G/H). This have a natural structure of left G-set.

We claim that the functor F 7→ lim
−→

F (G/H) is the quasi-inverse.

One composition is the functor

Z 7→ lim
−→

HomG(G/H,Z).

It is easy to see that HomG(G/H,Z) ' ZH (send a map ϕ ∈ HomG(G/H,Z)
to ϕ(1G/H) and conversely an element z ∈ ZH to the map ϕz : gH 7→ gz.)
Thus we have

lim
−→

HomG(G/H,Z) = lim
−→

ZH =
⋃

ZH .

We claim this is Z, i.e. that any element z ∈ Z is �xed by some open normal
subgroup of G. But this is true since these subgroup form a fundamental
system of neighborhood of 1, thus z is �xed by a normal subgroup contained
in the stabilizer Gz.
Verifying that the other composition is isomorphic to the identity is more
involved.
We need to exhibit a natural isomorphism F −→ HomG

(
−, lim
−→

F (G/H)
)

functorial in F .
First we show that it su�ces to exhibit such an isomorphism for transitive
G-sets.
In fact consider a G-set U and write it as the disjoint union of its orbits, say
U = qUi. This is the coproduct in the category of G-set, thus we have

HomG

(
qUi, lim−→ F (G/H)

)
'
∏

HomG

(
Ui, lim−→

F (G/H)
)
.

Moreover {Ui ↪→ U} is a covering for the canonical topology. In fact {Ui →
U} is a covering for the canonical topology if and only ifqUi → U is surjective
(compare example 1.5.8).
Hence we have an exact sequence

F (U)→
∏

F (Ui) ⇒ F (Ui ×U Uj).
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But Ui ×U Uj = Ui ∩ Uj, hence we �nd F (U) =
∏

F (Ui).
Thus consider a transitive G-set U .
We are going to prove the following chain of isomorphisms:

F (U)
(1)
' lim
←−

F (UH)

(2)
' lim
←−

HomG/H

(
UH ,F (G/H)

)
(3)
' lim
←−

HomG

(
UH , lim

−→
F (G/H ′)

)
(4)
' HomG

(
lim
−→

UH , lim
−→

F (G/H ′)
)

(5)
' HomG

(
U, lim
−→

F (G/H ′)
)

(here H runs through all open subgroup of G and H ′ runs through all open
subgroup of H).
(1) Since U =

⋃
UH , {UH ↪→ U} is a covering for the canonical topology.

Thus we have an exact sequence

F (U)
∏
H

F (UH)
∏
H,H′

F (UH ∩ UH′)

(again UH ×U UH′ = UH ∩ UH′).
As a consequence we obtain

F (U) = lim
←−

F (UH).

(2) Since H ≤ G is an open subgroup, G/H is �nite and thus discrete. This
implies that all action are continuous.
Hence we just need to show that for a generic group G, every sheaf F for
the canonical topology on G-Set is represented by F (G).
For this consider a transitive G-sets U and �x an element u ∈ U . Then the
map [g → gu] : G→ U form a covering itself, and we have an exact sequence

F (U)→ F (G) ⇒ F (G×U G).

But

G×U G = {(g, g′) ∈ G×G|gu = g′u} = {(g, gh)|g ∈ G, h ∈ Su} =
∐
h∈Su

G
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(here Su is the stabilizer of u in G).
Hence the exact sequence above becomes:

F (U)→ F (G) ⇒
∏
h∈Su

F (G),

where the rightmost arrows send an element s ∈ F (G) respectively to (s)h∈Su
and to (F (·h)s)h∈Su .
Then we �nally �nd

F (U) = ker

(
F (G) ⇒

∏
h∈Su

F (G)

)
= F (G)Su = HomG

(
U,F (G)

)
.

(3) It su�ces to show that F (G/H) '
(

lim
−→

F (G/H ′)
)H .

Notice that for H ′ ⊆ H normal subgroup the quotient map G/H ′ → G/H
form a covering itself, thus e have an exact sequence

F (G/H)→ F (G/H ′) ⇒ F (G/H ′ ×G/H G/H ′).

But just as before G/H ′ ×G/H G/H ′ = qh∈H(G/H ′). Hence we see that
F (G/H) ' F (G/H ′)H/H

′
and the natural injective map F (G/H)→ lim

−→
F (G/H ′)

identi�es F (G/H) with
(

lim
−→

F (G/H ′)
)H .

(4) This is true by a formal categorical argument.
(5) lim

−→
UH = ∪UH = U , again because open normal subgroups form a fun-

damental system of neighborhood of 1.

Remark 1.6.4 Similarly one may de�ne the category G-mod of discrete G-
modules, i.e. the category of �nite abelian groups endowed with the discrete
topology on which G-act continuously.
Repeating step by step the proof of the proposition above we �nd that every
abelian sheaf for the canonical topology on G-mod is representable.

To conclude this interlude, we want to evidence how cohomology theory
on TG gives an alternative point of view on classical pro�nite groups coho-
mology theory.

We recall some de�nition.
Let G be a pro�nite group and consider the functor

[A→ AG] : G−mod→ G−mod
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where AG := {a ∈ A|ga = a ∀g ∈ G} is the subgroup of G-invariant. This is
easily veri�ed to be a left exact functor.
Moreover the category of G-modules has enough injective objects (this actu-
ally follows from the remark above and theorem 1.4.3).

Thus we can give the following de�nition:

De�nition 1.6.5 We call q-th cohomology group of G with values in
A ∈ G-mod the G-module

Hq(G,A) := Rq
(
(−)G

)
(A).

We will see (proposition 3.3.3) that Galois groups of �elds are pro�nite.
When this is the case we speak about Galois cohomology groups of the base
�eld. The study of these cohomology groups gives information about the
arithmetic of the �eld, and it is the central tool in class �eld theory.
For a comprehensive treatment about cohomology of pro�nite groups see [20].

Now �x a one-element G-set e with the unique possible G-action de�ned
on it (clearly this is a G-module too). Since every sheaf F on TG is repre-
sented by some G module A, for the section functor on e we get

Γe : F → F (e) ' HomG(e, A) = AG.

Hence we have ∂-functorial isomorphisms

Hq(e,F ) ' Hq(G,A),

which is to say that the cohomology groups of e with value in F ' Hom(−, A)
for the canonical topology on G-mod are just the cohomology groups of G
with values in A.

Conversely we can study the cohomology groups of an arbitrary G-module
U with value in F ' Hom(−, A) by using classical group cohomology theory.
First write U ' qUi as the �nite disjoint union of its orbits (this is the
coproduct in the category of G-modules).
Then we have F (U) ' HomG(qUi, A) '

∏
HomG(Ui, G) and thus we obtain

Hq(U,F ) ' Hq
(
q Ui,HomG(−, A)

)
'
∏

Hq
(
Ui,HomG(−, A)

)
.

For being a transitive G-module, each Ui is isomorphic to some left coset
space G/Hi, where Hi is an open subgroup of G.
Moreover for the section functor on G/Hi we �nd

ΓG/Hi
(
HomG(−, A)

)
= HomG(G/Hi, A) = AHi .
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Hence we obtain

Hq(U,F ) '
∏

Hq
(
Ui,HomG(−, A)

)
'
∏

Hq
(
G/Hi,HomG(−, A)

)
'

'
∏

Hq(Hi, A).
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2 GALOIS CATEGORIES

Fundamental groups arise in many di�erent �elds of mathematics.
We want to give two meaningful example.

Example 2.0.6 Let S be a topological space. De�ne a cover of S to be
a topological space X together with a continuous map X → S that locally
looks like the projection S × I → S for some discrete set I. We say that the
cover is �nite if I is �nite.
We de�ne a morphism of coveringsX → X ′ to be an homeomorphism making
the following diagram commute

X X ′

S

This makes the collection of (�nite) covers of S in a category.
Now de�ne the universal cover X̄ of S (if it exists) to be a cover satisfying
the following universal property:
for all connected cover X → S there exists a unique covering X̄ → X such
that the following diagram commute

X̄ X

S

It can be proved, assuming su�ciently nice properties for S, that the uni-
versal cover exists and that its group of automorphism is isomorphic to the
usual fundamental group of S.
Moreover this group classi�es covers of S, meaning that there is a biunivocal
correspondence between covers and sets equipped with a continuous action
of the group.
See for example [12] for a comprehensive treatment about topological funda-
mental group.

Example 2.0.7 Consider a �eld k and �x a separable closure ks/k.
For any separable extension K/k there exists an inclusion K ↪→ ks making
the following diagram commute
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K ks

k

Moreover the group Gk of k-automorphisms of ks (the absolute Galois group
of k) classi�es �nite separable extensions of k, meaning that there is a biuni-
vocal correspondence K 7→ Autk(K) between �nite separable extensions of
k and transitive sets on which Gk acts continuously.
We will deal with this particular case in chapter three.

These two situations are manifestly analogous: covers correspond to �-
nite separable extensions; the universal cover corresponds to the separable
closure; the fundamental group corresponds to the absolute Galois group.
The theory of Galois category succeeds to a great degree in unifying them.

Strictly speaking Galois categories axiomatize the categories of �nite dis-
crete sets on which a �xed pro�nite group acts continuously.
A Galois category is given by the datum of a category C together with a
functor F : C → FSet satisfying some axioms.
To any such category we can associate (in a non-canonical way) a fundamen-
tal group, which is de�ned to be π1(C,F) = AutFct(F). The main theorem of
Galois categories, to which proof we devote this section, states that π1(C,F)
is a pro�nite group and that F factors through an equivalence of categories
F : C → π1(C,F)-set.

The original source for these topics is SGAI ([11]).
The sources I followed mostly are the course notes [3] and in some case [28].
A really nice treatment can be found in [15] too.

2.1 De�nition and �rst properties

In order to de�ne Galois categories we need the notion of group action on an
object in a category.

De�nition 2.1.1 We say that a group G acts on an object X ∈ C if there
exists a group map

α : G→ AutC(X,X).

We will say that X is a G-object.

Then we can de�ne the notion of quotient by a group action.

32



De�nition 2.1.2 Let X be a G-object. We say that an object XG together
with an arrow X → XG is the quotient of X by the action of G, if any
arrow u : X → Y �xed by G (meaning that u ◦ α(g) = u ∀g ∈ G) factors as
X → X/G→ Y .

It is easy to see that in the category of sets, these correspond to the usual
notions of group action and quotient by a group action.

We may give now the de�nition of Galois category.

De�nition 2.1.3 We call Galois category a category C together with a
functor F : C → FSet (called �ber functor or fundamental functor) satisfying
the following conditions

(G1) C has a �nal object and �nite �bered products.

(G2) C has �nite coproducts and quotients by �nite group actions.

(G3) Any morphism X → Y in C facors as X → Y ′ → Y ' Y ′ q Y ′′ where
X → Y ′ is a strict epimorphism and Y ′ → Y is a monomorphism
inducing an isomorphism into a direct summand of Y .

(G4) F preserves the �nal object and commute with �bered product.

(G5) F commutes with �nite coproducts and quotients by �nite group action.

(G6) F sends strict epimorphisms (see remark 1.5.5) to surjective maps.

(G7) F re�ects isomorphisms.

Remark 2.1.4 We want to stress the fact that the fundamental functor is
not unique in general.
It can be proved, but it is beyond the scope of this work, that di�erent
fundamental functors on the same Galois category are isomorphic. See [15]
3.19 for details.

It's worth to be precise on what �commutes with quotients� means.
Just notice that if G act on an object X, then it act naturally on F(X).
Moreover if X → X/G is the quotient map then we have an induced map
F(f) : F (X)→ F(X/G).
(G5) just states that F(X/G) ' F(X)/G and that F (f) is the quotient map
F(X)→ F(X)/G.
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Example 2.1.5 (example 2.0.6 revised)
It can be shown that the category of �nite covers of a �su�ciently nice� topo-
logical space is a Galois category.
In fact for each point s ∈ S we can de�ne a fundamental functor by assigning
to each �nite cover the �ber over s.
It can be shown (see [15] theorem 1.15) that it su�ces that S is connected
for this machinery to work. Nevertheless in order to talk about homotopy
classes of closed loops and universal cover we need to make stronger assump-
tion. Moreover this has the advantage that in�nite covers can be considered.

Example 2.1.6 (example 2.0.7 revised)
Consider the full subcategory of Schk which objects are spectrum of �nite
separable �eld extension of k.
This fails to be a Galois category because it does not have �nite coproduct.
Still we can bypass this problem by considering the category which objects
are disjoint union of spectrum of �nite separable �eld extensions of k.
It can be shown that this is a Galois category, the fundamental functor being

qSpec ki 7→ Spec ks ×Spec k (qSpec ki).

We will study this case in details in chapter 3.

Some immediate consequences follow at once from the de�nition:

Remark 2.1.7

• C has initial object, since the coproduct over the empty set is initial.

• F preserves monomorphisms. This follows from (G4) and the fact that
an arrow X → Y is a monomorphism if and only if X ×Y X ' X with
the identity maps as projections.

With few more e�ort we see that the �ber functor has many nice preser-
vation properties.

Lemma 2.1.8

i) F(X) is initial if and only if X is initial.

ii) F(X) is �nal if and only if X is �nal.

iii) u : X → Y is a strict epimorphism if and only if F(u) is surjective.

iv) u : X → Y is a monomorphism if and only if F(u) is injective.
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v) u : X → Y is an isomorphism if and only if it is a monomorphism and
a strict epimorphism.

Proof
i) If X is initial then X q Y ' Y for any Y ∈ C, then F(X q Y ) =
F(X)q F(Y ) ' F(Y ) and then F(X) = ∅.
Conversely let F(X) = ∅ and consider the unique arrow u : ∅ → X. Then
F(u) : ∅ → ∅ is the identity map and thus u is an isomorphism by axiom
(G7).
ii) The �if� implication is just axiom (G4).
Conversely assume that F(X) = {∗}. Denote with e the �nal object in C and
consider the unique arrow u : X → e. Then again F(u) is an isomorphism
and u is an isomorphism by (G7).
iii) The �only if� implication is axiom (G6).

Conversely consider a factorization of u as in (G3), say X
u′→ Y ′

u′′→ Y =
Y ′ q Y ′′.
F(u′′) is injective by the remark above and surjective since F(u) is surjective.
Then F(u′′) is an isomorphism and by (G7) u′′ is an isomorphism too.
But then u is a strict epimorphism, being the composition of a strict epimor-
phism and an isomorphism.
iv) The �only if� implication is the remark above.

Conversely consider a decomposition X u′→ Y ′
u′′→ Y = Y ′ q Y ′′ as before.

F(u′) is surjective by part iii) and injective since F(u) is injective. Then
F(u′) is an isomorphism and by (G7) u′ is an isomorphism too.
But then u′ is a monomorphism, being the composition of an isomorphism
and a monomorphism.
v) This follows immediately by i) and ii).

