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Introduction

Given a group scheme G over a base scheme S, we introduce the problem of the

universal extension of G by a vector group: assumingHomS(G, V ) = 0 for all vector

groups V over S, we want to �nd an extension of S−group schemes:

0 −→ V (G) −→ E(G) −→ G −→ 0

such that V (G) is a vector group and such that this extension is universal for all

extensions of G by a vector group over S, i.e. any other extension is a push-out of

this one. This extension will be called the universal extension of G.

The aim of this work is to study the problem of universal extensions for group

schemes (in particular, our main interest will be abelian varieties over a �eld of

characteristic zero, notably C). We shall give necessary and su�cient conditions for

the universal extension of a group scheme to exist and characterize it in the case of

abelian schemes, in order to apply these results and constructions in the setting of

Deligne's 1−motives and their de Rham realizations.

In the �rst chapter we shall introduce the concepts of algebraic de Rham co-

homology for a smooth scheme X de�ned over a base S and then, when S is the

spectrum of a �eld of characteristic 0, we shall employ the means of hypercoverings

de�ned in [9] to extend such de�nitions also to singular algebraic varieties.

The second chapter, which relies heavily on the �rst four chapters of [19] and

on the formalism of Grothendieck, will revolve around the problem of the existence

of universal extensions for a group scheme ([19, �1]). In particular, we shall char-

acterize the universal extension of an abelian scheme over any base S as the set of

isomorphism classes of rigidi�ed extensions ([19, �2]) and then as the set of isomor-

phism classes of ♮−extensions ([19, �3]). In the end we will show that the �rst de

Rham cohomology vector space of an abelian scheme is naturally isomorphic to the

iii



CHAPTER 0. INTRODUCTION iv

Lie algebra of its universal extension ([19, �4]).

In the last chapter we shall establish an equivalence of categories between mixed

Hodge structures and 1−motives over C (following Deligne's work, in [9, Chapter

10]). We shall then introduce the Hodge and de Rham realizations for 1−motives.

As an application, we show that for any algebraic variety over a �eld of character-

istic 0 there exists a 1−motive (that is, the cohomological Picard 1−motive) whose

de Rham realization equals to the �rst de Rham cohomology vector space of such

algebraic variety. In this way, we shall provide a direct (algebraic) proof, in all

generality, of the comparison isomorphism between the �rst de Rham cohomology

vector space and the �rst singular cohomology group of a (possibly singular) alge-

braic variety over C. The key reference for this chapter is [3]).

At the end of this dissertation, there are featured three appendixes.

The �rst one collects some basic de�nitions about geometry of schemes (mainly

to �x our notations) and especially about group schemes and abelian schemes, with

a brief survey of the functorial and categorial perspective (that will be employed

extensively in this work). The references are classical ones in algebraic geometry

literature, from Grothendieck's work ([13], [11], [14]), to Hartshorne's ([15]), Milne's

([20]), Mumford's ([22]) and Oort's ([25]).

The second appendix collects some de�nitions and properties of torsors and con-

nections over torsors in the case of group schemes, used extensively in chapter 2,

generalizing the concepts of torsors for line bundles in di�erential geometry. The

notations and results here are based on [19, �2].

The last appendix features a brief recap of Hodge theory, which follows the work

of Deligne in [8] and [9] as well as the account of mixed Hodge theory in [26]. We shall

de�ne pure and mixed Hodge structures, explaining the motivations and showing

how (polarized) pure and mixed Hodge structures arise naturally in studying the

cohomology groups of projective varieties. In this appendix the reader can �nd the

elementary de�nitions of cohomological descent and hypercoverings together with

the main results which are used in de�ning the algebraic de Rham cohomology for

any scheme over a base �eld of characteristic 0.



Chapter 1

Algebraic de Rham cohomology

1.1 Algebraic de Rham complex

We shall now introduce some de�nitions that generalize some concepts of classical

di�erential geometry to the geometry of schemes (see [15, Chapter 8]).

De�nition 1.1 ([15]). Let f : X −→ S be a morphism of schemes, and let F be an

OX−module.

• An S−derivation into F is a morphism of abelian sheaves D : f∗OX −→ F
such that for every open subset U ⊆ X the map DU : OX(U) −→ F(U) is an
OS(U)−derivation (in the sense of modules) of OX(U) into F(U). We denote

with DerS(OX ,F) the set of such derivations;

• Consider the diagonal morphism ∆: X −→ X ×S X. This map is always an

immersion and ∆(X) is locally closed in X ×S X, that is ∆(X) is a closed

subscheme of an open subset W of X ×S X, so ∆(X) is de�ned (in W ) by a

sheaf of ideals I of OX . We have an exact sequence of OX−modules:

0 −→ ∆♯I2 −→ ∆♯I −→ ∆♯

(
I
I2

)
−→ 0

The sheaf of di�erentials Ω1
X/S of X over S is the conormal sheaf ∆♯( II2 ).

The sheaf of di�erentials Ω1
X/S is naturally a quasi-coherent OX−module,. It

is the module of di�erentials Ω1
OX/f−1OS

endowed with its universal S−derivation
dX/S : OX −→ Ω1

X/S, and it represents the functor from the category OX −Mod

of OX−modules to the category Set of sets sending an OX−module F to the set

DerOS
(OX ,F). We denote this functor as DerOS

(OX , −).

1



CHAPTER 1. ALGEBRAIC DE RHAM COHOMOLOGY 2

Let us focus on the case when X is a smooth and proper scheme over S. Then

Ω1
X/S is �nitely generated and locally free, so in this case it makes sense to take the

i−th exterior power Ωi
X/S :=

⋀iΩ1
X/S. This is the sheaf of the di�erential forms

of the i−th order of X over S. Thus, we have the algebraic de Rham complex of

sheaves Ω∗X/S:

0→ OX −→ Ω1
X/S −→ Ω2

X/S −→ Ω3
X/S −→ . . .

where the di�erential operators are the exterior di�erentials.

De�nition 1.2. The tangent bundle of a smooth and proper scheme X over a base

S is the sheaf TX/S := HomOX
(Ω1

X/S, OX).

This is a locally freeOS−module, which is isomorphic to the sheafDerOS
(OX , OX)

of the derivations of OX into itself killing OS. Moreover, by the universal property

of the sheaf of di�erential forms Ω1
X/S, it follows that Ω

1
X/S = (TX/S)∨.

1.2 de Rham cohomology of a smooth scheme

The sheaves of di�erentials Ωi
X/S of X over S are quasi-coherent OX−modules.

In the abelian category QCoh/Ox of quasi-coherent OX−modules there are enough

injectives (i.e. every object can be injected in an injective object), so there exists a

Cartan-Eilenberg resolution, that is:

0 0 0

0 OX

B0(Ω∗X/S)

Ω1
X/S

B1(Ω∗X/S)

Ω2
X/S

. . .

0 I0,0

B0
h(I
∗,0)

I1,0

B1
h(I
∗,0)

I2,0 . . .

0 I0,1

B0
h(I
∗,1)

I1,1

B1
h(I
∗,1)

I2,1 . . .

. . . . . . . . .

where I∗∗ is a double complex such that for all couples of indexes (i, j) I i,j is an

injective OX−module and such that for all i the complex of the horizontal cobound-



CHAPTER 1. ALGEBRAIC DE RHAM COHOMOLOGY 3

aries Bi
h(I
∗∗) and the complex of the horizontal cohomologies H i

h(I
∗∗) are injective

resolutions of Bi(Ω∗X/S) and H
i(Ω∗X/S) respectively.

Remark 1.3. This conditions imply that Ω∗X/S −→ I0,∗ and Zi
h(I
∗∗) −→ Zi(Ω∗X/S)

are injective resolutions too.

De�nition 1.4 (Algebraic de Rham cohomology). The i−th de Rham cohomology

vector space Hi
dR(X) of a smooth and proper scheme X over S is the hypercoho-

mology vector space

Hi(X, Ω∗X/S) := RiΓ(X, Ω∗X/S)

1.3 Algebraic de Rham cohomology of an abelian

variety

An abelian scheme A over a base S (see De�nition A.1 and in general Appendix A

for de�nitions and properties) is smooth and proper, so we can consider its algebraic

de Rham complex to compute the de Rham cohomology. It turns out that the coho-

mology of an abelian scheme is extremely well-behaved, as the following proposition

shows.

Proposition 1.5.

1. The OA−modules Hi
dR(A) and Hq(A, Ωp

A/S) are �nite dimensional, locally free

and their formation commutes with base change;

2. We have a spectral sequence (called the Hodge-de Rham spectral sequence) de-

�ned in page 1 by Ep,q
1 := Hq(A, Ωp

A/S) =⇒ Hp+q
dR (A). When the characteristic

of the base �eld is 0, the spectral sequence degenerates in page 1;

3. H∗dR(A)
∼=
⋀∗H1

dR(A).