Another important result is the uniqueness of the decomposition in (G3).

Lemma 2.1.9 Let X → Y ′ → Y be a decomposition as in (G3). Then Y ′

is unique up to a unique isomorphism.

Proof
Consider two such decompositions X

u′1→ Y1

u′′1→ Y = Y1 q Y ′1 and X
u′2→ Y2

u′′2→
Y = Y2 q Y ′2 and denote with pi, i = 1, 2 the projections X ×Y1 X ⇒ X.
Since u′2 is a strict epimorphism there is a coequalizer diagram

Y2(Y1)→ Y2(X) ⇒ Y2(X ×Y1 X).

First we claim that u′2 ∈ ker
(
Y2(X) ⇒ Y2(X ×Y1 X)

)
.

In fact

u′1◦p1 = u′1◦p2 =⇒ (u′′2◦u′2)◦p1 = (u′′1◦u′1)◦p1 = (u′′1◦u′1)◦p2 = (u′′2◦u′2)◦p2
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=⇒ u′2 ◦ p1 = u′2 ◦ p2 (since u′′2 is a monomorphism).

Thus there exists a unique arrow φ : Y1 → Y2 such that φ ◦ u′1 = u′2. This is
an isomorphism by (G7): indeed F (φ) is surjective (since F(u′2) is) and thus
bijective (since #F(Y1) = #F(Y2) = #F(u)(X)).

Finally Galois categories satisfy the following important property:

Lemma 2.1.10 Any Galois category is Artinian, i.e. any chain of monomor-
phism · · ·X2

u2
↪→ X1

u1
↪→ X stabilizes.

Proof
From remark 2.1.7 we know that the maps F(ui) : F(Xi) → F(Xi−1) are
injective, and so #F(Xi) ≤ #F(Xi−1). But #F(X) is �nite, thus it must
be #F(Xn) = #F(Xn−1) for n big enough. Then F(un) is bijective and un
is an isomorphism by (G7).

2.2 The main theorem

Roughly speaking the main theorem states that all Galois category reduce
to the following example:

Example 2.2.1 The category G-Set (see section 1.6) is a Galois category
with the forgetful functor G-Set → FSet as �ber functor.

The �rst natural question arising is which pro�nite group we should
choose for a given Galois category (C,F).
This de�nition answers the question:

De�nition 2.2.2 We call π1(C,F) := AutFct(F) the fundamental group
of C relative to F .

Remark 2.2.3 It can be shown that fundamental groups relative to di�erent
fundamental functors di�er by a canonical inner automorphism.
See [15] 3.19 for a reference.

Remark 2.2.4 This was the point of the new insight into fundamental
groups.
These are not seen anymore as automorphism groups of some object (the
universal cover in example 2.0.6 and a separable closure of a �eld in example
2.0.7), but rather as the automorphism groups of some functor.

The fundamental group obviously act on the left on any F(X). Actually
the following proposition holds:
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Proposition 2.2.5 π1(C,F) is a pro�nite group acting continuously on any
F(X).

Proof
First we prove that π1(C,F) is pro�nite.
It will su�ce to show that

G =
∏
X∈C

AutFSet

(
F(X)

)
is a pro�nite group and then show that π1(C,F) ⊆ G is a closed subgroup
(since being compact, Hausdor� and totally disconnected are properties sta-
ble under taking closed subsets).
In fact if G =

∏
iGi is an arbitrary product of �nite group endowed with

the discrete topology, it is a pro�nite group if endowed with the product
topology.
It is compact since arbitrary product of compact spaces is compact (Ty-
chono�'s theorem).
It is Hausdor� since arbitrary product of Hausdor� spaces is Hausdor�.
It is totally disconnected (this was already proven in section 1.6).
Now we prove that π1(C,F) ⊆ G is closed.
In fact it is naturally injected into G by the map θ 7→

(
θ(X)

)
X∈C. Moreover

de�ne for any u : Y ′ → Y the set Uu := {(θX)X∈C|F (u) ◦ θY ′ = θY ◦ F (u)
}
.

It is easy to see that
π1(C,F) =

⋂
Y ′,Y ∈C
u:Y ′→Y

Uu.

But the Uu are closed. In fact we have that

Uu =
⋃

(θ′,θ)

(
π−1
Y ′ (θ

′) ∩ π−1
Y (θ)

)
where the union is taken over all (θ′, θ) ∈ AutFSet

(
F (Y ′)

)
×AutFSet

(
F(Y )

)
such that F(u) ◦ θ′ = θ ◦ F(u) (these are clearly �nitely many).
This proves that π1(C,F) ⊆ G is closed and thus pro�nite.
It remains to prove that the action is continuous.
Since we consider discrete topology on F(X) we just need to prove that the
stabilizer of any element ζ ∈ F(X) is open. But G acts on F(X) too and
Stabπ1(C,F)(ζ) = StabG(ζ) ∩ π1(C,F). Finally

StabG(ζ) = π−1
X

(
StabAutFSet(F(X))(ζ)

)
is open in G.
We're done.
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Thus the �ber functor factors through a functor F : C → π1(C,F)-FSet.
The main theorem states that this is an equivalence.

Theorem 2.2.6 (Main theorem of Galois Category) Let (C,F) be a Galois
category. Then F : C → π1(C,F)-set is an equivalence of category.

Remark 2.2.7 This clari�es the concept that the fundamental groups clas-
si�es �covers�: any cover (i.e. object in the category) correspond biunivocally
to a continuous set together with an action of the fundamental group.

We begin by sketching the proof.
The main point is that the fundamental functor and the fundamental group
may be described as limits.
To understand how �x an object X ∈ C and an element ζ ∈ F(X) and de�ne
a natural transformation as follows:

De�nition 2.2.8 We call evaluation on ζ the natural transformation vζ
de�ned on component as

vζ(Y ) : HomC(X, Y ) −→ F(Y )

u 7−→ F(u)(ζ)

We will see that there are certain object, the Galois object, for which vζ
is an isomorphism (if restricted to some full subcategory of C).
Moreover we will make the full subcategory of Galois object into a �ltered
inverse system of object and arrows. This will allows us in turn to describe
F as a direct limit of the representable functors HomC(X,−) and π1(C,F)
as the inverse limit of the groups AutC(X).
These descriptions are actually the central part of the proof.

Finally we introduce a terminology we shall use from now on.

De�nition 2.2.9 Let C be a category and F : C → Set a functor.
We call pointed category associated to C the category Cpt which objects are
pairs (X, ζ) with X ∈ C, ζ ∈ F(X) and which arrows (X, ζ) → (X ′, ζ ′) are
morphisms u : X → X ′ in C such that F(u)(ζ) = ζ ′.
Moreover for two object Y,X in a category we will write Y ≥ X if there
exists an arrow Y → X.
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2.3 Connected objects

De�nition 2.3.1 We say that an object X ∈ C is connected if

X = X ′ qX ′′ =⇒ X ′ = ∅ ∨ X ′′ = ∅.

We write C0 ⊆ C for the full subcategory of connected object.

First of all we notice a couple of fact:

Remark 2.3.2

• An arrow X → Y is a monomorphism if and only if Y ' X qX ′.
In fact if X → Y is a monomorphism then by uniqueness of the factor-
ization in (G3) it must be Y ' X qX ′.
Conversely if Y ' X qX ′ then F(Y ) = F(X) q F(X ′) by (G5), thus
F(X)→ F(Y ) is injective and X → Y is a monomorphism by lemma
2.1.8.

• Morphism with connected codomain and non-initial domain are strict
epimorphism.
In fact let ∅ 6= X0 ∈ C0, X → X0 be an arrow and X u′→ X ′0

u′′→ X0 be
the factorization of u as in (G3). By the remark above and the fact
that X0 is connected we see that u′′ is an isomorphism and thus u is a
strict epimorphism.

• Epimorphism with connected domain have connected codomain.
In fact let X0 ∈ C0 and let u : X0 → X be a strict epimorphism. Write
X = X ′ qX ′′ with X ′ 6= ∅ and form the cartesian square

X ′0 X0

X ′ X

p

u

p is both a monomorphism (since monomorphisms are stable under
pullback) and a strict epimorphism (by the previous remark). Thus it
is an isomorphism (lemma 2.1.8) and X0 → X ′ → X is a factorization
of u as in (G3).
But since u is an epimorphism, X0

u→ X
idX→ X is another factorization

as in (G3).
Hence, by uniqueness of such factorization, it must be X ' X ′ and
thus X ′′ = ∅.
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The �rst remarkable result we shall prove is that any object can be written
uniquely as a coproduct of �nitely many connected object.
The proof uses the Artinian property together with the characterization of
monomorphisms we gave above.

Proposition 2.3.3 For any object X ∈ C there is a unique (up to isomor-
phisms and reordering) decomposition

X = X1 q · · · qXn

with the Xi connected.

Proof
First we prove the existence.
If X is connected we're done.
Otherwise we claim that X ' X1 qX ′ for some X1 connected. In fact write
X = X ′1 q X ′′1 with X ′1, X

′
2 6= ∅. If X ′1 is connected we're done. If not we

repeat the argument and write X ′1 = X ′2 q X ′′2 . We then get a chain of
monomorphism · · ·X ′2 ↪→ X ′1 ↪→ X. Since C is Artinian this must stabilize,
thus there exist a connected object X1 such that X ' X1 q Y (this could
eventually be the �nal object).
Now we repeat the argument for Y and at each step we obtain
X ' X1q· · ·qXnqY , where the Xi are connected and non-empty. Moreover∑
|F(Xi)| ≤ |F(X)|, thus this process must terminate in a �nite number of

step and we �nd
X ' X1 q · · · qXn.

It remains to prove uniqueness.
Assume that Y 6= ∅ is a connected component of qXi.
By the previous remark there is a monomorphism Y → qXi and thus F(Y )
may be identi�ed with a subset of F(qXi) = qF(Xi). Since F(Y ) 6= ∅
(lemma 2.1.8), there exists some j such that F(Y ) ∩ F(Xj) 6= ∅.
Now form the cartesian square

Y ′ Xj

Y qXi

Since F preserve �bered product, we have that F(Y ′) = F(X) ∩ F(Xj) 6= ∅
and thus F(Y ′) 6= ∅. Hence Y ′ 6= ∅ and by the remark above we have
that both Y ′ → Xj and Y ′ → Y are strict epimorphisms. But these are
monomorphism too since monomorphisms are stable under pull back. Thus
they are isomorphisms and we get that Y ' Y ′ ' Xj.
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As a consequence we obtain an important lemma, saying that repre-
sentable covariant functors preserve �nite coproducts:

Lemma 2.3.4 Let X,X1, ..., Xn ∈ C0. Then

HomC(X,qiXi) ' qiHomC(X,Xi).

Proof
We clearly have a map qiHomC(X,Xi)→ HomC(X,qiXi) sending X → Xi

to X → Xi → qiXi.
Conversely take a map X → qiXi. By (G4) this factorizes as X → X ′ →
qiXi = X ′qX ′′. But X ′ is connected by remark 2.3.2, thus by uniqueness of
the decomposition it must be X ′ ' Xi for some i. This means that any map
X → qiXi factors through someXi, thus we obtain a map HomC(X,qiXi)→
qiHomC(X,Xi).
It is easy to see that these maps are mutually inverse.

The evaluation maps relative to connected objects has nice properties.

Lemma 2.3.5 Let X0 ∈ C0, X0 6= ∅, ζ0 ∈ F(X0). Then vζ0 : HomC(X0,−)→
F is a monomorphism.

Proof
This just means that vζ0(X) is injective for all X ∈ C.
This is true if X = ∅. In fact HomC(X0, ∅) = ∅, since any arrow X0 → ∅ give
a map F(X0)→ F(∅) = ∅, which forces X0 to be the initial object.
Thus letX 6= ∅ and take u, u′ : X0 → X such that F (u)(ζ0) = F (u′)(ζ0). This
imply that ζ0 ∈ ker

(
F(u),F(u′)

)
= F

(
ker(u, u′)

)
and thus that ker(u, u′) 6=

∅. But then, since ker(u, u′)→ X0 is a monomorphism and X0 is connected,
by remark 2.3.2 we get that ker(u, u′) → X0 is an isomorphism, i.e. that
u = u′.

Lemma 2.3.6 For any (X1, ζ1), ..., (Xn, ζn) ∈ Cpt there exists (X0, ζ0) ∈ Cpt0

such that (X0, ζ0) ≥ (Xi, ζi) ∀i = 1, ..., n.

Proof
De�ne X := X1 × · · · ×Xn and let ζ := (ζ1, ..., ζn) ∈ F (X) = F (X1)× · · · ×
F (Xn).
Clearly (X, ζ) ≥ (Xi, ζi) ∀i = 1, ..., n via the projections X → Xi. Now
let X0 be the connected component of X such that ζ ∈ F(X0). Clearly
(X0, ζ) ≥ (Xi, ζi) via πi ◦ ι (ι being the monomorphism X0 → X).

Corollary 2.3.7 For any X ∈ C there exists X0 ∈ C0 such that
vζ0(X) : HomC(X0, X)→ F(X) is bijective.
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Proof
Let F(X) = {ζ1, ..., ζn} and chose Xi = X for i = 1, ..., n.

Finally a really important property is that endomorphisms of connected
object are automatically automorphisms.

Lemma 2.3.8 If X0 ∈ C is connected then HomC(X0, X0) = AutC(X0).

Proof
We need to prove that any arrow u : X0 → X0 is an isomorphism, i.e. that
F(u) is an isomorphism, i.e. (since F(X0) is �nite) that F(u) is surjective.
But this is true since any arrow X0 → X0 is a strict epimorphism by remark
2.3.2.

2.4 Galois objects

We have seen in the last section that for any connected object X0 and any
ζ0 ∈ F(X0) there is an injective map

vζ0(X0) : AutC(X0) −→ F(X0).

We make the following de�nition.

De�nition 2.4.1 We say that a connected object X0 is a Galois object if
vζ0(X0) is bijective for some (and thus for all) ζ0 ∈ F(X0).
We write G ⊆ C0 for the full subcategory of Galois object.

We can rephrase this de�nition in di�erent ways.
Notice that X0 is naturally an AutC(X0)-object and F(X0) in an AutC(X0)-
set via the map AutC(X0)→ AutFSet

(
F(X0)

)
.

We have:

Lemma 2.4.2 The following are equivalent

i) X0 is a Galois object.

ii) AutC(X0) act simply transitively on F(X0).

iii) #F(X0) = #AutC(X0).

iv) X0/AutC(X0) is �nal in C.

Proof
The only non immediate part is the equivalence of the last condition.
ButX0/AutC(X0) is �nal if and only if F(X0/AutC(X0)) = F(X0)/AutC(X0) =
{∗} and this is clearly equivalent to ii).
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Galois object are important because their associated evaluation maps are
isomorphisms under certain condition:

Proposition 2.4.3 Let X be a Galois object and Y ≤ X connected. Then
vζ(Y ) : HomC(X, Y )→ F(Y ) is a bijection for all ζ ∈ F(X).

Proof
We already know by lemma 2.3.5 that vζ is injective.
It just remain to prove surjectivity. For any u : X → Y we have a commu-
tative diagram

AutC(X) F(X)

HomC(X, Y ) F(Y )

vζ(X)

u◦(−) F(u)

vζ(Y )

But since X is connected, u is a strict epimorphism by remark 2.3.2, thus
F(u) is surjective by (G6). Moreover vζ(X) is an isomorphism since X is
Galois. Surjectivity of vζ(Y ) follows at once.

Corollary 2.4.4 Let X be a Galois object and let CX be the full subcategory
of C whose family of object is {qXi|X ≥ Xi connected}.
Then F|CX ' HomCX (X,−), i.e. F|CX is represented by X.

Proof
This follow at once by the previous proposition and lemma 2.3.4.

For this reason, given an object X ∈ C, is important to ask whether there
exists a Galois object dominating it.

Proposition 2.4.5 (Galois closure) For every X ∈ C there exists a Galois
object X̄ dominating X.

Proof
Choose X0 ∈ C0 such that vζ0(X) is bijective.
Furthermore let π : X0 → Xn be the arrow induced by u1, ..., un ∈ HomC(X0, X)

and let X0
π′→ X̄

π′′→ Xn = X̄ q X̄ ′ be the factorization of π as in (G4).
We claim that X̄ is a Galois object, which is to say that vζ̄(X̄) is surjective
for some ζ̄ ∈ F(X̄).
Let ζ̄ := F(π′)(ζ0) and let ζ ∈ F(X̄).
First of all X̄ is connected by remark 2.3.2.
By proposition 2.3.6 we may assume the existence of an arrow ρ : (X0, ζ0)→
(X̄, ζ). Thus if we prove that there exists ω : X̄ → X̄ such that ω ◦ π′ = ρ,
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we would have ζ = F(ρ)(ζ0) = F(ω) ◦ F(π′)(ζ0) = F(ω)(ζ̄) and thus we
would be done.
To prove the existence of such a ω it will su�ce to prove that the πi◦π′◦ρ, i =
1, ..., n are up to a permutation the ui.
In fact this would imply (by universal property of product) the existence of
an isomorphism σ : Xn → Xn such that πi ◦ π′ ◦ ρ = πi ◦ σ ◦ π′ ◦ π′′ for all
i. Thus we would get that π′ ◦ ρ = σ ◦ π′ ◦ π′′ and by lemma 2.1.9 we would
obtain the ω we are looking for.
So �nally we're left to prove that {πi ◦ π′ ◦ ρ, ..., πi ◦ π′ ◦ ρ} = {u1, ..., un}.
The ⊆ inclusion is obvious.
To prove the converse inclusion it su�ces to prove that the πi◦π′◦ρ are all dis-
tinct. But ρ is a strict epimorphism by remark 2.3.2, thus πi◦π′◦ρ = πj ◦π′◦
ρ =⇒ πi◦π′ = πj ◦π′ =⇒ πi◦π′◦π′′ = πj ◦π′◦π′′ =⇒ ui = uj =⇒ i = j.
We're done.

2.5 Fundamental functor and fundamental group

In this section we will give descriptions of F and π1(C,F) as limits. This is
the central point in the proof of the main theorem.
First �x ζ = (ζX) ∈

∏
X∈G F(X) and let Gζ be the collection

Gζ :=
{

(X, ζX)|X ∈ G
}
.

By lemma 2.3.5 for any Y ≥ X we have a unique morphism uY,X : (Y, ζY )→
(X, ζX). This make Gζ in a �ltered preordered category. Moreover the mor-
phisms uY,X induce naturally the structure of a direct system of object on
{HomC(X,−)|X ∈ G ζ̄}. The following result holds.

Proposition 2.5.1
F ' lim

−→
HomC(X,−).

Proof
We clearly have natural transformations vζX : HomC(X,−) → F . Compati-
bility with the direct system means that if (X, ζX) ≤ (Y, ζY ), i.e. there exists
u : (Y, ζY )→ (X, ζX), then for any Z ∈ C the following diagram commute

F(Z)

HomC(X,Z) HomC(Y, Z)
(−)◦u

vζX (Z)
vζY (Z)
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But if h : X → Z then

vζY (Z)(h ◦ u) = F(h ◦ u)(ζY ) = F(h)(ζX) = vζX (Z)(h).

It remains to prove universal property.
So suppose we have a functor G : C → FSet, together with natural trans-
formations HomC(X,−)→ G for all X ∈ G, compatible with the morphisms
in the direct system. We need to de�ne a natural transformation η : F → G
making the following diagram commute for all X ∈ G and for all Z ∈ C

F(Z) G(Z)

HomC(X,Z)

η(Z)

Using lemma lemma 2.3.4 we may assume that Z ∈ C0 is connected . By
proposition 2.4.5 there exists a Galois object X dominating Z and by lemma
2.4.3 F(Z) ' HomC(X,Z). Thus we clearly have a unique arrow F(Z) →
G(Z) making the diagram above commute.
We're done.

Next we will make the collection {AutC(X)}X∈G in an inverse system of
groups and prove that the fundamental group is its limit.

Lemma 2.5.2 For any uY,X : (Y, ζY ) ≥ (X, ζX) there exists a surjective
group map φY,X : AutC(Y )→ AutC(X).
These maps make {AutC(X)}X∈G in an inverse system of groups.

Proof
This follows at once since AutC(Y ) ' F(Y ), AutC(X) ' F(X) and F(Y )→
F(X) is surjective (since Y → X is a strict epimorphism by remark 2.3.2).
Then we can de�ne φY,X to be the unique map making the following diagram
commute:

AutC(Y ) F(Y )

AutC(X) F(X)

vζY

φY,X F(uY,X)

vζX

Remark 2.5.3 Let ω ∈ AutC(Y ). We claim that φY,X(ω) is the unique
arrow such that uY,X ◦ ω = φY,X(ω) ◦ uY,X .
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Write u = uY,X . First notice that (−) ◦ u : AutC(X)
∼→ HomC(Y,X) is an

isomorphism. In fact it is injective since u is a strict epimorphism (again
remark 2.3.2) and thus it is an isomorphism since |AutC(X)| = |F(X)| =
|HomC(Y,X)|.
Hence there exists a unique σω ∈ AutC(X) such that σω ◦ u = u ◦ ω.
But the function [ω 7→ σω] : AutC(Y )→ AutC(X) makes the above diagram
commute, thus it must be φY,X(ω) = σω.

We can give now the promised description of the fundamental group.

Proposition 2.5.4 There is an isomorphism of pro�nite groups

π1(C,F) ' lim←−
Gζ

AutC(X).

Proof
First we need to de�ne for all X ∈ G group maps Aut(F)→ AutC(X) com-
patible with the maps in the inverse system.
Take θ ∈ AutC(F). Since AutC(X) ' F(X), θ(X)(ζX) correspond to a
unique automorphism ωθ,X : X → X, precisely the one such that F(ωθ,X)(ζX) =
θ(X)(ζX). We de�ne ωθ,X to be the image of θ in AutC(X).
In one formula

θ 7→
(
v−1
ζX

(
θ(X)(ζX)

))
(x,ζX)∈G.

We need to prove compatibility with the inverse system, i.e. that for u :
(Y, ζY )→ (X, ζX) the following diagram commute

Aut(F)

AutC(Y ) AutC(X)

Take θ ∈ Aut(F). By remark 2.5.3 the image of ωθ,Y in AutC(X) is the
unique automorphism ω : X → X making the following diagram commute

Y Y

X X

ωθ,Y

u u

ω

We need to prove that ω = ωθ,X and to do so it will su�ce to prove that
F(ω)(ζX) = θ(X)(ζX). From the diagram above

F(ω)(ζX) = F(ω)F(u)(ζY ) = F(u)F(ωθ,Y )(ζY ) = F(u)θ(Y )(ζY ).
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Moreover we have a commutative diagram

F(Y ) F(Y )

F(X) F(X)

θ(Y )

F(u) F (u)

θ(X)

thus we obtain F(u)θ(Y )(ζY ) = θ(X)F(u)(ζY ) = θ(X)(ζX).
This proves compatibility with the inverse system of groups.
Thus we obtain a group map φ : Aut(F) → lim

←−
AutC(X). We just need to

prove it is an isomorphism, i.e. that for any ω = (ωX) ∈ lim
←−

AutC(X) there

exists a unique θ ∈ Aut(F) mapping to ω.
By proposition 2.5.1 to give an automorphism θ : F → F it is enough to give
natural transformations HomC(X,−)→ HomC(X,−) for all X ∈ G.
Moreover take Y ∈ C and let X be a Galois object dominating all the com-
ponents of Y .
By corollary 2.4.4 and Yoneda lemma we have the commutative diagram

F(Y ) F(Y )

HomC(X, Y ) HomC(X, Y )

θ(Y )

v−1
ζX

(−)◦ω

vζX

for some ω : X → X.
Writing down things explicitly one sees that for any ζ ∈ F (Y ) we have
θ(Y )(ζ) = F (ωζ ◦ ω)(ζX), where ωζ is the unique morphism X → Y such
that F (ωζ)(ζX) = ζ.
In particular if Y is itself Galois, so that we may choose X = Y and ζ = ζX ,
we see that ωζ = idY . Thus θ(X)(ζX) = F (ω)(ζX) and ωθ,X is the unique
arrow X → X such that F (ωθ,X)(ζX) = θ(X)(ζX) = F (ω)(ζX).
Then we readily see that choosing ω = ωX yields the unique automorphism
θ mapping to ω = (ωX) ∈ lim

←−
AutC(X).

This proves that
π1(C,F) ' lim←−

Gζ
AutC(X)

as groups. Finally we need to prove that φ is an homeomorphism.
Denote with πY : lim

←−
AutC(X) → AutC(Y ) the projection on the Y compo-

nent. Since the open subsets UY,ω := π−1
Y (ω) for varying Y and ω ∈ AutC(Y )
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form a basis for the topology on lim
←−

AutC(X), it will su�ce to prove that the

φ−1(UY,ω) are open. But

φ−1(UY,ω) =
{
θ ∈ AutFct(F)|ωθ,Y = ω

}
=

=
{
θ ∈ AutFct(F)|θ(Y )(ζY ) = F (ω)(ζY )

}
=

= p−1
Y

({
σ ∈ AutFSet(F(Y ))|σ(ζY ) = F (ω)(ζY )

})
which is clearly open in π1(C,F) (we wrote pY : π1(C,F)→ AutFSet(F(Y ))
for the projection on the AutFSet(F(Y )) factor).
Finally φ−1 is continuous as well by the closed map lemma.

We have now all the ingredients to prove the main theorem.

2.6 Proof of the main theorem

We are ready to prove theorem 2.2.6.

Essential surjectivity.

Consider a �nite continuous π1(C,F)-set E.
It is easy to see that in the category of G-Set connected means transitive.
Then, since F commutes with coproducts, we may assume that E is transi-
tive.
Denote with Se the stabilizer of an element e ∈ E. This is open in π1(C,F)
since the action is continuous. Thus the �nite intersection ∩e∈ESe is open too
and thus of �nite index. This implies it is non trivial, and using the descrip-
tion of π1(C,F) given in proposition 2.5.4, we see that there exists a normal
open subgroup H ⊆ ∩e∈ESe of π1(C,F) such that π1(C,F)/H ' AutC(X).
Moreover, by de�nition of H, the action of π1(C,F) on E factors through an
action of AutC(X) on E.
We claim that F(X/Se) ' E as AutC(X)-set (here we consider Se as a sub-
group of AutC(X)).
But being transitive E is isomorphic to the left coset space AutC(X)/Se.
Moreover for X being Galois we have that AutC(X) ' F (X) as AutC(X)-
sets. Then

E ' AutC(X)/Se ' F (X)/Se ' F (X/Se)

(the last isomorphism follows by (G5)).
Now this isomorphism of AutC(X)-set clearly lift to an isomorphism of π1(C,F)-
set. Thus E ' F(X/Se) and F is essentially surjective.

Faithfulness.

Consider two object X, Y ∈ C, which we may again suppose to be connected
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by lemma 2.3.4.
First of all if u, u′ : X → Y are such that F(u) = F(u′), then vζ(u) = vζ(u

′)
for any ζ ∈ F(X). But vζ is injective by lemma 2.3.5 , thus u = u′ and this
prove faithfulness.

Fullness.

Take a π1(C,F)-equivariant map u′ : F(X) → F(Y ) and consider a Galois
object Z dominating both X and Y . Moreover let f : Z → X be an arrow.
By bijectivity of vζZ (Y ) there exists a unique f ′ : Z → Y such that F(f ′)(ζZ) =
u′ ◦ F(f)(ζZ). Moreover F(f ′) and u′ ◦ F(f) are equivariant maps between
transitive sets. Thus they are uniquely determined by the image of a single
element and we get that F(f ′) = u′ ◦ F(f).

If we show that f ′ factors as Z
f→ X

u→ Y it will follow that F(u)◦F(f)(ζZ) =
F(f ′)(ζZ) = u′ ◦ F(f)(ζZ). But then it would be F(u) = u′ (once again be-
cause they are equivariant maps between transitive sets) and we would be
done.
We need a lemma.

Lemma 2.6.1 Let Z be Galois and X connected. Consider an arrow f :
Z → X and let Hf = {h ∈ Aut(Z)|f ◦ h = f}.
Then X ' Z/Hf .

Proof
By the de�nition of Hf we see that f factors as Z → Z/H

f ′→ X.
By remark 2.3.2 we see that f is a strict epimorphism, thus f ′ is a strict
epimorphism too.
We just need to prove that f ′ is a monomorphism, i.e. that F(f ′) is injective.
By (G5) F(f ′) is the quotient map F(Z)/H → F(X), so this amount to
prove that F(f)(ζ) = F(f)(ζ ′) =⇒ F(h)(ζ) = ζ ′ for some h ∈ H.
But AutC(Z) act transitively on F(Z), thus there exists h ∈ AutC(Z) such
that F(h)(ζ) = ζ ′. Moreover F(f) ◦ F(h)(ζ) = F(f)(ζ ′) = F(f)(ζ) and by
injectivity of vζ(Z) this implies that f ◦ h = f .
Thus h ∈ H and this conclude the proof.

Thus to show that f ′ factors as Z
f→ X

u→ Y it su�ces to prove that f ′

is �xed by the action of Hf .
But by (G5) F (f) is the quotient map F (Z) → F (Z)/H, thus we get that
for all h ∈ H

F (f ′) ◦ F (h) = u′ ◦ F (f) ◦ F (h) = u′ ◦ F (f) = F (f ′).