Proof. [4, Proposition 2.5.2].

Remark 1.6. By the part 1 of the previous proposition, we can consider the sheaf

over Sch/S de�ned by the association T ↦→ Hi
dR(AT ). We shall denote it with the

same symbol Hi
dR(A) as the OA−module.

1.4 Long exact sequence of hypercohomology

Let A be an abelian scheme over S, and consider the Deligne complex:

Ω∗A/S,m : O∗A
dlog−→ Ω1

A/S
d−→ Ω2

A/S
d−→ Ω3

A/S −→ . . .
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where di�erential operator O∗A
dlog−→ Ω1

A/S is de�ned by f ↦→ d f

f
(see [8, De�nition

2.2.4.1]). What we shall do now is give a geometric interpretation to a portion of

the long exact sequence of hypercohomology associated to the short exact sequence

of complexes:

0 −→ τ1(Ω
∗
A/S) −→ Ω∗A/S,m −→ O∗A[0] −→ 0

de�ned by:

0 0 O∗A O∗A 0

0 Ω1
A/S Ω1

A/S 0 0

0 Ω2
A/S Ω2

A/S 0 0

. . . . . . . . .

	 	

	 	dlog

d d

We de�ne a group functor Pic♮A/S on Sch/S by the law:

T ↦→ {isomorphism classes of line bundles on A×ST with an integrable connection1}

and we denote by Pic♮A/S the associated Zariski sheaf.

For any T over S, we have the forgetting map:

Pic♮A/S(T ) −→ H1(AS, O∗AT
)

which by passage to the associated sheaves yields, since A is an abelian variety, a

homomorphism:

Pic♮A/S
π−→ PicA/S

Since global 1−forms on an abelian scheme are closed, and since the map:

H0(A, O∗A)
dlog−→ H1(A, Ω1

A/S)

is the zero map, the indeterminacy in putting an integrable connection on the trivial

bundle OA is precisely Γ(A, Ω1
A/S) = Γ(S, ωA). Passing to the associated sheaves

we �nd the kernel of the map π to be precisely ωA.

The obstruction to putting any connection on a line bundle L over A is furnished by

the cocycle arising as the logarithmic derivative of the transition function de�ning
1See Appendix B.
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L. That is, the morphism:

H1(A, O∗A) −→ H1(A, Ω1
A/S)

de�ned by (fi,j) ↦→ d fi,j
fi,j

.

There is an obvious map:

H1(A, O∗A) −→ H2
(
A, τ1(Ω

∗
A/S)

)
given in terms of �ech cocycles (for some a�ne open cover U of A) by:

(fi,j) ↦→
((

d fi,j
fi,j

)
, 0

)
∈ C1(U , Ω1

A/S)⊕ C0(U , Ω2
A/S)

If this cocycle is a coboundary there are closed forms ωi such that d fi,j
fi,j

= ωi − ωj,
and hence L will admit an integrable connection. The converse equally holds.

Proposition 1.7. There is an isomorphism Pic♮(A) := Pic♮A/S(S) −→ H1(A, Ω∗A/S,m).

Sketch of proof. To any line bundle L with an integrable connection (L, ∇) we

associate the cohomology class of the �ech cocycle ((fi,j), (ωi)) ∈ C1(U , O∗A) ⊕
C0(U , Ω1

A/S), where fi,j are the transition functions of the line bundle and ωi is the

connection form for the induced connection on L|Ui
.

We have �nally arrived at the geometrical description of a portion of the above

mentioned cohomology sequence.

0 H0(A, Ω∗A/S) Pic♮(A) Pic(A) H2(A, τ1(Ω
∗
A/S))

0 H1(A, τ1(Ω
∗
A/S)) H1(A, τ1(Ω

∗
A/S,m)) H1(A, O∗A) H2(A, τ1(Ω

∗
A/S))

		 	

∼=

1.5 Algebraic de Rham cohomology for arbitrary

varieties in characteristic 0

We recall this fundamental result in algebraic geometry that will be pivotal in de�n-

ing a reasonable concept of algebraic de Rham cohomology for (possibly singular)

algebraic varieties over a �eld k of characteristic 0 (not necessarily algebraically

closed).
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Theorem 1.8 (Hironaka's resolution of singularities in characteristic 0). Let X be a

reduced singular scheme de�ned over a �eld k of characteristic 0. Then there exists

a closed subscheme D ⊆ X de�ned by a sheaf of ideals I of OX such that:

1. The points of D are exactly the singular locus of X;

2. There exists X̃ a non-singular scheme over k and a morphism f : X̃ −→ X

such that the sheaf of ideals f−1I is an invertible sheaf and f is universal

among all the morphisms g : X̄ −→ X which make g−1I into an invertible

sheaf, that is X̃ is the blowing-up of X in its singular locus D.

In particular, it follows that U := X \D is a dense Zariski open subset of X and f

induces an isomorphism f |f−1(U) : f
−1(U)

∼=−→ U .

Proof. [16].

Consider now an algebraic variety X de�ned over k (of characteristic 0). We

introduce some further notation (see also [9, Section 3.1]):

De�nition 1.9. A normal crossing divisor Y of a smooth algebraic variety X is

a divisor (that is, a closed subscheme of codimension 1) such that the inclusion

Y ↪−→ X is locally isomorphic to the inclusion of an intersection of hyperplan

coordinates in kn.

Consider a normal crossing divisor Y in an algebraic variety X. Denote with

j : X∗ ↪−→ X, where X∗ := X \ Y ⊆ X.

De�nition 1.10. With the previous notations, we denote with Ω1
X/k(log Y ) the

locally free OX−submodule of j∗Ω1
X∗/k generated by Ω1

X/k and by
d zi
zi

, where zi is

a local equation for a local irreducible component of Y .

The complex Ω∗X/k(log Y ) is by de�nition the sheaf:

OX
d−→ Ω1

X/k(log Y )
d−→ Ω2

X/k(log Y ) −→ . . .

where Ωp
X/k(log Y ) is the p−th exterior power

⋀pΩ1
X/k(log Y ) (which is a locally free

OX−submodule of j∗Ω
p
X∗/k), and is called the sheaf of the p−di�erential forms on

X with logarithmic pole along Y .

The complex of sheaves Ω∗X/k(log Y ) is called the logarithmic de Rham complex of

X along Y (see [9, De�nition 3.1.2]).

These notations generalize directly to the case of simplicial schemes.

De�nition 1.11.
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1. A simplicial scheme X∗ over a base X is smooth if Xn is smooth for all n.

2. A simplicial scheme X∗ over a base X is proper if Xn is proper for all n.

3. A simplicial normal crossing divisor D∗ of X∗ is a family of normal crossing

divisors Dn ⊆ Xn such that Un = Xn \Dn yields an open simplicial subscheme

of X∗.

If D∗ is a simplicial normal crossing divisor, then the logarithmic de Rham

complexes Ω∗Xn/x
(log(Dn)) endowed with their �ltration of weights form a �ltered

complex Ω∗X∗/X
(log (D∗)) over X∗ (see [9, Lemma 6.2.7]).

Let us now consider the case in which X is an arbitrary algebraic variety over k of

characteristic 0. By Theorem 1.8, we can consider the diagram:

X∗

X

X∗

where X∗ is a smooth proper hypercovering of X and X∗ is a smooth compacti�ca-

tion of Y∗ with normal crossing boundary divisor Y∗ := X∗ \ X∗ (see Appendix C,

Section C.3 for the construction of such proper hypercovering X∗).

De�nition 1.12. The algebraic de Rham cohomology for an algebraic variety over

k in characteristic 0 is de�ned as:

H∗dR(X) := H∗(X∗, Ω∗X∗/k
(log Y∗))

Remark 1.13. IfX is a smooth scheme over k, then we can consider its smooth com-

pacti�cation X and the normal crossing boundary Y as constant simplicial schemes.

In particular, we obtain that:

H∗dR(X) = H∗(X, Ω∗
X/k

(log Y ))

If moreover X is smooth and proper over k (hence compact), it follows that Y = ∅
and this de�nition coincides with the one we gave in De�nition 1.4 for nonsingular

varieties over k.

In Deligne (see [9, Chapter 8], see also [26, Chapters 4 and 5] and Appendix

C) it is proved that the singular cohomology of a hypercovering X∗ of an algebraic

variety X over C carries a natural Hodge structure.