By faithfulness we get f ′ ◦ h = f ′.
This conclude the proof.
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3 ÉTALE TOPOLOGY AND
ÉTALE FUNDAMENTAL GROUP

The aim of this �nal chapter is to apply the general theory we studied so far
to the category of schemes.

In the �rst part of the chapter we deal with Gothendieck topologies in
such a category.
This brought outstanding result. The reason is that the Zariski topology is
too coarse for many purposes: for example it does not usually give useful in-
formations when computing cohomology groups. The general theory of sites
is a smart generalization, which allows in some sense to re�ne the Zariski
topology.
To begin with, we describe a general procedure to construct Grothendieck
topologies in the category of schemes. In few words we equip with a site
structure a full subcategory C ⊆ SchS, de�ning coverings to be surjective
families of morphisms belonging to some class E .
The most important example is étale topology, in which C is the category
of étale S-schemes of �nite type, and E is the class of étale morphisms of
�nite type. Étale is a French word used to describe the condition of the sea
when it's completely calm. In fact the conditions de�ning étale morphisms,
�atness and unrami�edness, imply a certain regularity of their �bers.

The second part of the chapter deals with the étale fundamental group
of a scheme.
We will show that the category of schemes �nite and étale over a connected
base scheme is a Galois category. Then the theory developed in the second
chapter yields a powerful dictionary between geometry and algebra.

To conclude the thesis we give two examples of how this geometric theory
has deep implication in purely arithmetic problems.
The �rst one deal with the case in which the base scheme is the spectrum of
a �eld.
This is an easy but already interesting situation. In fact we will see that in
this case the étale fundamental group is just the absolute Galois group of the
�eld and that étale cohomology is just a geometric reformulation of classical
Galois cohomology.
In the second example we revise and generalize a classical arithmetic theo-
rem, Hilbert Theorem 90.

50



The notion of étale cohomology �rst appeared in [9]; the subject was
treated again in deeper details in SGA IV ([5]).
There are mainly three modern books on this topic: [6], [18] and [22]. An-
other reliable source is the Stacks Project (see [24], [25] and [26]). A really
nice treatment about Galois theory for schemes, with emphasis on arithmetic
implications is [14].

3.1 Étale topology

Topologies in the category of scheme

We're going to describe a general procedure to construct topologies on the
category of schemes.

Consider a class E of morphisms satisfying the following properties (*):

• All isomorphism are in E .

• Composition of morphisms in E is again in E .

• Base change of morphisms in E is again in E .

We call E-morphism a morphism belonging to E .

Now �x a subcategory CS ⊆ SchS satisfying the following property (**):

• for any object X → S in CS and any E-morphism Y → X, the com-
posite Y → X → S belongs to CS.

For example we can consider the categories ES and LFTS respectively of
E-morphisms and of morphisms locally of �nite type over S.

This set up allows some de�nition.

De�nition 3.1.1 We call E-covering of an object X ∈ CS a surjective
covering {Xi → X} consisting of E-morphisms.

We call E-topology (or E-site) on CS the topology given by the E covering.

We call small E-site the E-topology on ES.
We call big E-site the E-topology over LFTS.

Remark 3.1.2 All of these are well de�ned because of the conditions (*)
and (**) and the fact that surjectivity is stable under base change.
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In the following sections we will introduce some possible choices for E .
We anticipate them here.

Choosing E to be the class of open immersions, we get the usual Zariski
topology. In fact all the other topologies we will consider are �ner then
this, meaning that the class of open immersion is contained in E .
The most important case we will deal with is the étale topology, which
is the small E-site obtained choosing E to be the class of étale morphism
(de�nition 3.1.24) of �nite type.
This is the most used Grothendieck topology on the category of schemes.
In fact étale morphisms are the algebraic analogous of local isomorphisms
in di�erential geometry and étale topology is the natural substitute of the
euclidean topology on complex varieties.
For some purpose one may need an even �ner topology. A commonly used
one is the �at topology, which is the big E-site, where E is the collection
of �at morphism (de�nition 3.1.10) locally of �nite type.

These are just some examples, but many other topologies may be de�ned
using the same technique.

Flat morphisms

For simplicity all rings are Noetherian and all schemes are locally Noetherian.

We start by recalling the de�nition of �at modules and algebras.

De�nition 3.1.3 An A-module M is said to be �at if (-)⊗AM is an exact
functor A-mod→ A-mod.
An A-algebra f : A→ B is said to be �at (or f is said to be �at) if B is �at
as an A-module.

We want to give a couple examples to clarify the geometric intuition about
�atness.
This in some sense correspond to the idea that �bers of a morphism should
vary continuously.

Example 3.1.4 Let k be an algebraically closed �eld and consider the ring
map k[y]→ A := k[x, y]/(y − x2).
We readily see that this is a �at ring map since A is a free k[y]-module, with
generators 1, x (see proposition 3.1.9).
In fact the �bers of the projection SpecA→ Spec k[y] over the closed points
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(y − a) ∈ Spec k[y] are either two di�erent point (when a 6= 0) or one point
with multiplicity 2 (when a = 0).
There is no pathological variation of the �bers.
Now consider the map k[x]→ A := k[x, y]/(xy).
This is not �at: multiplication by x is an injective map k[x] → k[x], but it
is not after tensoring with A.
In fact the �ber of the projection SpecA → Spec k[x] over a closed point
(x − a) ∈ Spec k[x] is a single point whenever a 6= 0, but becomes a whole
line when x = 0.
The �bers does not vary in a continuous way.

Another really important notion we need to introduce is faithful �atness.

De�nition 3.1.5 We say that a �at A-module M is faithfully �at if

N 6= 0 =⇒ M ⊗A N 6= 0.

We say that an A-algebra B is faithfully �at if it is so as an A-module.

Remark 3.1.6 A faithfully �at ring map is injective.
In fact taking M = (a) ⊆ A for some 0 6= a ∈ A we �nd B ⊗A (a) ' aB 6=
0 =⇒ a · 1 = f(a) 6= 0.

We give a useful characterization of faithfully �at algebras.

Proposition 3.1.7 Let A 6= 0 and let ϕ : A→ B be �at.
Then the following are equivalent:

i) ϕ is faithfully �at.

ii) B ⊗AM ′ → B ⊗AM → B ⊗AM ′′ exact =⇒ M ′ →M →M ′′ exact.

iii) The induced map SpecB → SpecA is surjective.

Proof
i) ⇐⇒ ii)

If ii) holds then B ⊗A M = 0 =⇒ B ⊗A M
·0→ B ⊗A M → 0 exact

=⇒ M
·0→M → 0 exact =⇒ M = 0.

Conversely assume that M ′ g1→M
g2→M ′′ becomes exact after tensoring with

B.
Clearly img1 ⊆ ker g2. Moreover it is easy to see that B ⊗A (ker g2/img1) '
ker(1⊗ g2)/im(1⊗ g1) = 0. Thus ker g2/img1 = 0 since B is faithfully �at.
i) ⇐⇒ iii)

53



Assume that A→ B is faithfully �at.
For any prime p ⊆ A the residue �eld k(p) is a non-zero A-module. Thus
B ⊗A k(p) is non-zero too and Spec

(
B ⊗A k(p)

)
is non-empty.

Conversely let 0 6= M ∈ A-mod and let 0 6= x ∈M .
Since B is A-�at and Ax ⊆ M , we have B ⊗A Ax ⊆ B ⊗A M . Thus it
su�ces to show that B ⊗A Ax 6= 0 for all x ∈ M \ {0}. But Ax = A/I
where I = ker

(
[a → ax] : A → M

)
, so B ⊗A Ax ' B/IB and we're just

left to show that IB 6= B. Finally IB ⊆ mB where m is a maximal ideal
of A containing I, and mB 6= B, otherwise there would be no primes in B
mapping to m via SpecB → SpecA.

An important feature of faithful �atness is that many properties can be
veri�ed after a faithfully �at base change.
Here is a �rst example:

Lemma 3.1.8 If A → B is a ring map and M is A-�at, then B ⊗A M is
B-�at.
Conversely an A-module M is �at if it is �at after a faithfully �at base
change.

Proof
Let N be an A-module.
The thesis follows at once by the isomorphism

B ⊗A (M ⊗A N) ' (B ⊗AM)⊗A N

and point ii) of the previous proposition.

Next we're going to investigate the local properties of �atness in the
special case of �nitely generated modules.

Proposition 3.1.9 Let M be a �nitely generated A-module. The following
are equivalent:

i) M is A-�at.

ii) Mp is Ap-free for all m ⊆ A prime (actually m ⊆ A maximal will do).

iii) M̃ is a locally free OSpecA-module.

Proof
i) =⇒ ii)

First we prove that Mp is Ap-�at, then we prove that �at module over local
rings are free.
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Let N be an Ap-module. Local �atness follows from the isomorphismMp⊗Ap

N '
(
M ⊗A N)p and the fact that injectivity is a local property (see [2],

proposition 3.9).
Now let M be a non-zero �at A-module, with (A,m) local ring. We claim
that M is free.
First note thatM/mM is an A/m-vector space. Take an A/m-basis x̄1, ..., x̄n
for M/mM , and lift it to get elements x1, ..., xn ∈M . By Nakayama lemma
this is a system of generator for M , which means we have a surjective map[
(a1, ..., an) 7→

∑
aixi

]
: An →M .

Now let K be its kernel, so that we have the exact sequence

0→ K → An →M → 0.

Tensoring this with A/m preserve exactness (look at the long exact sequence
of Tor, keeping in mind that Tor1

A(M,N) = 0 for all N ∈ A-mod), thus we
get the exact sequence

0→ K/mK →
(
A/m

)n →M/mM → 0.

But the rightmost map is an isomorphism, thenK/mK = 0 and by Nakayama
lemma K = 0 and An 'M .
ii) =⇒ iii)

Take p ∈ SpecA. We need to show there exists a /∈ p such that Ma is a free
Aa-module.
Let x1, ..., xn ∈ M be elements whose images in Mp form an Ap-basis and
consider the map [

ϕ : (a1, ..., an) 7→
∑

aixi
]

: An →M.

We claim that this map induces an isomorphism localizing over some element
a ∈ A.
Recall that given an A-module N , the support of N is de�ned to be

SuppN := {p ∈ SpecA|Mp 6= 0}.

Now denote with K and C respectively the kernel and cokernel of ϕ.
Clearly ϕa : Ana →Ma is an isomorphism if and only if K and C are zero after
localizing at any q ∈ D(a), if and only if D(a) ⊆ SpecA\

(
SuppK∪SuppC

)
.

Since p ∈ SpecA \
(
SuppK ∪ SuppC

)
, if we show that SuppK and SuppC

are closed we will be done. Actually the following result holds: if M is a
�nitely generated A-module then SuppM = V (Ann(M)).
In fact if q + AnnM there is an element a ∈ A \ q annihilating M , thus
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Mq = 0.
Conversely assume that Mq = 0. Then for all xi there exists ai ∈ A \ q such
that aixi = 0. Thus a :=

∏
ai ∈ A \ q and a ∈ AnnM .

iii) =⇒ i)

By hypothesis there exists a covering SpecA =
⋃n
i=1D(ai) (�nite since A is

Noetherian) such that Mai is a free Aai-module.
De�ne B =

∏
Aai . First we claim this is a faithfully �at A-algebra, i.e. that

qSpecAai → SpecA is surjective.
In fact since the D(ai) cover SpecA, we have that a1, ..., an generate A and
a prime p ⊆ A cannot contain all of the ai i.e. it is contained in some
D(ai) ' SpecAai .
Now since B is a faithfully �at A-algebra, by lemma 3.1.8 it su�ces to show
that M ′ := B ⊗AM is B-�at. But

B ⊗AM =
(∏

Aai
)
⊗AM '

∏(
Aai ⊗AM

)
'
∏

Mai

as B-modules and for any B-module N we have M ′⊗BN '
∏(

Mai⊗Aai N
)

(with the obvious B-module structure on Mai ⊗Aai N).
This shows that M ′ is B-�at.

We're ready to de�ne �atness for scheme morphisms.

De�nition 3.1.10 We say that a scheme morphism f : Y → X is flat if
for all y ∈ Y the induced map OX,f(y) → OY,y is �at.

We already mentioned in the previous section the �at topology, and we
need to show that everything actually works.
In its de�nition we chose E to be the the class of �at morphism locally of
�nite type. We didn't introduce yet the second condition:

De�nition 3.1.11 We say that a ring map A → B is of finite type if B
is a �nitely generated A-algebra.
We say that a scheme morphism f : Y → X is locally of finite type if for
any U ⊆ X and V ⊆ f−1(U) open a�ne, the induced map OX(U)→ OY (V )
is of �nite type.

We shall prove now that �at morphisms locally of �nite type indeed sat-
is�es conditions (*) (clearly isomorphisms are �at).
These are quite clear for the property �local of �nite type�.
For �atness we have:

Proposition 3.1.12
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i) Composition of �at morphisms is �at.

ii) Base change of �at morphism is �at.
Conversely a morphism is �at if it becomes �at after a faithfully �at
base change.

Proof
We may clearly reduce to the a�ne case.
i) If A → B and B → C are �at and M is an A-module, the thesis follows
from the canonical isomorphism of A-modules M ⊗A C ' (M ⊗A B) ⊗B C
together with the fact that composition of exact functors is exact.
ii) This is just lemma 3.1.8.

Étale morphisms

First of all we need to introduce the notion of unrami�ed morphism.

De�nition 3.1.13 Let f : A→ B be of �nite type.
We say that f (or eqivalently B) is unramified at q ∈ SpecB if Bq/pBq is
a �eld, �nite and separable over k(p).
We say that f is unrami�ed if it is unrami�ed at any q ∈ SpecB.

Remark 3.1.14 The fact that Bq/pBq is a �eld means that p extends via
A→ B → Bq to the maximal ideal of Bq.

Once again we would like to suggest a geometric intuition for unrami�ed-
ness.
This correspond to the idea that �bers does contain just simple points (with
multiplicity equal to 1).

Example 3.1.15 Let k be an algebraically closed �eld with char k 6= 2.
Then the ring map k → k[x]/(x2 − a) is unrami�ed if and only if a 6= 0 (see
proposition 3.1.17).
In fact the �ber over the point of Spec k is given by the points (x ± a) ∈
Spec k[x]/(x2 − a) if a 6= 0 and by the single point (x) ∈ Spec k[x]/(x2)
�counted twice� if a = 0.

The next lemma shows that unrami�edness can be checked on �bers.

Lemma 3.1.16 Let f : A → B be of �nite type. Then f is unrami�ed if
and only if k(p)→ k(p)⊗A B is unrami�ed for all p ∈ SpecA.
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Proof
We know that Spec(k(p) ⊗A B) is the �ber over p of the natural map
SpecB → SpecA. Thus a prime in k(p) ⊗A B is just a prime q ⊆ B such
that f−1(q) = p.
Moreover k(p)⊗AB ' Bp/pBp, where Bp is the localization of B over f(A\p).
The thesis now follows from the canonical isomorphism of k(p)-algebras
(Bp/pBp)q ' Bq/pBq.

For this reason unrami�ed rings over �elds are of central importance.

We rephrase the de�nition in this case for sake of clarity:
B is unrami�ed at q over a �eld k if Bq is a �eld, �nite and separable over k.

Unrami�ed algebras over �elds can be characterized in many ways:

Proposition 3.1.17 Let B be a �nite algebra over a �eld k, and �x an
algebraic closure k̄/k.
Then the following are equivalent:

i) B is unrami�ed over k.

ii) B is a �nite product of �nite separable �eld extension of k.

iii) B̄ := B ⊗k k̄ is unrami�ed over k̄ (i.e. a �nite product of copies of k̄).

Proof
Before we start is important to mention that B is an Artinian ring, being a
�nite dimensional k-vector space.
In particular it has �nitely many prime ideal which are all maximal and

B ' B/qr1 ⊕ · · · ⊕B/qrn

for some r.
i) ⇐⇒ ii)

If B =
∏
ki, the ki �nite and separable over k, then the primes in B are

all of the form mi := π−1
i (0), πi : B → ki being the projections. One easily

compute that Bmi ' ki and this shows that B is unrami�ed over k.
Conversely we know by hypothesis that

Bqi '
(
B/qri

)
qi
' Bqi/q

r
iBqi

is a �eld for all i. This can be the case only if r = 1, hence we �nd

B ' B/q1 ⊕ · · ·B/qn.
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Moreover Bqi = Bqi/qiBqi is the fraction �eld of B/qi, i.e. B/qi itself.
ii) ⇐⇒ iii)
Assume that B '

∏
ki is a �nite product of �nite separable �eld extension

of k.
By the primitive element theorem we have that ki ' k[x]/fi(x). Thus

B ⊗k k̄ =

(∏
k[x]/fi(x)

)
⊗k k̄ '

∏
k̄[x]/fi(x) '

∏
k̄

(the last isomorphism since the fi splits completely in k̄[x]).
Conversely assume that B̄ '

∏
k̄ is a �nite product of copies of k̄.

We'll need the following lemma

Lemma 3.1.18 A �nite algebra B over a �eld k is reduced if and only if it
is a product of �nite �eld extension of k

Proof
The �if� part is obvious.
Conversely assume that B is reduced. Since the nilradical of a direct sum is
the direct sum of the nilradicals we may assume that B is indecomposable,
i.e. that it does not have idempotents di�erent from 0 and 1.
Now take an element b ∈ B \{0}. For B being Artinian, the decreasing chain
of ideal (b) ⊃ (b2) ⊃ (b3) ⊃ · · · must stabilize and for n su�ciently large
there exists an element a ∈ B such that bn = bn+1a.
Then for all i > 0 we have bn = bn+iai and in particular bn = b2nan.
Multiplying each side by an we �nd that (ba)n = (ba)2n. i.e. that anbn is
idempotent. Thus by assumption it must be equals to 0 or 1.
But bn = bn(ab)n and the �rst case is impossible. Hence 1 = bnan = b(bn−1an)
and b is invertible.

The lemma implies that Bred '
∏
ki is a �nite product of �nite �eld

extension of k.
Now we claim that

Homk(B, k̄) ' Homk(
∏

ki, k̄) ' qHomk(ki, k̄).

The �rst isomorphism follows because any k-algebra map B → k̄ factors
through Bred.
To prove the second take ψ ∈ Homk(

∏
ki, k̄). Precomposing this with the

inclusions ki → B, we get operation-preserving maps ψi : ki → k̄. Assume
that ψi 6= 0. Then for any b ∈ kj we have 0 = ψi(1)ψj(b) = 0 =⇒ ψj(b) = 0.
This proves that Homk(

∏
ki, k̄) ' qHomk(ki, k̄).

Hence we �nd that ∣∣Homk(B, k̄)
∣∣ =

∑∣∣Homk(ki, k̄)
∣∣.
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But it's easy to see that Homk(B, k̄) ' Homk̄(B̄, k̄) and by hypothesis∣∣Homk̄(B̄, k̄)
∣∣ = dimk̄(B̄) =

∑
[ki : k].

The thesis now follows observing that
∣∣Homk(ki, k̄)

∣∣ ≤ [ki : k], and equality
holds if and only if ki is separable over k (this is a well known result, see for
example [21] lemma 1.1.6).

Remark 3.1.19 Actually i) =⇒ ii) holds with even weaker hypothesis,
namely when B is of �nite type over k.
In fact given a prime q ⊆ B we have canonical inclusion k ⊆ B/q ⊆ Bq/qBq =
Bq. These imply in turn that B/q is integral over k (since Bq is �nite over
k) and that B/q is a �eld (see [2], proposition 5.7). Hence B is a Noetherian
ring of dimension 0, i.e. an Artin ring, and the proof now runs as in the
previous case.

We're interested in giving two other characterization of unrami�edness,
which have a more geometric nature.

Recall that given an A algebra B, the module of Kahler di�erentials,
denoted with ΩB/A, is de�ned to be the B-module representing the functor

DerA(B,−) : B −mod→ B −mod

(an A-derivation B →M is an A-module map satisfying the Liebniz rule).
It can be proved that ΩB/A ' J/J2 where J is the kernel of the multiplication
map B ⊗A B → B.
For a comprehensive treatment about di�erentials see [23], section 125.

The following proposition holds:

Proposition 3.1.20 Consider an A algebra A → B. The following are
equivalent:

i) A→ B is unrami�ed.

ii) ΩB/A = 0.

iii) the diagonal morphism SpecB → Spec (B⊗AB) is an open immersion.

Proof
i) =⇒ ii)
Clearly ΩB/A = 0 ⇐⇒ (ΩB/A)q = 0 ∀q ∈ SpecB.
Moreover by Nakayama lemma (ΩB/A)q = 0 ⇐⇒ (ΩB/A)q/q(ΩB/A)q = 0.
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Now by elementary properties of tensor product and Kahler di�erentials we
have the following isomorphisms of Bq-module

(ΩB/A)q/q(ΩB/A)q ' ΩB/A ⊗B k(q) '
(
ΩB/A ⊗B (B ⊗A k(p))

)
⊗B⊗Ak(p) k(q) '

' ΩB⊗Ak(p)/k(p) ⊗B⊗Ak(p) k(q)

Thus we can reduce to the case where A = k is a �eld.
Furthermore since k ↪→ k̄ is faithfully �at (lemma 3.1.7) and
ΩB̄/k̄ ' ΩB/k ⊗k k̄, it is su�cient to prove that ΩB̄/k̄ = 0.
But ΩB̄/k̄ is zero after localizing at any maximal ideals. In fact these are of
the form m = π−1(0), π being a projection

∏
k̄ → k̄, thus we have(

ΩB̄/k̄

)
m
' ΩB̄m/k̄ ' Ωk̄/k̄ = 0.

ii) =⇒ iii)
Recall that ΩB/A ' J/J2 where J = ker(B ⊗k B → B).
In general if J ⊆ A is a �nitely generated ideal in a ring and J/J2 = 0, by
Nakayama lemma there exists an element a ∈ 1 + J annihilating J .
We claim that A/J ' Aa.
First of all we notice that a is an idempotent. In fact a = 1 + x for some
x ∈ J , so a2 = a(1 + x) = a+ ax = a.
Thus A→ Aa is surjective, since 1/an = a/an+1 = a/a = 1.
Moreover b ∈ ker(A→ Aa) ⇐⇒ amb = ab = (1 + x)b = 0 ⇐⇒ b ∈ J .
Hence ker(A→ Aa) = J and A/J ' Aa.
This proves that the closed subscheme V (J) is isomorphic to the open sub-
scheme D(a). In particular SpecB ' V (J) → Spec(B ⊗k B) is an open
immersion.
iii) =⇒ i)
By lemma 3.1.16 and proposition 3.1.17 it is su�cient to prove that the ge-
ometric �bers of A→ B are unrami�ed.
In other words given an algebraic closure k(p) ⊆ k̄ we need to prove that
k̄ → k̄ ⊗A B := B̄ is unrami�ed.
Moreover since open immersions are stable under base change and the fol-
lowing square is cartesian

Spec B̄ SpecB

Spec
(
B̄ ⊗k̄ B̄

)
Spec

(
B ⊗A B

)
we may just assume that B is an algebra over an algebraically closed �eld k.
Furthermore, by de�nition of unrami�edness and the fact that k is alge-
braically closed, it is su�cient to prove that Bq ' k ∀q ∈ SpecB. In fact,
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since the diagonal morphism SpecBq → Spec
(
Bq ⊗k Bq

)
is again an open

immersion (by an argument similar to the one we used above), we may just
assume that B is local.
Let y be the closed point in SpecB.
By Zariski lemma B/my ' k (since k is algebraically closed), which means
there exists a section g : Spec k → SpecB for SpecB → Spec k. Hence the
following square is cartesian

{y} SpecB

SpecB Spec(B ⊗k B)

g

g ∆

〈gf,1〉

proving that y is open in SpecB.
This implies that B is Artinian, i.e. my is the unique prime ideal in B
(otherwise the set of primes strictly contained in my couldn't be closed).
But then Spec(B ⊗k B) = SpecB ×k SpecB has only one point and the
open immersion SpecB → Spec(B ⊗k B) must be an isomorphism. Hence
B ' B ⊗k B and since dimk(B ⊗k B) = (dimk B)2, we get dimk B = 1, i.e.
B ' k.

As a result we can study how unrami�edness behave with respect to base
change:

Lemma 3.1.21 Base change of unrami�ed morphism is unrami�ed.
Conversely A→ B is unrami�ed if it is unrami�ed after a faithfully �at base
change.

Proof
Let A→ B and A→ A′ be ring maps and write B′ := A′ ⊗A B.
The claim follows from the isomorphism ΩB′/A′ ' ΩB/A ⊗A A′.

As usual we can adapt these de�nition to schemes.

De�nition 3.1.22 We say that a scheme morphism f : Y → X locally of
�nite type is unramified at y ∈ Y if the map OX,f(y) → OY,y induced on the
stalk is unrami�ed.
We say that f is unrami�ed if it is unrami�ed at any y ∈ Y .

Once again unrami�edness is a property local on the target.

We'd like to carry over to the case of schemes the results of lemma 3.1.16
and proposition 3.1.17.
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First given a scheme morphism f : Y → X we need to de�ne ΩY/X , the
OX-module of Kahler di�erentials of f .
For this consider open a�ne coverings X = ∪iUi and f−1(Ui) = ∪jVij for
all i. Now f |Vij : Vij → Ui is a morphism between a�ne schemes and thus
it is induced by a ring map ϕ : Ai → Bij. Hence we can de�ne for all
i, j the OSpecBij -module Ω̃Bij/Ai . These modules glue together yielding an
OY -module which we de�ne to be ΩY/X .

Proposition 3.1.23 Let f : Y → X be locally of �nite type. The following
are equivalent:

i) f is unrami�ed.

ii) For any x ∈ X the �ber Yx := Y ×X Spec k(x)→ Spec k(x) is unrami-
�ed.

iii) For any x ∈ X the �ber Yx is a disjoint union of spectrum of �nite
separable �eld extension of k(x).

iv) Any geometric �ber of f is unrami�ed (i.e. is a disjoint union of an
spectra of algebraically closed �eld).

v) ΩY/X = 0.

vi) The diagonal morphism Y → Y ×X Y is an open immersion.

Proof
i) ⇐⇒ ii)
Let x be a point in X and denote with Yx the �ber over x. The claim follows
immediately from the isomorphism OYx,y ' OY,y/mxOY,y.
ii) ⇐⇒ iii)
This follows covering Yx with a�ne schemes and using remark 3.1.19.
iii) ⇐⇒ iv)
Let k be a �eld and �x an algebraic closure k̄/k. We need to prove that a
morphism f : X → Spec k is unrami�ed if and only if f : X ×Spec k

¯Spec k̄ →
Spec k̄ is unrami�ed. But if we cover X =

⋃
Xi with open a�nes, we see that

f is obtained by gluing the a�ne morphism fi := f |Xi , and f ′ is obtained by
gluing their base change along Spec k → Spec k̄.
Hence we can reduce to the a�ne case, which is proved in proposition 3.1.17.
i) =⇒ v)
This follows directly by the de�nition of ΩY/X and proposition 3.1.20.
v) =⇒ vi)
Consider open a�ne coverings X = ∪iUi and f−1(Ui) = ∪jVij for all i, where
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Ui ' SpecAi and Vij = SpecBij.
Then Y ×X Y is obtained by gluing the a�ne schemes Spec(Bij⊗AiBij′) and
the diagonal morphism ∆Y/X is obtained by gluing the diagonal morphisms
SpecBij → Spec(Bij ⊗Ai Bij). But these are open immersions by hypothesis
and proposition 3.1.20.
vi) =⇒ i)
Since the diagonal morphism of a base change is the base change of the
diagonal morphism and open immersions are stable under base change, we
may reduce to the case of a scheme over an algebraically closed �eld.
Now unraim�edness may be checked locally on the source and we reduce
again to proposition 3.1.20.

We are �nally ready to give the de�nition of étale morphism:

De�nition 3.1.24 We call a morphism f : Y → X étale if it is �at and
unrami�ed.

Recall we have mentioned étale topology at the beginning of the chapter,
choosing E to be the class of étale morphisms of �nite type.
Still we haven't met the second notion.

De�nition 3.1.25 We say that a morphism f : Y → X is of �nite type
if it is locally of �nite type and f−1(U) is quasi compact for any UX open
a�ne.

Once again we need to prove that the axioms de�ning Grothendieck
topologies are satis�ed.
Finite typeness is easily seen to be stable under composition and base change.
Moreover we have already proved that the same is true for �atness.
Hence we're just left to prove the following:

Proposition 3.1.26

i) Composition of unrami�ed morphisms is unrami�ed.

ii) Base change of unrami�ed morphism is unrami�ed.
Conversely a morphism is unrami�ed if it is unrami�ed after a faithfully
�at base change.

Proof
Since unrami�edness is local on the target we reduce to the a�ne case.
i) Given ring maps A→ B → C there is an exact sequence of C-modules

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

and the claim follows.
ii) This is lemma 3.1.21.

64



3.2 Étale fundamental group

Finite morphisms

The category FétS of étale covers is obtained by asking the following extra
condition for the structure morphism.

De�nition 3.2.1 We say that a scheme morphism f : Y → X is a�ne if
for any U ⊆ X open a�ne V := f−1(U) is a�ne.
If furthermore OY

(
V
)
is a �nite OX(U)-module we say that f is �nite.