In fact, for any integer n, we have that Ω∗
Xn/C

(log Yn) has an ascending �ltration of
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weights W and a Hodge �ltration F (the trivial �ltration), which induce �ltrations

W and F on the singular cohomology of Xn ([8, Section 3.2], see also Section C.2.3

in C). So we have that H∗(X∗, Z), together with the �ltration of weights W on

the rational cohomology vector space and the Hodge �ltration F on the complex

cohomology vector space, gives rise to a mixed Hodge structure ([9, Scholium 8.1.9]

and [9, Example 8.1.12], the construction is analougue to the one in [8, Chapter 3.2]

that is brie�y presented in Section C.2.3).

Finally, using the fact H∗(X, C) := H∗ (X∗, C) ∼= H∗
(
X∗, Ω

∗
X∗/C

)
([8, 3.2.2]) we

can transfer such Hodge structure to H∗(X, C). Such Hodge structure is indepen-

dent from X∗ and X∗ and for any morphism of C−varieties f : X −→ Y induces a

morphism of mixed Hodge structures f ∗ : H∗(Y ) −→ H∗(X) ([9, Proposition 8.2.2]).

By comparison with the case k = C and cohomological descent, it follows that these

facts hold also for any algebraic variety de�ned over a �eld k of characteristic 0 (see

[3, Remark 2.18]).



Chapter 2

Universal extensions of abelian

schemes

2.1 Universal extensions of group schemes by a vec-

tor group

2.1.1 The universal extension problem

From now on, all group schemes G over a base scheme S are supposed to be commu-

tative, �at, separated and locally of �nite presentation. Even if the object of main

interest are abelian varieties over a �eld, in the following sections we shall consider

generic abelian schemes (with the properties listed above) over a base scheme S,

since the same results hold.

De�nition 2.1. A sequence of morphisms between group schemes over S:

0 −→ A
f−→ B

g−→ C −→ 0

is exact if f is an isomorphism onto the kernel of g and g is an epimorphism (in the

categorial sense). Such an exact sequence is said to be an extension of C by A.

Remark 2.2.

1. The category of commutative group schemes over a base S in general is not

abelian. Notably, while the kernel of a group scheme morphism always exists,

we do not have in general a reasonable concept of quotient group scheme. So,

we shall see any group scheme G as a fppf (or fpqc, or étale) sheaf on Sch/S (by
the Yoneda embedding G ↦→ HomS(−, G)). In the category of group sheaves

on the category Sch/S equipped with the fppf (or fpqc, or étale) topology, we

9
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have an obvious de�nition of exact sequences, and thus we say that a sequence

of group schemes over S is exact if it is exact in the category above (see also

[21, Chapter IV, �3]).

2. When we work with commutative group varieties over a �eld k in any char-

acteristic, a result of Grothendieck (see [14, SGA 3, Exp. VIA, theorem 5.2])

assures that such category is abelian, thus there always exists the cokernel of

a group scheme morphism and we have a clearer concept of exact sequence of

commutative group varieties over k.

We are now ready to introduce the main de�nition of this chapter. Assume that

HomS(G, V ) = 0 for all vector groups V (that is a group scheme which is locally

isomorphic to a �nite product of Ga,S's).

De�nition 2.3. A universal extension of G is an extension of group schemes over

S:

0 −→ V (G) −→ E(G) −→ G −→ 0

such that V (G) is a vector group and such that the extension is universal among all

the extensions of G by a vector group over S, that is for any extension by a vector

group M of G:

0 −→M −→ F −→ G −→ 0

there exist unique morphisms V (G) −→ M and E −→ F making the following

diagram commute:

0 V (G) E G 0

0 M F G 0

	 	

Clearly, if it exists such a universal extension, V (G) and E(G) are determined

up to a canonical isomorphism (by the usual argument for objects with universal

property).

The universal property can be translated as follows: the canonical connecting mor-

phism from HomOS
(V (G), M) to Ext1OS

(G, M) in the long exact sequence induced

by the above extension by deriving the contravariant functor HomOS
(−, M) must

be an isomorphism.
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2.1.2 Existence of the universal extension

Recall that for any OS−module locally free of �nite rank E, the dual OS−module

E∨ is de�ned by:

E∨ = HomOS
(E, OS)

(E∨)∨ ∼= E and for any OS−module F , one has HomOS
(E, F ) ∼= E∨ ⊗OS

F .

Proposition 2.4. Let G an S−group scheme satisfying the previous conditions.

Suppose that:

1. HomOS
(G, Ga,S) = 0;

2. Ext1OS
(G, Ga,S) is a locally free OS−module of �nite rank.

as sheaves for the Zariski global topology over S. Set

V (G) := Ext1OS
(G, Ga,S)

∨

Then there exists a universal extension of G by V (G).

Proof. The assertion follows from the fact that for any OS−module locally free of

�nite rank M , Ext1OS
(G, M) ∼= Ext1OS

(G, Ga,S)⊗OS
M . Thus, one has:

HomOS
(V (G), M) ∼= HomOS

(HomOS
(Ext1S(G, Ga,S), OS), M)

∼= Ext1OS
(G, Ga,S)⊗OS

M

∼= Ext1OS
(G, M) = Ext1OS

(G, M)

We shall now show that the hypothesis of this proposition are satis�ed for any

abelian scheme A over S.

Proposition 2.5. Let π : A −→ S be an abelian scheme over S of dimension d.

Then for any T scheme over S:

1. Any morphism of sheaves of sets over T ψ : AT −→ QT , where QT is a quasi-

coherent sheaf over T , is a constant map. In particular, φ admits a factoriza-

tion:

AT QT

T

	

ψ

πT s
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where s is a section of QT ;

2. π∗OAT
∼= OT ;

3. R1 Γ (T, π∗OAT
) = R1 Γ (T, π∗OA)⊗OS

OT is a locally free OT−module of rank

d.

Proof. The proof of 1. is featured in Mazur's book ([19]), while facts 2. and 3. are

standard results of abelian schemes ([11, Page 232− 12, Remark 5.2] for 2. and [4,

Lemma 2.5.3] for 3.).

Now we shall prove that any quasi-compact group scheme which satis�es these

conditions admit a universal extension.

Theorem 2.6. Assume π : G −→ S quasi-compact such that conditions 1., 2. and

3. of Proposition 2.5 are satis�ed. Then G possesses a universal extension:

0 −→
(
R1 f∗OG

)∨ −→ E(G) −→ G −→ 0

Proof. Let M denote a quasi-coherent sheaf. The presheaf Ext1S(G, M) for the �at

topology described by T ↦→ Ext1(GT , MT ) is a sheaf by descent theory (see [12] and

'Notes on Grothendieck topologies, �bered categories, and descent theory' in [10]).

First, we want to prove that the composition:

λ : Ext1OS
(G, M) −→ H1(G, f ∗M) −→ Γ(S, R1 π∗π

∗M)

is an isomorphism. Since Ext1S(G, M) is a sheaf, we can assume S is a�ne.

• λ is injective: let E be an extension of G by M , and assume ϕ : G −→ E

is a section as sheaves of sets. We can assume ϕ(0) = 0 (just subtracting

ϕ(0) to this morphism). Let the map G×S G −→M be the obstruction to φ

being a homomorphism, i.e. the map that sends an ordered couple (g1, g2) to

ϕ(g2)
−1 · ϕ(g1)−1 · ϕ(g1 · g2). This map sends (0, 0) to 0, but by 1. this map

has to be constant, so the obstruction is 0;

• λ is surjective: let E be a principal homogeneous space for M over the base

G. S is a�ne, thus a result of Serre yields that E admits a section e lying over

the identity section of G. We shall now impose a group structure on E: this

yields a group extension structure on E. To show this, it is su�cient to know

that the cohomology class representing E in H1(G, π∗M) is primitive, that is

it is a generator of H1(G, π∗M), but by the Künneth formula whenever G is
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an abelian scheme H1(G, π∗M) consists only of primitive primitive elements

([28, III, 4.2]).

Now we establish the isomorphism HomOS

((
R1 f∗OG

)∨
, M

)
∼= Ext1S(G, M), that

is we want to represent the functor Ext1S(G, −).
To prove this, we only need to show that Γ(S, R1 π∗π

∗M) ∼= Γ(S, R1 π∗OG⊗OS
M),

since the left hand side is isomorphic to Ext1OS
(G, M) by the previous proposition

and the right hand side is isomorphic to HomOS

((
R1 f∗OG

)∨
, M

)
, but this of

course holds because of the condition 3. in proposition 2.5.

2.2 Universal extension as the rigidi�cation of Ext

2.2.1 Rigidi�cation of Ext

Fix an S−group scheme G and an exact sequence (ε) of fppf sheaves of abelian

groups over S:

0 −→ G −→ E −→ F −→ 0

Let F1 := Inf1S(F ) ⊆ F denote the �rst in�nitesimal neighborhood of the identity

section of F over S (cfr. Appendix A, Section A.2.4). We have already seen that

this is an S−pointed sheaf.