De�nition 3.2.2 We say that f : Y → X is an étale cover if it is �nite,
étale and surjective.
We'll sometime say that Y is an étale cover of X.
We de�ne FétS to be the full subcategory of SchS whose object are étale
covers of S.

As usual we investigate the behavior of �niteness with respect to base
change:

Lemma 3.2.3 The base change of a �nite morphism is �nite.
Conversely a morphism is �nite if it is �nite after a faithfully �at base change.

Proof
Clearly it su�ces to verify this in the a�ne case.
But base changing a �nite ring map A→ B along A→ A′, the claim follows
at once tensoring with A′ the exact sequence An → B → 0.

Finiteness is a really strong condition. To give an example it implies good
topological properties.

Proposition 3.2.4 Finite morphisms are proper, i.e. separated, of �nite
type and universally closed.

Proof
Let f : Y → X be a �nite morphism of schemes.
By de�nition it is obtained by gluing a�ne scheme morphisms

fi : f−1(SpecAi) = SpecBi → SpecAi,

hence the diagonal morphism ∆Y/X : Y → Y ×X Y is obtained by gluing
a�ne scheme morphisms SpecBi → Spec(Bi ⊗Ai Bi). Since these are closed
immersion, ∆Y/X is a closed immersion too, i.e. f is separated.
f is clearly of �nite type.
Finally we prove it is universally closed.
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Since �niteness is stable under base change we just need to prove it is closed.
Moreover closeness is a property local on the target. Thus we can reduce to
the a�ne case, and we will be done if we prove that ϕ−1(V (J)) = V (ϕ−1(J)).
Since V (J) = V (

√
J) we reduce to the case of J radical. Moreover if J is

radical then J =
⋂

p, the �nite (since the rings are Noetherian) intersection
taken on the minimal primes containing J . Thus, since V (J ∩ J ′) = V (J) ∪
V (J ′) we can reduce to the case of J prime.
The only non trivial part is V (ϕ−1(J)) ⊆ ϕ−1(V (J)). But this is just going-
up theorem.

Proposition 3.2.5 A �nite �at morphism is open.

Proof
Let f : Y → X be �nite and �at.
Since being open is a property local on the target, we may assume that
X = SpecA and Y = SpecB are a�ne and f is induced by a ring map
ϕ : A → B. Moreover since f is �at, by proposition 3.1.9 we may assume
that B is a free A-module.
To prove that f is open it su�ces to prove that the image of a standard a�ne
open D(b) ⊆ SpecB is open.
First we claim that p ∈ f(D(b)) ⇐⇒ pBb 6= Bb.
If p ∈ f(D(b)) then there exists a prime q ∈ D(b) lying over p. Thus
pBb ⊆ qBb 6= Bb. Conversely f−1(p) ⊆ Spec

(
Bb/pBb

)
. Hence if pBb 6= Bb

we just need to prove that the �ber over p is non empty. But this is just
going up theorem.
Thus we �nd that p ∈ f(D(f)) ⇐⇒ Bb/pBb '

(
B/pB

)
b̄
6= 0 ⇐⇒ b̄ ∈

B/pB is not nilpotent.
Now let T r + a1T

r−1 + · · · + ar be the characteristic polynomial of b over
A, i.e. the characteristic polynomial of the matrix associated to the A-linear
map B → B given by multiplication by b.
Now B is �nite thus integral over A. Clearly b̄ is nilpotent if and only if
ai = 0 ( mod p)∀i.
In conclusion f(D(b)) =

⋃
iD(ai) is open.

Remark 3.2.6 In fact a more general result holds: any �at �nitely presented
morphism is open.
For a proof of this fact see [18] I 2.12.

Remark 3.2.7 The previous propositions shows that the structure mor-
phism of a �nite étale morphism is open and closed (at the level of topologi-
cal spaces).
In particular if the base scheme is connected, the structure morphism must
be surjective, i.e. an étale cover.
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Another nice property is that morphisms in FétS are themselves �nite
étale:

Proposition 3.2.8 If u : X → Y and v : Y → S are scheme morphisms
such that v and v ◦ u are �nite étale, then u is �nite étale.

Proof
Using Yoneda lemma we see that u = Γu ◦ p where Γu : X → X ×S Y is
the graph of u and p : X ×S Y → Y is the projection (cause Γu ◦ p maps to
u ◦ (−) via the Yoneda embedding).
p is clearly �nite étale, by stability under pull back.
Moreover using again Yoneda lemma we see that the following square is
cartesian

X Y

X ×S Y Y ×S Y

u

Γu ∆Y/S

u×SidY

But the diagonal morphism is an open immersion (proposition 3.1.23), thus
Γu is is an open immersion too, since open immersions are stable under base
change.
Finally open immersions are clearly �nite étale, hence u = Γu ◦ p is �nite
étale too, being the composition of two �nite étale morphisms.

Finally we study the notion of degree of an étale cover.
The key fact is that if f : X → S is �nite and �at (in particular if it is �nite
étale) then the OS,s-module (f∗OX)s has �nite locally constant rank.
This is because the function

[s 7→ rkX/S(s) := rkOS,s
(
(f∗OX)s

)
] : X → Z+

is continuous when we endow Z+ with the discrete topology (since f∗OB is
a locally free OA-module by proposition 3.1.9).
We make the following de�nition:

De�nition 3.2.9 If rkX/S is a constant function we call its image the degree
of f .
We'll sometimes denote it with [X : S].

This happen for example if S is connected.

Given a �nite �at morphism X → S the following properties are easy to
prove:
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• For any base change X ′ → S ′ of X → S we have [X ′ : S ′] = [X : S].

• If X = X ′ qX ′′ then [X : S] = [X ′ : S] + [X ′′ : S].

Clearly an isomorphism has constant degree equal to one. The converse
holds too:

Lemma 3.2.10 If u : Y → X is �nite and �at and [X : S] = 1, then u is
an isomorphism.

Proof
We may assume that X = SpecA and Y = SpecB. By proposition 3.1.7 all
we need to show is that a �nite faithfully �at ring map A → B such that
rk(p) = 1 ∀ p ∈ SpecA is an isomorphism.
By faithful �atness we know it is injective (remark 3.1.6).
It remains to prove surjectivity. Since it is enough to prove it after localizing
at all primes and B is a locally free A module of rank 1 by hypothesis, we
may assume that B is generated by a single element as A-module. Thus
write B = Ab for some b ∈ B and let

bn + a1b
n−1 + · · ·+ an = 0

be an integral dependence relation for b over A.
By hypothesis ab = 1 for some a ∈ A, thus multiplying the relation by an−1

we �nd b = −(a1 + a2a+ · · ·+ ana
n−1) ∈ A.

Finally we prove an important technical result, which will reduce many
proof to a trivial case:

Proposition 3.2.11 Consider an étale cover f : X → S of constant degree.
Then there exists a �nite étale base change g : S ′ → S such that X×SS ′ ' S ′n

is the disjoint union of [X : S] copies of S ′.

Proof
Induction on deg(f) = r.
If r = 1 the claim follows by the lemma we have just proved.
Now let r ≥ 2.
Since the diagonal morphism ∆X/S : X → X ×S X is both an open and
closed immersion (proposition 3.1.23 and 3.2.4) we have X ×S X = X qX ′
and thus

[X ×S X : X] = [X : X] + [X ′ : X].

But [X ×S X : X] = [X : S] = r. Hence [X ′ : X] = r − 1 and we can
apply the induction hypothesis on X ′ → X to obtain a �nite étale morphism
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S ′ → X such that S ′ ×X X ′ ' S ′ r−1.
We claim that S ′ → X → S does the job.
It is �nite étale, since it is the composition of two �nite étale morphism.
Moreover we have

X ×S S ′ ' X ×S (X ×X S ′) ' (X ×S X)×X S ′ ' (X qX ′)×X S ′ '

' (X ×X S ′)q (X ′ ×X S ′) ' S ′ q S ′ r−1.

We're done.

Galois structure on FétS

We devote the remaining of the section to prove that FétS is a Galois cate-
gory if S is connected.

First we shall de�ne a fundamental functor.
Let s̄ be a geometric point of S (i.e. a morphism s̄ : Spec Ωs → S where Ωs

is an algebraically closed �eld).
We de�ne the functor

Fs̄ : FétS −→ Set

X −→ X(s̄) := HomSchS(Spec Ωs, X)

Theorem 3.2.12 Let S be a connected scheme. Then the pair (FétS,Fs̄) is
a Galois category.

De�nition 3.2.13 We denote the fundamental group relative to Fs̄ by π1(S, s̄)
and we call it fundamental group of S in s̄.

Proof
We proceed by proving the axioms de�ning Galois categories.

(G1)

FétS has a �nal object.

This is easily seen to be S.

FétS has �bered product.

Given a diagram X1
f→ Y

g← X2 in FétS we know that X1 ×Y X2 exists in
SchS.
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We just need to prove that X1 ×Y X2 → S is �nite étale.
Since Y → S is �nite étale, it su�ces to prove that u : X1 ×Y X2 → Y is an
étale cover.
It is étale by stability under base change.
Moreover if U ' SpecA ⊆ Y , then u−1(U) ' Spec(B ⊗A C) where B and
C are �nite A-modules (proposition 3.2.8). Thus B ⊗A C is clearly a �nite
A-module too.

(G2)

FétS has �nite coproducts.

We know that disjoint union is the coproduct in the category of S-schemes,
so we just need to check that given étale covers X1, ..., Xn of S, qiXi → S
is still an étale cover. We may assume S = SpecA. Then Xi = SpecBi and
the structural maps correspond to ring maps ϕi : A→ Bi.
Moreover

qiXi = qiSpecBi = Spec
(⊕

i

Bi

)
and qiXi → S is the map induced by[

ϕ : a 7→
(
ϕ1(a), ..., ϕn(a)

)]
: A→

⊕
i

Bi.

This is clearly �at and �nite.
It is easily seen to be unrami�ed too:
If p ⊆

⊕
iBi is a prime ideal, it is of the form π−1

i (pi) for some i, πi being
the projection on Bi and pi ⊆ Bi being a prime. Finally

(⊕
iBi

)
p
' (Bi)pi

and thus ϕ is unrami�ed.

FétS has quotients by action of �nite groups.

Consider an étale cover X → S together with a �nite group G acting on X.
First assume that S = Spec A is a�ne, so that X = SpecB and X → S is
induced by a map ϕ : A→ B.
The (left) action of G on X is by de�nition a group map G→ AutS(X). This
induces a (right) action on B, via the isomorphism AutS(X) ' AutA(B)op.
For any g ∈ G we will denote with g both its image in AutS(SpecB) and in
AutA(B)op.
Now let BG ⊆ B be the subring of elements �xed by G, i.e.

BG :=
{
b ∈ B|gb = b∀g ∈ G

}
.

We claim that SpecB → SpecBG is the categorical quotient of X by the
action of G.
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To prove this consider an S-morphism f : SpecB → SpecC �xed by G (i.e.
fg = f ∀g ∈ G).
This corresponds uniquely to an A-algebra map φ : C → B �xed by G,
i.e. such that gf = f ∀g ∈ G. But this means that im(φ) ⊆ BG and
thus φ factors uniquely as C → BG ↪→ B, yielding the unique factorization
SpecB → SpecBG → SpecC we were seeking for.
Still we need to prove that SpecBG → SpecA is étale (it is �nite, being
a submodule of a �nitely generated module over a Noetherian ring), and
we know by lemmas 3.1.8 and 3.1.21 that it is su�cient to do this after a
faithfully �at base change.
We will need the following lemma:

Lemma 3.2.14 Let X → S ∈ FétS and let S ′ → S be �at and �nite.
Then any G-action on X in FétS induces a G-action on X ×S S ′ in Fét′S
and (X ×S S ′)G ' XG ×S S ′.
Proof
The G-action on X ×S S ′ is induced by the map [σ 7→ 〈σ, 1〉] : AutS(X) →
Aut′S(X ×S S ′). Moreover the natural morphism X ×S S ′ → XG ×S S ′ is
clearly �xed by G, thus we have a map (X ×S S ′)G → XG ×S S ′
We want to prove it is an isomorphism and to do so we may clearly reduce to
the a�ne case, i.e. we need to prove that (A′ ⊗A B)G ' A′ ⊗A BG (A→ A′

is �nite and �at).
But we have an exact sequence 0→ BG → B →

∏
g∈GB where the rightmost

map is

BG = ker

([
b 7→ (b)g∈G − (gb)g∈G

]
: B →

∏
g∈G

B

)
.

Tensoring this sequence with A′ and using �atness of A → A′ we get the
thesis.

Now by proposition 3.2.11 there exists a faithfully �at base changeA→ A′

such that B′ := A′ ⊗A B ' A′n as A′-algebra.
The A′-automorphisms of B′ are just permutations of the copies of A′ (since
they must �x the identity of B). This means that AutA′(B

′) ' Sn and the
action of G is determined by it's image in Sn. Then it is easy to see that
B′G ' A′m for some m ≤ n, so that SpecB′G → SpecA′ is an étale cover.
Finally we consider the case of an arbitrary base scheme S.
Write S =

⋃
i SpecAi and X =

⋃
iXi where Xi := SpecBi = f−1(SpecAi).

By covering each SpecAi by standard a�ne open, we may assume that
SpecAi ∩ SpecAj = D(fij) for some fij ∈ Ai.
De�ne

Xij := f−1(SpecAi ∩ SpecAj) = f−1
(
D(fij)

)
= D

(
ϕ(fij)

)
.
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Using again the last lemma (base changing along A→ Afij) we see that X
G
ij

is an open subscheme of XG
i .

Now by uniqueness of the quotient by action of �nite groups, we have that
XG
ij ' XG

ji , and thus the XG
i glue along these isomorphisms, yielding an S-

scheme Y.
We claim this is the quotient of X by the action of G.
In fact if f : X → Z is an arrow �xed by G, then the restrictions f |Xi :

Xi → Z are �xed by G too. Hence they factor as Xi → XG
i

gi→ Z, and
the morphisms gi clearly glue yielding a morphism g : Y → Z via which f
factors.
This prove that Y is the quotient of X by the action of G.

(G3)

Consider a morphism u : Y → X in FétS.
We know by proposition 3.2.8 that this is �nite étale. Thus it is open and
closed by propositions 3.2.4 and 3.2.5.
As a consequence X ′ := u(Y ) and X ′′ := X \X ′ are disjoint open and closed
subscheme of X. This means that X = X ′ q X ′′ and u clearly factors as
Y → X ′ → X = X ′ qX ′′.
Since open immersions are monomorphisms, the second arrow is a monomor-
phism inducing an isomorphism into a component of X.
We're just left to prove that Y → u(Y ) is a strict epimorphism. The following
lemma does the job.

Lemma 3.2.15 In FétS a morphism is surjective (at the level of topological
spaces) if and only if it is a strict epimorphisms.

Proof
First let u : Y → X be a strict epimorphism (actually epimorphism is
enough).
We know that X ′ := u(Y ) is open and closed in X. Hence we can write
X = X ′ qX ′′ with X ′′ := X \ u(Y ). The claim now follows since composing
u with the two natural maps X = X ′qX ′′ ⇒ X ′qX ′′qX ′′ yields the same
morphism. Thus, since u is an epimorphism, these two maps must coincide
and this can only be the case if X ′′ = ∅.
Conversely take a surjective morphism u : Y → X in FétS and denote with
p and q the projections Y ×X Y ⇒ Y .
The general case easily reduce to the a�ne, thus we may assume that S =
SpecA, so that X = SpecB and Y = SpecC.
We need to prove that

Spec
(
C ⊗B C

)
⇒ SpecC → SpecB
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is exact, or in other words that it is an equalizer diagram.
This is equivalent to the exactness of B → C ⇒ C ⊗B C.
Firstly ϕ : B → C is faithfully �at (proposition 3.1.7), thus injective (remark
3.1.6).
It just remains to prove that B = ker(C ⇒ C ⊗B C).
Since it is su�cient to prove this after localizing at primes, and B → C is
�at and thus locally free, we may assume that C ' Bn as B-module. But
then C ⊗B C ' Bn ⊗B Bn ' Matn(B) as B-module. Moreover the maps
C ⇒ C ⊗B C maps an element (bi) ∈ C to the matricesb1 · · · b1

... . . . ...
bn · · · bn

 and

b1 · · · bn
... . . . ...
b1 · · · bn


respectively.
Clearly these are equal if and only if bi = bj for all i, j, i.e. if and only if
(bi) ∈ B.

(G4)

Fs preserve the �nal object.
Obviously S(s̄) = {s̄} is a singleton, which is the �nal object in Set.

Fs commute with �bered product.

This is just universal property of �bered product.

(G5)

Fs commutes with �nite coproduct.

This is true since an element in Fs̄(X q Y ) corresponds biunivocally to a
point z ∈ X q Y (i.e. z ∈ X or z ∈ Y ) together with a �eld inclusion
k(z)→ Ωs.

Fs commutes with quotients by actions of �nite groups.

Consider an étale cover S ′ → S. For any s ∈ S there exists an s′ ∈ S ′

lying over s, hence a �nite separable �eld extension k(s′)/k(s). Then any
geometric point s̄ : Spec Ωs → S (i.e. any inclusion k(s) ↪→ ΩS) lift to a
geometric point s̄′ : Spec Ωs → S ′ (i.e. an inclusion k(s′) ↪→ Ωs extending
k(s) ↪→ k(s′)).
Moreover we have

Fs′(X ⊗S S ′) = Spec Ωs ×′S (X ×S S ′) ' Spec Ωs ×S X ' Fs(X).
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Then using proposition 3.2.11 we can reduce to the case where X ' Sn and
we �nd

Fs
(
XG
)

= Fs
(
Sn

G)
= Fs(Sm) = Fs(S)m =

(
Fs(S)n

)G
= Fs(Sn)G = Fs(X)G.

We're done.

(G6)

Let u : X → Y be a strict epimorphism. We want to prove that
Fs̄(u) = u ◦ (−) : X(s̄)→ Y (s̄) is surjective.
In fact take a point in Y (s̄), i.e. a point y ∈ Y together with a �eld inclusion
k(y) ↪→ Ωs. Since strict epimorphisms in FétS are surjective (lemma 3.2.15),
there exists x ∈ X such that u(x) = y. For u being unrami�ed, we have a
�nite separable �eld extension k(y) ↪→ k(x). Moreover since Ωs is separably
closed, this extend to an embedding k(x) ↪→ Ωs, i.e. a point in X(s̄).
By construction we have the commutative diagram

Spec Ωs Spec k(x) X

Spec k(y) Y

which means that Spec Ωs → Spec k(x)→ X maps via Fs(u) to the point in
Y (s̄) we started with.

(G7)

Consider a morphism u : Y → X in Féts such that Fs̄(u) : Fs̄(Y )→ Fs̄(X)
is an isomorphism.
First we will prove it is surjective.
Using the factorization in (G3) and the fact that Fs̄ commute with direct
sum, we see that Fs̄(u) factorizes as

Fs̄(Y )→ Fs̄(X ′)→ Fs̄(X ′)q Fs̄(X ′′).

Since Fs̄(u) is surjective, it must be Fs̄(X ′′) = ∅.
We claim that this implies X ′′ = ∅, and thus u surjective.
In fact if X ′′ 6= ∅, the structure morphism X ′′ → S is surjective, thus the
map Fs̄(X ′′) → Fs̄(S) is surjective by lemma 3.2.15 and (G6). This imply
Fs̄(X ′′) 6= ∅.
This proves that u is surjective, thus an étale cover.
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It just remains to prove that [Y : X] = 1 (lemma 3.2.10).
It will su�ce to prove that for any étale cover X → S we have deg(X →
S) =

∣∣Fs̄(X)
∣∣, since then we would have

deg(X → S) =
∣∣Fs̄(X)

∣∣ =
∣∣Fs̄(Y )

∣∣ = deg(Y → S).

But an element in Fs̄(X) correspond biunivocally to a point x lying over s
and a �eld inclusion k(x) ↪→ Ωs extending k(s) ↪→ Ωs. In other word

Fs(X) =
∐
x 7→s

Homk(s)

(
k(x),Ωs

)
.

Now since k(x)/k(s) is �nite separable by unrami�edness, we have that∣∣Homk(s)

(
k(x),Ωs

)∣∣ = dimk(s) k(x).
Thus ∣∣Fs(X)

∣∣ =
∑
x 7→s

dimk(s) k(x) = rkk(s)

(
B ⊗A k(s)

)
= rk(s).

We're done.

3.3 Two arithmetic applications

Since when they were invented étale cohomology and Galois theory for schemes
gave large contribution to many �elds of mathematics. One of these is for
sure arithmetic geometry.
To conclude this thesis we want to give two examples to show how the theory
we studied so far applies in arithmetical contexts.

The case S = Spec k

The case in which the base scheme is the spectrum of a �eld is already quite
interesting.
In fact the theory of étale cohomology over Spec k is just a geometric refor-
mulation of classical Galois cohomology.
The main reason is that étale k-schemes of �nite type are necessairily �nite
(by quasi compactness these are disjoint union of �nitely many spectrum of
�nite �eld extensions of the base �eld). This makes things way easier then
in the general case, since all the theory of Galois category may be applied.
A nice consequence of this fact is that the étale topology coincide with the
canonical topology.

First we introduce some notion of modern Galois theory.
The main di�erence from the classical one is that extensions are allowed to
be in�nite. Still the de�nition of Galois extension adapt easily to this case:
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De�nition 3.3.1 An algebraic (non necessarily �nite) �eld extension K/k
is called Galois if KAut(K/k) = k.
In this case we write G(K/k) := Aut(K/k) for the Galois group of K/k.

In particular let k be a �eld and �x an algebraic and a separable closure
of k, say

k̄/ks/k

We make the following de�nition.

De�nition 3.3.2 We call absolute Galois group of k the group Gk := Gal(ks/k).

Now write S = Spec k, S̄ := Spec k̄ and s̄ : S̄ → S.
The fundamental group of S in s̄ is then de�ned and the following result

holds:

Proposition 3.3.3 π1(S, s̄) ' Gk

Proof
Rephrasing de�nition 2.4.1 we see that Galois objects in FétS correspond to
separable �eld extensions K/k such that Autk(K) act transitively on
HomS(Spec k̄, X).
This happen if and only if

∣∣Autk(K)
∣∣ =

∣∣HomS(Spec k̄, X)
∣∣ = [K : k]. Hence

Galois object in FétS are just Galois �elds extension in the usual sense.
Now by proposition 2.5.4 we have π1(S, s) ' lim

←−
G(K/k) (here G(K/k)

stands for the Galois group of K over k), where the limit runs over all �nite
Galois �eld extensions of k.
We just need to prove that Gk ' lim

←−
Galk(K).

Consider the natural map

φ : Gk →
∏

G(K/k)

whose component on the K factor is the restriction Gk → G(K/k) (we wrote
G(K/k) for Gal(K/k)).
This is well de�ned: if σ ∈ Gk then σ maps an element in K to a root of
its minimal polynomial over k. But since K is Galois this splits into linear
factor in L, hence σ is indeed a k-automorphism of L.
Moreover the image of φ is clearly contained in the inverse limit.
We just need to prove that φ maps G(K/k) injectively onto lim

←−
G(L/k).

First we prove that φ is injective.
Let σ ∈ G(K/k), σ 6= idK , so that σ(α) 6= α for some α ∈ K. But k(α) is
contained in the splitting �eld of the minimal polynomial for α, say L. This
is a Galois extension and σ|L 6= idL. Thus φ is injective.
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Finally we prove surjectivity.
Take an element (σL) ∈ lim

←−
G(L/k). Let σ : K → K be the automorphism

sending α to σL(α), where L is a �nite Galois extension containing α.
Then σ is clearly well de�ned and it clearly maps to (σL) via φ.

This fact already suggests that étale cohomology over the spectrum of a
�eld is just a new insight into classical Galois cohomology.

The next proposition close the loop, showing that the étale topology on
(Spec k)ét is equivalent to the canonical topology on G-mod .

Proposition 3.3.4 Fs̄ becomes an equivalence of topologies if we equip FétS
with the étale topology and π1(S, s)-FSet with the canonical topology.
In particular (Spec k)ét is the canonical topology over Spec k.

Proof
We just need to prove that {Xi → X} is a covering in FétS if and only if
{Fs̄(Xi)→ Fs̄(X)} is a covering in π1(S, s)-FSet.
Since Fs̄ preserve coproduct it su�ces to prove that Y → X is surjective in
FétS if and only if Fs̄(Y )→ Fs̄(X) is surjective.
But this was already proven in (G6) and (G7).

Remark 3.3.5 This is not true for a general base scheme S. Nevertheless
it can be shown ([22] II 3.1.2) that coverings in Sét are universal e�ectively
surjective (de�nition 1.5.7). This implies in particular that the étale topology
is coarser than the canonical topology, which means that all representable
presheaves are sheaves.

From the previous proposition, together with remark 1.6.4, we obtain
equivalences of categories

S
(
étS
)
→ S

(
TG
)
→ G−mod.

We can obtain an explicit form for this functor.
Recall from the proof of proposition 1.6.3 that S(TG)→G-mod is the functor

F → lim
−→

F (G/H),

the limit taken over the open normal subgroup of G.
But the quotients G/H corresponds to group of automorphisms of some �nite
Galois extension K/k, which correspond via the eqivalence étS →G-Set to
SpecK.
Hence we obtain for the functor S

(
étS
)
→G-mod the formula
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F → lim
−→

F (SpecK).

the limit taken over the �nite Galois extension of k.
This means that any abelian sheaf on (Spec k)ét is represented by lim

−→
F (SpecK).

As a last remark we point out what this imply at the level of cohomology.
Since Spec k is sent to a singleton e by the equivalence Sét →Gk-mod , the
section functor ΓSpec k identi�es with the functor Γe.
Then we have ∂-functorial isomorphisms

Hq
ét

(Spec k,F ) ' Hq
(
G, lim
−→

F (SpecK)
)
.

where the right hand side represent Galois cohomology of k (see the discus-
sion at the end of section 1.6).
Moreover it can be shown ([29]) that every pro�nite group arises as a Galois
group of some �eld extension. This means that the theory of étale sheaves
over the spectrum of a �eld is equivalent to the theory of modules over pro�-
nite groups.

This is a great result, cause it gives a dictionary among three di�erent
ambit: the �rst one is étale cohomology over the spectrum of a �eld; the
second one is Galois cohomology; the third one is cohomology theory for
modules over pro�nite groups.
This is an example of how modern algebraic geometry bridges the gap among
three di�erent sphere of mathematics: geometry, arithmetic and algebra.

Hilbert theorem 90

In this last section we want to give another example of how étale cohomol-
ogy gives a new insight into arithmetic problems. We will give a geometric
interpretation to a classical theorem, Hilbert theorem 90.

In its classical form the theorem states what follows:

Theorem 3.3.6 (Hilbert theorem 90, arithmetic version)
Let K/k be a cyclic extension of �elds (i.e. a Galois extensions with cyclic
Galois group) and let x ∈ K be an element of norm 1.
Then x = y/gy for some y ∈ L and g ∈ Gal(K/k).
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The theorem was already generalized and stated in cohomological terms
by saying that

H1(G,K×) = 0.

To see that this implies theorem 90 in its classical form, recover the de-
scription of H1(G,K×) by means of co-cycles.
With this set-up it is the quotient of the group of 1-cocycles (i.e. maps
f : G→ K× such that f(gh) = gf(h) + f(g) for all g, h ∈ G) over the group
of 1-coboundaries (i.e. maps of the form [g → x−1g(x)] : G→ K×).
Now if G = 〈g〉 is a cyclic group it's not di�cult to see that a 1-cocycle is
uniquely determined by the image of g, which has to be an element x ∈ K×
having norm 1.
Hence the map f : g 7→ x determines a 1-cocycle and since H1(G,K×) = 0
it has to be a 1-coboundary too. This means that f(g) = x = y−1g(y) for
some y ∈ L×, which is indeed Hilbert theorem 90.

In the language of the previous section, this means that if S = Spec k
then

H1
ét

(
S,Gm,S

)
= 0

where Gm,S is the étale sheaf [X → S] 7→ Γ(X,OX)×.

We will generalize this result even further:

Theorem 3.3.7 (Hilbert theorem 90, geometric version)
There is an isomorphism

H1
ét

(
S,Gm,S

)
' Pic(S)

where Pic(S) is the group of invertible (i.e. locally free of rank 1) OS-modules.

Remark 3.3.8 This indeed generalizes the arithmetic version of the theo-
rem. In fact Pic(SpecA) = 0 for any local ring A (since by proposition 3.1.9
locally free =⇒ free for modules over local rings).

First we shall brie�y recall some basic facts about spectral sequences,
which are a central tool in computing cohomology groups.
For the proofs of the theorems we refer to section 5 of [30].

De�nition 3.3.9 A cohomology spectral sequence in an abelian category
C consists of
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a) objects Epq
r ∈ C for all (p, q) ∈ Z× Z and r ≥ 2;

b) morphisms (called di�erentials) dpqr : Epq
r → Ep+r,q−r+1

r such that dpqr ◦
dp+r,q−r+1
r = 0;

c) isomorphisms αpqr : ker(dpqr )/im(dp−r,q+r−1) ' Epq
r+1.

We will denote this with (Epq
r , d

pq
r ).

The spectral sequence we are interested in satis�es the following addi-
tional condition:

De�nition 3.3.10 We call (Epq
r , d

pq
r ) a �rst quadrant cohomology spectral

sequence if Epq
2 = 0 for all p < 0 and q < 0.