We introduce the following notation (due to Grothendieck, cfr. [14, SGA 7]).

De�nition 2.7.

1. A rigidi�cation r of the extension (ε) is a homomorphism r : F1 −→ E of

S−pointed S−schemes such that:

F1 E

F

	

r

2. A rigidi�ed extension of F by G is an exact sequence (ε) together with a

rigidi�cation r of it;

3. If H is an S−group scheme, an (ε)−rigidi�ed homomorphism ϕ : G −→ H is a

homomorphism of S−group ϕ : G −→ H together with a rigidi�cation of the

induced push-out exact sequence (ϕ∗ε):



CHAPTER 2. UNIVERSAL EXTENSIONS OF ABELIAN SCHEMES 14

0 G E F 0

0 H E ′ F 0

	 	ϕ

Denote by ExtrigS(F, G) the set of isomorphism classes of rigidi�ed extensions

of F by G.

We shall now give an abelian group structure on ExtrigS(F, G): given two exact

sequences (ε) and (ε′):

0 G E F 0

0 G E ′ F 0

one has the Baer sum (ε̄) := (ε+ ε′) given by the last row of the following diagram:

0 G×S G E ×S E ′ F ×S F 0

0 G P F ×S F 0

0 G Ē F 0

	

	

	

	

∇

∆

If moreover the two extensions (ε) and (ε′) are endowed with rigidi�cation r and r′

respectively, then (ε̄) has a rigidi�cation obtained by the natural rigidi�cation on

the external product:

0 G×S G E ×S E ′ F ×S F 0

(F ×S F )1 F1 ×S F1

	
r̄ r × r′

The Baer sum induces an abelian group structure on ExtrigS(F, G) which is bifunc-

torial in F and G.

2.2.2 Universal extension of an abelian scheme

In this section, we shall express the universal extension of an abelian scheme as an

ExtrigS.

Let S be a scheme, A an abelian scheme over S, and consider an extension (ε)

of A by Gm,S:

0 −→ Gm,S −→ E −→ A −→ 0
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This extension makes E a principal homogeneous space over A under the group

Gm,S, so by descent ([14, SGA I, Exp. XI, 4.3] and [13, EGA IV, 17.7.3]) E is a

smooth A−scheme. In particular, if S is a�ne, one can lift the identity section in

the following way:

0 Gm,S E A 0

A1

S

e

r

thus we have a rigidi�cation of the extension (ε).

Denoting by ExtrigS(A, Gm,S) the Zariski sheaf associated to the presheaf T ↦→
ExtrigT (AT , Gm,T ) we have a surjective morphism:

ExtrigS(A, Gm,S) −→ Ext1S(A, Gm,S)

Let us study the kernel of this map. It consists of the rigidi�cations τ of the trivial

extension:

0 −→ Gm,S −→ Gm,S ×S A −→ A −→ 0

To give a morphism A1 −→ Gm,S ×S A of S−pointed S−schemes which projects to

the inclusion A1 ↪−→ A is equivalent to giving a morphism of S−pointed S−schemes

A1 −→ Gm,S, which is equivalent to giving an element in Γ(S, ωA/S). The inclusion

Γ(S, ωA/S) ↪−→ ExtrigS(A, Gm,S) is clearly additive, so we have an exact sequence

of Zariski (fppf, étale...) sheaves:

0 −→ Γ(S, ωA/S) −→ ExtrigS(A, Gm,S) −→ Ext1S(A, Gm,S) −→ 0

The dual abelian scheme A∗ exists and is isomorphic to Ext1S(A, Gm,S) ([25]). Thus

by descent theory it follows that ExtrigS(A, Gm,S) is representable and is a smooth

group scheme over S.

Proposition 2.8. Let S be a scheme, A abelian scheme over S, and denote with

E(A∗) the universal extension of A∗ by a vector group. The canonical morphism:

E(A∗) −→ ExtrigS(A, Gm,S)

is an isomorphism that is functorial in A.
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Proof. Both E(A∗) and ExtrigS(A, Gm,S) commute with base change, since E(A∗)

is built via objects which are compatible with arbitrary base change.

To show that E(A∗) −→ ExtrigS(A, Gm,S) is an isomorphism is equivalent to show-

ing that the morphism ωA/S −→ ωA/S giving rise to it is an isomorphism. Since this

problem is local on S we can safely suppose that S is a�ne.

A is proper and smooth over S, thus �nitely presented, so we can assume that

S = Spec(R) with R of �nite type over Z ([13, EGA IV, 8.9.1, 8.10.5, ...]).

Given any m ⊆ R maximal ideal, it follows from [19, 2.6.2] that the morphism:

ωA/S
mn · ωA/S

−→
ωA/S

mn · ωA/S

is an isomorphism for all n ≥ 1, thus the determinant of the corrispondent endomor-

phism of ωA/S⊗ R̂m is invertible in R̂m, thus invertible in Rm. So the endomorphism

of ωA/S is an automorphism.

Next we shall prove the functoriality: let u : A −→ B a morphism:

0 ωB/S E(B∗) B∗ 0

0 ωB/S ExtrigS(B, Gm,S) B∗ 0

0 ωA/S E(A∗) A∗ 0

0 ωA/S ExtrigS(A, Gm,S) A∗ 0

id id

id id

The two maps:

E(B∗) −→ E(A∗) −→ ExtrigS(A, Gm,S)

and

E(B∗) −→ ExtrigS(B, Gm,S) −→ ExtrigS(A, Gm,S)

coincide, since their di�erence is a map E(B∗) −→ ωA/S which vanishes on ωB

(by the commutativity of the diagrams), so this yields a map B∗ −→ ωA/S which

is 0 since for any abelian scheme A and M quasi-coherent OS−module one has

HomGpSch(G, M) = 0.
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2.3 Rigidi�ed extensions and ♮−extensions

Let 0 −→ Gm,S −→ E −→ A −→ 0 be an extension (ε) of an abelian scheme A

over an a�ne base scheme S. The aim of this section is to show how the following

structures on (ε) are equivalent:

• A rigidi�cation r of (ε);

• An integrable connection, compatible with the group structure, on E regarded

as a Gm,S−torsor over A (see Appendix B).

This discussion will yield another explicit description of the universal extension of

an abelian scheme.

Denote with Ext♮S(X, G) the category whose objects are ♮−extensions of a smooth

group scheme G by X and whose arrows are horizontal morphisms between exten-

sions (see De�nition B.5 in Appendix B). Since G is commutative, the category

ExtS(X, G) of all extensions of X by G is endowed with a composition law which

corresponds to taking the contracted product of the underlying torsors. Upon pass-

ing to the set of isomorphism classes of objects the induced composition law gives

the standard group structure to Ext1S(X, G).

We replicate this idea with Ext♮S(X, G): it is clear that we can de�ne the Baer sum

of two ♮−extension and that by passing to isomorphism classes we obtain a group

Ext♮S(X, G).

We shall now construct a homomorphism Ext♮S(A, G) −→ ExtrigS(A, G), with

A and G commutative group schemes de�ned over S. Then we shall prove that if

G = Gm,S and A is an abelian scheme, such a homomorphism is actually an isomor-

phism.

Consider a given ♮−extension (ε) of A by G:

0 −→ G −→ E −→ A −→ 0

Let i : Inf1S(A) ↪−→ A be the inclusion of the �rst in�nitesimal neighborhood,

π : Inf1S(A) −→ S be the structural morphism, and denote by τ : Inf1S(A) −→ ∆1(A)

the morphism determined by the conditions p1 ◦ τ = eA ◦ π and p2 ◦ τ = i, where eA
is the identity section of A. Since the ♮−structre on E is given by an isomorphism

∇ : p∗1(E) −→ p∗2(E), we can pull-back ∇ via τ to obtain τ ∗(∇) : π∗ ◦ e∗A(E) −→
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i∗(E).

E is a group scheme, thus e∗A(E) and hence π∗ ◦ e∗A(E) are equipped with an

obvious choice of section (that is the identity section). Via τ ∗(∇) we transfer such
section in i∗(E) and then by composition with i∗(E) −→ E we obtain a morphism:

σ : Inf1S(A) −→ E

Such σ will be the rigidi�cation of (ε).

Lemma 2.9. The morphism σ : Inf1S(A) −→ E is a rigidi�cation of (ε), that is:

i. σ is a morphism of S−schemes;

ii. The following diagram commutes:

E A

Inf1S(A)

	σ

iii. It is a morphism of S−pointed schemes.

Proof.

i. Consider the morphisms ϕ : Inf1S(A) −→ E −→ A and the morphism E −→ A.

We have the following pull-back diagram:

Inf1S(A) A

EInf1S(A)×A E

	

Inf1S(A)

ϕ

id

σ

∃!

Considering now Inf1S(A) as an A−scheme via the inclusion i, we have another pull-

back diagram that together with the previous one yields:
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Inf1S(A) A

EInf1S(A)×A E

Inf1S(A)×A E

Inf1S(A)

Inf1S(A)

E

S

id

σ

∃!

This diagram commutes by simple arguments about universal properties of the pull-

back;

ii. It is su�cient to observe that i∗(E) = Inf1S(A)×A E, thus the result follows from
the diagram in i.;

iii. Let us consider the pull-back diagram:

Inf1S(A) A

EInf1S(A)×A E

Inf1S(A)×A E

Inf1S(A)

Inf1S(A)

S

?

eA ◦ π

(id, eE ◦ π)

τ∗(∇)

id

σ

eInf1
S
(A)

eE

We have to check the commutativity of the diagram ?. It commutes if τ ∗(∇) pre-
serves the second component of the morphism u = (eInf1S(A), eE) : S −→ Inf1S(A)×A
E.

Let us return to the connection ∇ : p∗1(E)
∼=−→ p∗2(E). By composing eA : S −→ A

with ∆: A −→ ∆1(A), S can be viewed as a ∆1(A)−scheme. So p∗1(E) and p
∗
2(E)

have both obvious sections with values in the ∆1(A)−scheme S (namely δ1 and δ2,

respectively). They are the sections with components S ↪−→ ∆1(A) and S
eE
↪−→ E.
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Under the identi�cation of ∆∗p∗i (E) with E, such unit sections are identi�ed with

the identity section eE : S −→ E; but by de�nition of a connection, ∆∗(∇) = idE,

thus ∇ must map δ1 : S −→ p∗1(E) in the corresponding section δ2 : S −→ p∗2(E).

This means that the second component remains S eE−→ E.

Let us now consider the �rst factor eInf1S(A) : S −→ Inf1S(A). Since τ◦eInf1S(A) = ∆◦eA,
it follows from the de�nitions that τ ∗(δ1) = u. This implies that τ ∗(∇)◦u has as its

second component the unit section eE : S −→ E, and this completes the proof.

We shall now prove the main theorem of this section, that yields the connection

between rigidi�ed extensions and ♮−extensions of an abelian scheme:

Theorem 2.10. If A is an abelian scheme, the homomorphism

Ext♮S(A, Gm,S) −→ ExtrigS(A, Gm,S)

is an isomorphism.

Proof. To prove our claim, we shall construct an inverse of this morphism. Assume

given a rigidi�ed extension:

0 Gm,S E A 0

Inf1S(A)

j

σ

σ de�nes a section of i∗(E), and hence a trivialization ρ : (eA ◦ π)∗(E)
∼=−→ i∗(E) via

e ↦→ (idInf1S(A), σ).

By de�nition of Inf1S(A), the map p2 − p1 : ∆1(A) −→ A factors as:

∆1(A)
η−→ Inf1S(A)

i
↪−→ A

Thus, denoting by π∆1(A) : ∆
1(A) −→ S the structural morphism, we have that

η∗(ρ) : (eA ◦ π∆1(A))
∗(E)

∼=−→ (p2 − p1)
∗(E) is an isomorphism. Multiplying both

source and target of this arrow by p∗1(E) and using the fact that E is a group

scheme we obtain the following diagram:

p∗1(E) p∗2(E)

(p2 − p1)∗(E)
Gm,S

∧ p∗1(E)(eA ◦ π∆1(A))
∗(E)

Gm,S

∧ p∗1(E)

	∼=

∇′

η∗(ρ)
Gm,S

∧ p∗1(E)

∼=
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Such ∇′ de�nes a ♮−structure on the extension, so the inverse mapping is de�ned

by associating to a rigidi�ed extension the ♮−extension with the same underlying

extension endowed with the ♮−structure de�ned by ∇′. We have to prove that this

is a good de�nition and that is an inverse of the previous morphism, so we have to

prove:

1. ∆∗(∇′) = idE;

2. The map ExtrigS(A, Gm,S) −→ Ext♮S(A, Gm,S) −→ ExtrigS(A, Gm,S) is the iden-

tity;

3. The map Ext♮S(A, Gm,S) −→ ExtrigS(A, Gm,S) is injective;

4. ∆′ is integrable;

5. The isomorphism π∗1(E)
Gm,S

∧ π∗2(E)
∼=−→ s∗(E) is horizontal.1

The proof of the �rst two statements hold for any A and for any G, while those of

the other three rely on the assumptions that A is an abelian scheme and G = Gm,S.

1. Since ∆∗(∇′) is a morphism over A, it su�ces to show that is the identity when

E is viewed as a sheaf on Sch/S. Since our situation commutes with base change it

su�ces to show the mapping it induces on the S−valued points E(S) −→ E(S) is

the identity.

Let ξ : S −→ E be given so that ξ de�nes morphisms ξ1 : S −→ p∗1(E) and ξ2 : S −→
p∗2(E). Since ∆: A −→ ∆1(A) is a monomorphism it su�ces to show that ∇′ ◦ ξ1 =
ξ2. To check that it is true let us recall the vertical isomorphism of the previous

diagram.

Let α, β : T −→ A be given and consider Eα, Eβ and Eα+β be the torsors de-

duced from E by the corresponding base change. By de�nition, Eα
Gm,S

∧ Eβ is a

sheaf associated to the quotient of Eα ×T Eβ by the action of Gm,S, thus if T ′

is any S−scheme the elements of Γ(T ′, Eα
Gm,S

∧ Eβ) are given locally by triples of

S−morphisms x : T ′ −→ E, y : T ′ −→ E, and t′ : T ′ −→ T such that:

T ′ E

AT

E

A

T ′

T

	 	

x

α

t′

y

t′

β

The isomorphism in question is determined by associating to (t′, x, y) the pair (t′, x+

y) ∈ Γ(T ′, Eα+β).

Return now to the starting rigidi�ed extension: ξ1 = (∆ ◦ j ◦ ξ, ξ) and ξ2 = (∆ ◦ j ◦
1We follow the notations introduced in Section B, De�nition B.5.
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ξ, ξ), and after the above explication of the vertical isomorphism it is obvious that

ξ1 corresponds to the class of (∆ ◦ j ◦ ξ, eE, ξ).
On the other hand, projection of (eA ◦π∆1(A))

∗(E) assigns to (∆ ◦ j ◦ ξ, eE) the pair
(η ◦ ∆ ◦ j ◦ ξ, eE) which it transforms via ρ into (η ◦ ∆ ◦ j ◦ ξ, σ ◦ η ◦ ∆ ◦ j ◦ ξ).

Therefore η∗(ρ)
Gm,S

∧ pi∗1(E) will transform the class of (∆ ◦ j ◦ ξ, eE, ξ) to the class
of (∆ ◦ j ◦ ξ, σ ◦ η ◦ ∆ ◦ j ◦ ξ, ξ). Since eA ◦ πA = (p2 − p1) ◦ ∆ = i ◦ η ◦ ∆
and also eA ◦ πA = i ◦ eInf1S(A) ◦ πA, it follows that η ◦ ∆ = eInf1S(A) ◦ πA. Hence

σ ◦ η ◦ ∆ ◦ j ◦ ξ = σ ◦ eInf1S(A) ◦ πA ◦ j ◦ ξ = eE ◦ πA ◦ j ◦ ξ = eE. Thus under the

isomorphism:

(p2 − p1)∗(E)
Gm,S

∧ p∗1(E)
∼=−→ p∗2(E)

we have that (∆ ◦ j ◦ ξ, σ ◦ η ◦∆ ◦ j ◦ ξ, ξ) corresponds to (∆ ◦ j ◦ ξ, ξ) which shows

�nally that ∆∗(∇) = idE.

2. Consider again the starting ridi�ed extension. We associate a connection ∇′ on E
to σ and then a rigidi�cation σ′ is associated to ∇′. It is to be shown that σ′ = σ.

σ′ is the projection onto E of τ ∗(∇′)(idInf1S(A), eE◦πInf1S(A)), hence it is the projection
onto E of ∇′(τ, eE ◦ πInf1S(A)). But as it follows from the de�nition of ∇′ in terms

of the above diagram de�ning ∇′, this projection, denoting with pE the projection

onto E, is simply the sum:

pE

(
(η∗(ρ))(τ, eE ◦ πInf1S(A))

)
+ eE ◦ πInf1S(A) = pE

(
(η∗(ρ))(τ, eE ◦ πInf1S(A))

)
= pE

(
ρ(η ◦ τ, eE ◦ πInf1S(A))

)
But since i ◦ η ◦ τ = (p2 − p1) ◦ τ = p2 ◦ τ − p1 ◦ τ = i− eA ◦ πInf1S(A) = i, which is a

monomorphism, it follows that η ◦ τ = idInf1S(A), which implies by the de�nition of

ρ, that σ′ = σ.