Remark 3.3.11 If this happen then we readily see using condition c) that
Epq
r = 0 for all p < 0, q < 0 and r ≥ 2.

Then for �xed p, q ∈ Z we see that for su�ciently large r the di�erentials
dpqr and dp−r,q+r−1 are the zero morphisms (they land and start in the fourth
and second quadrant respectively). Hence using again condition c) we obtain
that Epq

r ' Epq
r+1 for su�ciently large r.

We call these limit terms of the spectral sequence and denote them with
Epq
∞ .

The most interesting spectral sequences are the converging one.
First we need to introduce the notion of �ltration of an object:

De�nition 3.3.12 Given an object A in an abelian category C we call (de-
creasing) �ltration of A a family

(
F p(A)

)
p∈Z of subobjects of A such that

F p+1(A) ⊆ F p(A) ∀p ∈ Z.
We say that the �ltration is �nite if FN(A) = 0 and F n(A) = A for N big
enough and n small enough.

De�nition 3.3.13 We say that a cohomology spectral sequence converges
if we are given:

d) objects (En)n∈Z together with �nite decreasing �ltrations F p(En)

e) isomorphisms βpq : Epq
∞ ' F p(Ep+q)/F p+1(Ep+q)

In this case we will write Epq
2 =⇒ Ep+q.

We states now some important results:
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Proposition 3.3.14 (Edge morphisms)
For any convergent �rst-quadrant cohomology spectral sequence Epq

2 =⇒
Ep+q there exist the so-called edge morphisms{

ϕn : En,0
2 → En

ψn : En → E0,n
2

Proposition 3.3.15 (Exact sequence of low-degree terms)
With the same hypothesis as before, the edge morphisms �t in an exact se-
quence

0 −→ E1,0
2

ϕ1−→ E1 ψ1−→ E0,1
2

d0,12−→ E2,0
2

ϕ2−→ E2

which is called exact sequence of low-degree terms or �ve terms exact
sequence.

With some further assumption we can ensure some edge morphism to be
isomorphisms:

Proposition 3.3.16 With the same hypothesis as before, assume further-
more that Epq for all 0 < q < n (respectively 0 < p < n).
Then the edge morphisms ϕm : Em,0

2 → Em (respectively Em → E0,m
2 ) are

isomorphisms for all m < n.
In particular if n = 1 the spectral sequence is called trivial and ϕm (respec-
tively ψm) is an isomorphism for all m.

Finally the next theorem gives a procedure to construct an important
type of spectral sequence:

Theorem 3.3.17 Consider abelian categories C, C ′ and C ′′ and right exact
additive functors F : C → C ′ and G : C ′ → C ′′.
Moreover assume that C and C ′ have enough injective objects and that F maps
injective objects to G-acyclic object (i.e. objects annihilated by RqG).
Then for each object A ∈ C there is a convergent �rst-quadrant cohomology
spectral sequence

RpG
(
RqF (A)

)
=⇒ Rp+q(G ◦ F )(A).

This theorem is a central tool for computing cohomology groups.
We give some examples to illustrate how.

Example 3.3.18 Let (C, T ) be a site and i be the inclusion S(T )→ P(T ),
which is left exact by proposition 1.3.1.
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Denote by Hq the right derived functors Rqi.
Recall that we have de�ned in section 1.2 a functor (−)- : P(T ) → P(T ),
which applied twice is left adjoint to i.
We will use the formalism of spectral sequences to show that Hq(F )- = 0 for
all sheaves F and for all q > 0.
First note that by proposition 1.2.5 it is actually enough to show thatHq(F )# :=(
Hq(F )-

)-
= 0.

Now consider the factorization of the identical functor idS(T ) given by

S(T )
i→ P(T )

#→ S(T ).

Since shea��cation is an exact functor (see corollary 1.2.8), every presheaf is
#-acyclic.
Hence the hypothesis of theorem 3.3.17 are ful�lled and for all sheaf F we
obtain a spectral sequence

Rp#
(
Hq(F )

)
=⇒ Rp+q(idS(T )).

For # being exact we have Rp# = 0∀p > 0 and we obtain by proposition
3.3.16 that the edge morphisms

Rq(idS(T ))(F )→ Hq(F )#

are isomorphisms for all q > 0.
But the identical functor is clearly exact, thus Rq(idS(T )) = 0.
We're done.

Example 3.3.19 (the spectral sequence for �ech cohomology)
In this example we investigate the relation between cohomology of sheaves
and �ech cohomology. In particular we will show that:

• Ȟ1(U,F ) ' H1(U,F );

• Ȟ2(U,F ) ↪→ H2(U,F ).

Recall that in section 1.2 we de�ned the �ech cohomology groups F - =
Ȟq(U,F ) for a presheaf F on a site T (remark 1.2.3).
Moreover we observed that if F is a sheaf then Ȟ0(U,F ) ' F (U).
Hence the section functor ΓU : S(T )→ Ab factorizes as

S(T )
i−→ P(T )

Ȟ0(U,−)−→ Ab.

Here i : S(T ) → P(T ) is the inclusion, which is right adjoint to an ex-
act functor (see again section 1.2, in particular corollary 1.2.8). Hence it
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preserves injective objects, and in particular it maps injective objects to
Ȟ0(U,−)-acyclic objects.
Thus the hypothesis of theorem 3.3.17 are ful�lled and we get for each U ∈ T
a spectral sequences

Ȟp
(
U,Hq(F )

)
=⇒ Hp+q(U,F ).

The corresponding exact sequence of low-degree terms is

0→ Ȟ1(U,F )→ H(U,F )→ Ȟ0
(
U,H1(F )

)
→ Ȟ2(U,F )→ H2(U,F ).

But the previous example shows us that Ȟ0
(
−,H1(F )

)
= H1(F )- = 0.

The thesis follows at once.

Example 3.3.20 (Leray spectral sequence)
In this example we show how spectral sequences may be used to compare low
degree cohomology groups on di�erent sites.
Let f : (C ′, T ′) → (C, T ) be a morphism of sites with underlying functor
F : C → C ′.
Then there is a functor f∗ : S(T ′)→ S(T ) (see remark 1.1.9) which is easily
seen to be left exact.
Next consider a category C ′′ consisting of a single object o and a single arrow
1o; denote with T ′′ the unique possible structure of site on it.
Then for any �xed U ∈ C there is a continuous functor G : C ′′ → C mapping
o to U . Denote with g : (C, T ) → (C ′′, T ′′) the corresponding morphism of
sites.
It is easy to see that the category of sheaves over T ′′ is equivalent to the
category of abelian groups, and the functor g∗ : S(T ) → S(T ′′) identi�es
with ΓU under this equivalece.
Moreover one can prove (see [22], chapter I, (3.7.1)) that f∗ maps injective
sheaves to g∗-acyclic objects.
Hence we have functors

S(T ′) f∗−→ S(T )
g∗−→ Ab

satisfying the hypothesis of theorem theorem 3.3.17 and for each sheaf F ′

on T ′ we obtain a spectral sequence

Hp
(
U,Rqf∗(F

′)
)

=⇒ Hp+q(F (U),F ′).

Its exact sequence of low-degree terms is

0→ H1
(
U, f∗(F

′)
)
→ H1(F (U),F ′)→ · · ·
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· · · → R1f∗(F
′)(U)→ H2

(
U, f∗(F

′)
)
→ H2(F (U),F ′)

and it is a useful tool to compare the �rst cohomology groups of F ′ and
f∗(F ′).

Now �x a scheme S. If in the last example we de�ne f to be the natural
morphism of sites Sét → SZar we get the following:

Proposition 3.3.21 For any sheaf F ∈ S(Sét) there is a convergent �rst-
quadrant cohomology spectral sequence

Hp
Zar

(
S,Rqf∗(F )

)
=⇒ Hp+q

ét (S,F ).

This spectral sequence is a central tool for comparing the Zariski and
Étale cohomology groups.

Next we will de�ne a particular abelian sheaf on Sét, namely the sheaf
of invertible elements.
Let Gm,S be the sheaf on Sét represented by the S-scheme

SpecZ[T, T−1]×SpecZ S

(this is in fact a sheaf by remark 3.3.5). Notice that

Gm,S(X) = HomS(X, SpecZ[T, T−1]×SpecZ S)

= HomSch(X, SpecZ[T, T−1])

= HomRng

(
Z[T, T−1],Γ(X,OX)

)
= Γ(X,OX)×

Hence Gm,S associates to each étale S-scheme X the multiplicative group of
invertible elements in Γ(X,OX).

The following classical result about the �rst Zariski cohomology group of
Gm,S holds:

Proposition 3.3.22 Denote with O×S the Zariski sheaf

[U 7→ Γ(U,OS)×] : SZar → Ab.

Then
H1

Zar(S,O×S ) ' Pic(S).
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Proof (sketch)
By example 3.3.19 we know that

H1
Zar(S,O×S ) ' Ȟ1

Zar(S,O×S ) = lim−→
U
H1(U ,O×S ).

Now recall (see remark 1.2.3) that H1({Ui → U}i∈I ,O×S ) may be described
as the �rst cohomology group of the complex

0→
∏
i

O×S (Ui)→
∏
i,j

O×S (Ui ∩ Uj)→
∏
i,j,h

O×S (Ui ∩ Uj ∩ Uh)→ · · · .

Now consider an invertible OS-module L and a trivializing cover {Ui ⊆ U}.
Then we have isomorphisms ϕi : OS(Ui)→ L |Ui .
By restricting them on double intersections we get isomorphisms of OS(Ui ∩
Uj)-modules ϕ−1

j ◦ ϕi : OS(Ui ∩ Uj) → OS(Ui ∩ Uj). Being isomorphisms
between free modules of rank 1, these are given by multiplication by an
element sij ∈ O×S (Ui ∩ Uj).
One can check (using the cocycle condition on triple intersection) that (sij)i,j
is a �ech cocycle and hence it represent an element in

Ȟ1
Zar(S,O×S ) = lim

−→
H1(U ,O×S ).

We have thus de�ned a map Pic(S) → Ȟ1
Zar(S,O×S ) and this can be proved

to be an isomorphism (see [10] 5.4.7 for details ).

Finally the proof heavily relies on a descent argument, which we shall
brie�y explain. We refer to [13] for a treatment about descent theory (in the
a�ne case).
Let A→ B be faithfully �at, M be an A-module and M ′ := B ⊗AM .
Then we have an isomorphism

φ : M ′ ⊗A B −→ B ⊗AM ′

(b⊗ x)⊗ b′ 7−→ b⊗ (b′ ⊗ x)

Conversely, under some assumption, a pair (M ′, φ) as above arises in this
way.
Precisely consider a B-module M ′ and a B ⊗A B-module isomorphism
φ : M ′ ⊗A B → B ⊗AM ′.
De�ne maps

φ1 : B ⊗AM ′ ⊗A B −→ B ⊗A B ⊗AM ′

φ2 : M ′ ⊗A B ⊗A B −→ B ⊗A B ⊗AM ′

φ3 : M ′ ⊗A B ⊗A B −→ B ⊗AM ′ ⊗A B

85



by tensoring φ with 1B : B → B respectively on the �rst, second and third
factor.
Then we have the following result:

Lemma 3.3.23 If φ2 = φ1φ3 then the pair (M ′, φ) arises as we described
above.
Precisely M ′ ' B⊗AM for some A-module M and φ identi�es with the map
(b⊗ x)⊗ b′ 7→ b⊗ (b′ ⊗ x).

Proof
See [13] II �8 or [18] I 2.21. .

We are ready to prove theorem 3.3.7:

Proof of theorem 3.3.7 (sketch)
The exact sequence of low-degree terms (proposition 3.3.15) of the Leray
spectral sequence for Gm,S (proposition 3.3.21) starts with

0→ H1
Zar

(
X, f∗Gm,S

)
→ H1

ét

(
S,Gm,S

)
→ H0

Zar

(
X,R1f∗Gm,S

)
→ · · ·

Clearly f∗Gm,S = O×S , hence by proposition 3.3.22 we just need to prove the
following lemma:

Lemma 3.3.24
R1f∗Gm,S = 0.

Proof (sketch)
First of all we claim that R1f∗Gm,S is the Zariski sheaf associated to the
Zariski presheaf

U 7→ H1
ét

(
U,Gm,S

)
.

This follows by a more general fact which proof relies on homological algebra
formalism:
Consider for all q > 0 the functor hq : S(Sét) → S(SZar) which associates
to an étale sheaf F the Zariski sheaf associated to the Zariski presheaf
U 7→ Hq

ét

(
U,F ). One can prove that the hq de�ne a collection of univer-

sal cohomological ∂-functors (see [18] III 1.13 for details). But h0 is just
f∗ : S(Sét)→ S(SZar) hence we �nd that hq ' Rqf∗.
Moreover it is not di�cult to see that H1

ét

(
U,Gm,S

)
= H1

ét

(
U,Gm,U

)
(see [22]

II 1.4.9 for details).
Since open a�ne subschemes form a base for the Zariski topology, we may
assume that U is a�ne and by passing to the stalks we may assume that it
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is the spectrum of a local ring.
Using the result of example 3.3.19 we see that

H1
ét

(
U,Gm,U

)
' Ȟ1(U,Gm,U

)
= lim
−→

H1
(
{Ui → U},Gm,U

)
where the limits runs over all étale coverings.
But U is a�ne, thus quasi compact, and the morphisms Ui → U are open
(remark 3.2.6). Hence every such covering may be re�ned to a �nite covering
consisting of a�ne schemes and we can compute the limit over this family of
covering.
Moreover H1

(
{Ui → U},Gm,U

)
= H1

(
{qUi → U},Gm,U

)
hence we �nally

�nd
H1
ét

(
U,Gm,U

)
' lim−→

V

H1
(
{V → U},Gm,U

)
,

where the limit now runs through all surjective a�ne étale morphisms.
The following proposition concludes the proof:

Proposition 3.3.25 Let A be a local ring and let V = SpecB → U =
SpecA be a faithfully �at morphism.
Then H1({V → U},Gm,U) = 0.

Proof
Recall the description of H1({V → U},Gm,U) = 0 given in remark 1.2.3 and
take a 1-cocycle H1({V → U},Gm,U) = 0.
This is an element b ∈ (B ⊗A B)×, which give rise by multiplication to
an isomorphism φ : B ⊗A B → B ⊗A B. Moreover the cocycle condition
immediately translate into the descent condition of lemma 3.3.23.
Hence B seen as a B-module arise by extension of scalars, which means there
exists an A-module M such that B ⊗AM ' B.
Now B is faithfully �at, hence M must be a �at A-module (remark 3.1.8).
But then, for A being local, M is a free A-module (proposition 3.1.9) of rank
1, i.e M ' A as A-module.
Now this translates into the fact that b is a coboundary.
For details and the proof of an even more general result see [18] III 4.10.
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