3. To show that the map Ext♮S(A, Gm,S) −→ ExtrigS(A, Gm,S) is injective, we must

show that if ∇ de�nes a ♮−structure on the trivial extension:

0 −→ Gm,S −→ Gm,S ×S A −→ A −→ 0

whose associated rigidi�cation σ is trivial, then ∇ itself is trivial. ∇ is determined

by giving a section of Γ(∆1(A), O∗∆1(A)) of the form 1 + ω, with ω ∈ Γ(A, Ω1
A/S).

The corresponding ρ associated to the rigidi�cation σ is determined by a unit in

Γ(∆1(A), O∗∆1(A)) of the form 1 + ω′ with ω′ ∈ Γ(S, ωA/S), since it is an automor-

phism of Gm,Inf1S(A)
.

One has that ω′ = τ ∗(ω), but since A is an abelian scheme the map Γ(A, Ω1
A/S) −→
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Γ(S, ωA/S) is an isomorphism, and so our result follows.

4. The curvature tensor e(∇′) is an element of Γ
(
S, πA∗(Ω

2
A/S)

)
. As mentioned

before, since in our case G = Gm,S we have that E corresponds to a line bundle

LE and ∇′ to a connection on it. Since A is an abelian scheme any global 1−form
is closed, thus the curvature e(∇′) is actually independent of the connection on E.

This allows us to de�ne a morphism:

Ext1S(A, Gm,S) −→ πA∗(Ω
2
A/S)

in the following way: given an absolutely a�ne scheme T over S, and an extension:

0 −→ Gm,T −→ E ′ −→ AT −→ 0

we can take any structure of rigidi�ed extension on it and by the above procedute

we put a connection on E ′, hence �nally obtaining the curvature tensor which lies

in Γ
(
T, πAT ∗(Ω

2
AT /S

)
)
= Γ

(
T,
(
πA∗(Ω

2
A/S)

)
T

)
. Passing to the associated sheaves

gives the morphism above.

Since Ext1S(A, Gm,S) is an abelian scheme and πA∗(Ω
2
A/S) is a vector group, this

morphism is constant. The image of the trivial extension is clearly 0, so the map is

identically zero and thus ∇′ is integrable.

5. Again, we start by replacing E by the corresponding line bundle LE. We are

to show that the isomorphism s∗(LE)
∼=−→ π∗1(LE) ⊗OS

π∗2(LE) is horizontal. By

using this isomorphism, the problem can be interpreted as that of showing that two

connections on s∗(LE) are the same. Taking their di�erence we obtain a section

δ(∇′) ∈ Γ(S, ωA×SA
). Now, to mimic the strategy employed in the proof of 4., we

will use the following result.

Lemma 2.11. Let X be a scheme over S, let L1 and L2 be line bundles on X

and ∇1, ∇2, ∇′1, ∇′2 connections on Li. Consider an isomorphism ϕ : L1

∼=−→ L2.

Denote with δ and δ′ the di�erence between ϕ∗(∇2) and ∇1 and the di�erence between

ϕ∗(∇′2) and ∇′1 respectively. Then we have:

δ − δ′ = ∇2 −∇′2 − (∇1 −∇′1)

Proof. The assertion is local, hence we can assume X = Spec(B), S = Spec(A)

a�ne, and L1 and L2 trivial. Translating, the connections ∇i and ∇′i correspond to

di�erential forms ωi and ω′i (respectively) in Ω1
B/A and ϕ corresponds to the mapping

multiplication by a unit b ∈ B∗.
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Thus ϕ∗(∇2) correspond to d b
b

+ ω2 and ϕ∗(∇2) − ∇1 = d b
b

+ (ω2 − ω1) and

analougously ϕ∗(∇′2) − ∇′1 = d b
b
+ (ω′2 − ω′1). To �nd our result we only need

to subtract these quantities.

We apply this lemma to L1 = s∗(L), L2 = π∗1(L) ⊗OS
π∗2(L), and for any two

connections ∇̄, ∇̃ on L let:

∇1 = s∗(∇̄)

∇′1 = s∗(∇̃)

∇2 = π∗1(∇̄)⊗OS
π∗2(∇̄)

∇′2 = π∗1(∇̃)⊗OS
π∗2(∇̃)

Then if ∇̄ − ∇̃ = ψ ∈ Γ(A, Ω1
A/S) the lemma asserts that:

δ(∇̄)− δ(∇̃) = π∗1(ψ) + π∗2(ψ)− s∗(ψ)

Since A is an abelian scheme, ψ is a primitive element and thus δ(∇̄) = δ(∇̃). So,
δ(∇) does not depend on the connection put on the line bundle L, so we can de�ne

(as above) a morphism:

Ext1S(A, Gm,S) −→ ωA×SA

that is constantly 0 (by the same arguments). The trivial connection on the triv-

ial extension is compatible with the group structure, and so (the morphism being

constantly 0) any connection placed on any extension is similarly compatible.

2.4 Relation between one dimensional de Rham co-

homology and the Lie algebra of the universal

extension

The aim of this section is to establish an isomorphism between H1
dR(A) and the Lie

algebra of ExtrigS(A, Gm,S).

2.4.1 Lie algebra of Pic♮

We shall now emply the de�nitions and remarks of Section 1.4, in particular we want

to study the Lie algebra of the group functor Pic♮A/S.
For any group functor G on Sch/S the formation of Lie(G) commutes with taking of
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the associated Zariski sheaf. Thus to calcolate the Lie algebra of Pic♮A/S it su�ces

to calculate the Lie algebra of Pic♮A/S and then shea�fy it.

Proposition 2.12. H1
dR(A) is canonically isomorphic to Lie

(
Pic♮A/S

)
.

Proof. We must examine ker
(
Pic♮(S[ε]) −→ Pic♮(S)

)
, which by the Proposition 1.7

can be regarded as ker(H1(Ak[ε], Ω
∗
AS[ε]/S[ε],m

) −→ H1(A, Ω∗A/S,m)). We have a split

exact sequence of complexes of sheaves of abelian groups on A:

0 −→ Ω∗A/S −→ Ω∗AS[ε]/S[ε],m
−→ Ω∗A/S,m −→ 0

and hence at least as abelian groups we have that H1(A, Ω∗A/S)
∼=−→ Lie(Pic♮A/S)(S).

By straightforward computation, it follows that the module structure coincide too,

and passing to the associated sheaves we �nd that H1
dR(A)

∼=−→ Lie
(
Pic♮A/S

)
as

desired.

Lemma 2.13. H∗(A, τ1(Ω∗A/S)) is locally free, and hence commutes with arbitrary

base change.

Proof. From the exact sequence:

0 −→ τ1(Ω
∗
A/S) −→ Ω∗A/S −→ OA −→ 0

using the local freeness of H∗dR(A), H
∗(A, OA) and the degeneration of the Hodge-de

Rham spectral sequence, we read the result from the short exact sequence:

0 −→ Hi
(
A, τ1

(
Ω∗A/S

))
−→ Hi

(
A, Ω∗A/S

)
−→ Hi (A, OA) −→ 0

Knowing that H2
(
A, τ1

(
Ω∗A/S

))
is a locally free module commuting with base

change, we obtain the exact sequence of Zariski sheaves on Sch/S:

0 −→ ωA −→ Pic
♮
A/S −→ PicA/S −→ H2

(
A, τ1

(
Ω∗A/S

))
Let us consider the dual abelian variety A∗ = Pic0A/S and the composite of its

inclusion into PicA/S with the map PicA/S −→ H2
(
A, τ1

(
Ω1
A/S

))
. This composite

is 0 because there are no non-trivial homomorphism from an abelian variety to a

locally free quasi-coherent module, hence the image of Pic♮A/S in PicA/S contains A∗

and there is an exact sequence:

0 −→ ωA/S −→ Pic
♮
A/S ×PicA/S

A∗ −→ A∗ −→ 0
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De�nition 2.14. We shall denote the identity component Pic♮A/S ×PicA/S
A∗ of

Pic♮A/S by
(
Pic♮A/S

)0
.

By the above construction,
(
Pic♮A/S

)0
is a smooth group variety which is ob-

tained by considering the Zariski sheaf associated to the presheaf assigning to a

scheme S de�ned over k the set of isomorphism classes of (L, ∇) where the coho-
mology class of L is primitive, or equivalently the Gm,AS

−torsor corresponding to

L is an extension of AS by Gm,S.

Proposition 2.15. H1
dR(A) is canonically isomorphic to Lie

((
Pic♮A/S

)0)
.

Proof. Lie
(
Pic♮A/S ×PicA/S

A∗
)
∼= Lie

(
Pic♮A/S

)
×Lie(PicA/S)Lie(A

∗). Since Lie(A∗) ∼=
Lie

(
PicA/S

)
, the result follows from the Proposition 2.12.

2.4.2 The isomorphism between Ext♮S and
(
Pic♮

)0
For any abelian scheme A de�ned over S, de�ne a homomorphism:

Ext♮S(A, Gm)
ξ−→
(
Pic♮A/S

)0
= Pic♮A/S ×PicA/S

Pic0A/S

in the following way: any element e ∈ Ext♮S(A, Gm) may be regarded as an iso-

morphism class L of invertible sheaves on A endowed with an integrable connec-

tion and with a horizontal isomorphism ϵ : s∗(G)
∼=−→ p∗1(L) ⊗S p∗2(L), where p1,

p2 : A×S A −→ A are the projections and s = p1 + p2 is the sum morphism.

By forgetting ϵ (respectively the connection), we obtain an element of Pic♮A/S (re-

spectively of Pic0A/S).

Theorem 2.16. The morphism ξ : Ext♮S(A, Gm) −→
(
Pic♮A/S

)0
is an isomorphism.

Proof. It is injective, since any two horizontal isomorphisms between line bundles

di�er by multiplication by a unit in OS. Thus if there is a horizontal isomorphism,

an isomorphism compatible with the morphism ϵ is also horizontal.

To show that it is surjective, we shall de�ne a morphism of schemes over S:

η : A∗ −→ ωA×SA

which expresses the obstruction to surjectivity of ξ. Let L ∈ Ext(A,Gm), and choose

any integrable connection ∇ on L. This induces connections on s∗(L), p∗1(L), p∗2(L
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and p∗1(L) ⊗S p∗2(L) as well. The extension structrure of L gives us an explicit

isomorphism:

ϵ : s∗(L)
∼=−→ p∗1(L)⊗S p∗2(L)

Consider the di�erence between the connection on s∗(L) and the pull-back of the

connection on p∗1(L) ⊗S p∗2(L) via the above morphism. This di�erence i(∇) is a
section of ωA×SA

. By Lemma 2.11, we have that i(∇) depends only on L and not

on th0 chosen integrable connection ∇.
We de�ne η(L) = i(∇). Since A∗ is an abelian variety and ωA×SA

is a locally free

module, η is a constant map. Since η(0) = 0, η is identically zero. So ϵ is horizontal

and ξ is surjective.

2.5 The universal extension on an abelian variety

in the analytic category over C

Let A be an abelian scheme over S, where S is a locally of �nite type scheme de�ned

over C. We can consider A as a family of complex analytic spaces.

Without signi�cant changes, we can carry over the theory of ExtrigS also in the

alytic category, and thus obtain the analytic versions and the natural maps:

ExtriganS (A, Gm) −→ ExtrigS(A, Gm)

ExtriganS (A, Ga) −→ ExtrigS(A, Ga)

Proposition 2.17. The two maps de�ned above are isomorphisms.

Proof. For each �ber over S, this follows by GAGA theory. Consequently, the mor-

phisms are analytic morphisms bijective on the underlying point sets, and considerat-

ing vertical and horizontal tangent vectors, it is satis�ed the Jacobian criterion.

As a direct consequence, the exponential sequence of analytic groups over C:

0 −→ 2πiZ −→ Ga
exp−→ Gm −→ 0

gives rise to the following diagram:
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0

ωA/S

ExtrigS(Aan, Ga)

R1 f∗OAan

0

0

ωA/S

ExtrigS(Aan, Gm)

Pic0A/S

0

0 R1 f∗Z 0

	

	

and thus by the snake lemma we get the exact sequence:

0 −→ H1(Aan, Z) −→ ExtrigS(Aan, Ga) −→ ExtrigS(Aan, Gm) −→ 0

over any a�ne base S.

Corollary 2.18. There exists an exact sequence of analyic groups over S:

0 −→ R1 f∗Z −→ H1
dR(A

an
/S) −→ E(A∗)an −→ 0

where R1 f∗Z denotes the locally constant sheaf of abelian groups and HdR denotes

the relative de Rham cohomology over the base S.

Proof. The corollary follows from the identi�cation ExtrigS(A, Gm) = E(A∗) and

ExtrigS(A, Ga) = H1
dR(A/S).



Chapter 3

1−motives and their realizations

Motivations and main result

While there are several cohomology theories, arising from considering di�erent struc-

tures (topological, di�erentiable, analytic...) on an algebraic variety, they are not

independent one from the other. For example, the de Rham cohomology of a dif-

ferentiable manifold is naturally isomorphic to the complexi�cation of the singular

(Betti) cohomology.

One can ask if the various information gathered by di�erent cohomology functors

can be recovered by the same object. More precisely, an important conjecture of

Beilinson, Grothendieck and Deligne revolves around the existence of a triangulated

category endowed with a t−structure whose heart is an abelian category (the cat-

egory of mixed motives). Then we would have a natural functor from the category

of schemes to the category of motives, with the universal property that every coho-

mology functor from the category of schemes factorizes through such functor.

There have been many attempts to �nd such a category, notably 'Triangulated cat-

egories of motives over a �eld' in [30] for motives over a �eld and [6] for motives over

a �nite dimensional Noetherian scheme. The theory is highly sophisticated and lies

outside of the aim of this dissertation, but it is important in order to contextualize

and justify the de�nitions of 1−motives over a base scheme S (following and gener-

alizing [9, Chapter 10]) that we shall now introduce.

The main result of this chapter (and of all this dissertation) is the de Rham realiza-

tion for 1−motives de�ned over C and the comparison isomorphism between the de

Rham realization and the complexi�cation of the Hodge realization of a 1−motive

over C. As a direct application, we shall recover in all generality (and without

29
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assumptions on the smoothness of our variety) the comparison isomorphism:

H1(X, Z)⊗Z C ∼= H1
dR(X)

for any algebraic variety X over C.

3.1 1−motives

De�nition 3.1 (1−motive). A 1−motive over a base scheme S consists of:

1. An S−group scheme X which is locally isomorphic to a constant Z−module

of �nite type, an abelian scheme A and an algebraic torus T over S;

2. A semi-abelian group G, that is an extension of A by T over S;

3. An S−homomorphism u : X −→ G.

A 1−motive is free if the Z−module X is free.

It is convenient to consider a 1−motive to be a bounded complex of group

schemes in degree 0 and 1, that is M = [X
u−→ G].

Remark 3.2. The notion of "motive" in this de�nition is justi�ed by the following

fact: given the category M1(k) of 1−motives over k (not necessarily free, that

is X may have non trivial torsion part), this is an abelian category (while the

categoryMfr
1 of free motives is not). Denote withM1(k)⊗Q the abelian category

of 1−motives over k up to isogeny and with Db(M1(k)⊗Q) the category of bounded

complexes overM1(k)⊗Q. When k is perfect, in [30] Voevodsky proved that there

exists a fully faithful embedding:

Db(M1(k)⊗Q) ↪−→ DMeff
−, ét(k)⊗Q

whose image is the thick subcategory d≤1DMeff
gm (k)⊗Q of the e�ective geometrical

motives generated by the motives of smooth curves. Deligne's 1−motives represent

mixed motives of dimension ≤ 1 (see also [1]).

Let M = [X
u−→ G] be a 1−motive over S. The exponential map:

exp: Lie(G) −→ G

realizes Lie(G) as the universal covering space of G, thus its kernel is the funda-

mental group π1(G). Since G is a topological group, π1(G) is abelian and thus
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isomorphic to the �rst cohomology group H1(G, Z). Thus we have a short exact

sequence of sheaves over OS:

0 −→ H1(G, Z) ↪−→ Lie(G)
exp−→ G −→ 0

We can thus consider the pull-back exact sequence:

0 H1(G, Z) TZ(M) X 0

0 H1(G, Z) Lie(G) G 0

	 	

β

exp

uα

De�nition 3.3. The Hodge realization TZ(M) of the 1−motive M is the �ber

product of Lie(G) and X over G.

3.2 Equivalence of categories between MHSfr1 and

Mfr
1 (C)

Free 1−motives as torsion free graded polarizable mixed Hodge structures

We shall brie�y focus on the case S = Spec(C). We set

1. W−1(TZ(M)) := ker(β) = H1(G, Z);

2. W−2(TZ(M)) = H1(T, Z) = ker (H1(G, Z) −→ H1(A, Z))

This de�nes a �ltration with weights. On the other hand, α can be extended to

αC : TZ(M)⊗ C −→ Lie(G). Setting F 0(TZ(M)⊗ C) = ker(αC), we have a Hodge

�ltration of TC(M) := TZ(M)⊗ C.

Lemma 3.4. The triple T(M) = (TZ(M), W, F ) is a torsion free mixed Hodge

structure of type {(0, 0), (0, −1), (−1, 0), (−1, −1)} and GrW−1(T(M)) is polariz-

able.

Proof. First, we consider the following diagram:
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0 H1(T, Z)⊗Z C H1(G, Z)⊗Z C H1(A, Z)⊗Z C 0

0 Lie(T ) Lie(G) Lie(A) 0

W−1(TC(M)) ∩ F 0 ker(αA,C)

0

0

0

0

	 	

	
β

αA,C

∼=

∼=

αG,C

The �rst singular cohomology of T is a �nitely generated free abelian group of rank

d, while the Lie algebra Lie(T ) is isomorphic to d copies of C. Thus, we have that
H1(T, Z)⊗ZC

∼=−→ Lie(T ) is an isomorphism, and in particular injective, so one has

that W−2(TC(M)) ∩ F 0 = 0. Thus, (W−2(TC(M)), F ) is a Hodge structure of type

(−1, −1).
Moreover, since W−1(TC(M)) ∩ F 0

∼=−→ ker(αA,C) is an isomorphism (by the snake

lemma), and in particular surjective, F induces on GrW−1(TZ(M))⊗C ∼= H1(A, Z)⊗C
the Hodge �ltration of H1(A, Z) ⊗ C: this makes H1(A, Z) a Hodge structure of

type {(−1, 0), (0, −1)}, since for any abelian scheme X πX−→ S de�ned over C, the
exponential map de�nes the exact sequence of sheaves over San:

0 −→ R1 πX∗Z −→ Lie(X) −→ X −→ 0

whose Hodge �ltration is given by the exact short sequence:

0 −→ ker(α) −→ R1 πX∗Z⊗Z OX
α−→ Lie(X) −→ 0

and this establishes an equivalence of categories between the abelian schemes over

S and the category of the families of continuously polarizable torsion free Hodge

structures, that is a local system HZ of Z−modules of �nite type over S such that for

all s ∈ S there exists a Hodge structure on the �ber (HZ)s which varies continuously

with respect to s, of type {(−1, 0), (0, −1)} such that the Hodge �ltration varies

holomorphically on S (see [9, 4.4.3]).

Now, let us consider the diagram:
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0 W−1(TC(M)) ∩ F 0 F 0 V 0

0 H1(G, Z)⊗Z C TZ(M)⊗Z C X ⊗ C 0

Lie(G) Lie(G)

0 0

00

	 	

	

∼=αG,C

F 0 is sent to GrW0 (TC(M)), which is thus of type (0, 0).

This concludes the construction of T(M), which is obviously functorial in M .

Torsion free graded polarizable mixed Hodge structures as free 1−motives

Let nowH be a torsion free mixed Hodge structure of type {(0, 0), (0, −1), (−1, 0),
(−1, −1)} and suppose GrW−1(H) to be polarized. By the remark in the previous

proof, we know that the complex torus: e

A : =
HZ \GrW−1(HC)

F 0GrW−1(HC)

corresponds to an abelian variety. Let us consider now T the torus of the group of

characters dual of GrW−2(HZ): H1(T, Z) = GrW−2(HZ). Then, the analytic complex

group:

G : =
W−1(HZ) \W−1(HC)

F 0 ∩W−1(HC)

is an extension of A by T .

By the correspondence between the extensions of an abelian variety A by a torus

T as algebraic complex groups and the extensions of an abelian variety A by a

torus T as analytic complex groups we highlighted in Section 2.5, we obtain, from

the analytic complex group G de�ned above, an extension of A by T (as algebraic

groups). Set X = GrW0 (HZ); we de�ne the morphism u : X −→ G (which yields a

1−motive) in the following way:
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0 W−1(HZ)
W−1(HC)

F 0 ∩W−1(HC)
G 0

0 W−1(HZ) HZ X 0

HC

F 0
	 	

∼=

∃!

We can now state the main theorem of this section:

Theorem 3.5. The association:

(H, W, F ) ↦→
[
GrW0 (HZ)

u−→ W−1(HZ) \W−1(HC)

F 0 ∩W−1(HC)

]
is functorial and is a quasi-inverse of the functor T : [X

u−→ G] ↦→ (TZ(M), W, F )

de�ned above.

In particular, this construction establishes an equivalence of categories betweenMHSfr1

andMfr
1 (C).

Proof. It follows immediately by the de�nitions and the constructions of this sec-

tions.

This construction and proof can be extended to all graded polarizable mixed

Hodge structures of type {(0, 0), (0, −1), (−1, 0), (−1, −1)} and all 1−motives

over C, yielding an equivalence of categories between MHS1 and M1(C). The de-

tailed proof of this fact (which is essentially the same presented here) can be found

in [2, Proposition 1.5].

3.3 Étale and de Rham realizations of 1−motives

3.3.1 Étale realization

Let M = [X
u−→ G] be a 1−motive over S. For any graded mixed Hodge structure

H of type {(0, 0), (0, −1), (−1, 0), (−1, −1)} the �ltration W of HZ de�nes a

�ltration W on H of mixed Hodge substructures. Thus, one has that if M =

(X, A, T, G, u) is given by an extension G of an abelian variety A and an algebraic

torus T together with a morphism of group schemes X u−→ G (seen as a complex of
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group schemes in degrees 0 and 1), the �ltration W corresponds to:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Wi(M) =M if i ≥ 0

Wi(M) = G ( i.e. Wi(M) = ({0}, A, T, G, 0)) if i = −1

Wi(M) = T ( i.e. Wi(M) = ({0}, T, T, {0}, 0)) if i = −2

Wi(M) = 0 if i < −2

and one has trivially: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gri(W ) = X if i = 0

Gri(W ) = A if i = −1

Gri(W ) = T if i = −2

What we want to prove in this section is that for any 1−motive M de�ned over C1,

we have an étale realization T̂(M), and we shall prove via purely algebraic tools

that:

T̂(M) = TZ(M)⊗Z Ẑ =
∏
ℓ

TZ(M)⊗Z Zℓ

For all integers n > 0, consider the complex of abelian groups [Z ·n−→ Z] (in degrees

−1 and 0) and set T Z
nZ
(M) to be the 0−th cohomology group of the complex:

[X
u−→ G]⊗Z [Z ·n−→ Z]

that is, the 0−th cohomology group of the complex:⎡⎢⎢⎢⎢⎢⎢⎢⎣

X G

X G

u

n

u

−n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
By de�nition, we obtain that:

T Z
nZ
(M) =

{(x, g such that u(x) = ng}
{(nx, u(x) such that x ∈ X}

In the derived category, one has:

T Z
nZ
(M) = H0

(
M ⊗ Z

nZ

)
1In fact, de�ned over any algebraically closed �eld k of characteristic 0.
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For n = md, we de�ne the transition morphisms φm,n : T Z
nZ
(M) −→ T Z

mZ
(M) by

(x, g) ↦→ (x, dg). In this way, the T Z
nZ
(M)'s form a direct system and we can take

the direct limit:

T̂(M) := lim
←−n

T Z
nZ
(M)

The �ltration W on TZ(M) described above induces naturally a �ltration W on

both T Z
nZ
(M) and T̂(M). In particular:

GrW0 (T̂(M)) = X ⊗Z Ẑ

GrW−1(T̂(M)) = lim
←−n

An = Â

GrW−2(T̂(M)) = lim
←−n

Tn = Y ⊗Z Ẑ(1)

where Y denotes the dual of the group of characters of T = W−2(M).

Proposition 3.6. Let be M = [X
u−→ G] a 1−motive de�ned over C. Then:

T̂(M) ∼= TZ(M)⊗Z Ẑ

Proof. In fact, the natural morphism [TZ(M) −→ Lie(G)] −→ [X −→ G] is a

quasi-isomorphism, and the quasi isomorphisms:⎡⎢⎢⎢⎢⎢⎢⎢⎣

X G

X G

u

n

u

−n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
←−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

TZ Lie(G)

TZ Lie(G)

u

n

u

−n ∼=

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

TZ 0

TZ 0

e

n

e

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
yield the isomorphisms T Z

nZ
(M) ∼=

TZ

nTZ
which maps an element t ∈ W−1(TZ) to

exp( t
n
) ∈ Gn. By passing to the limit, from this isomorphism it follows our claim.

3.3.2 De Rham realization

Consider now a 1−motive M = [X
u−→ G] de�ned over a base scheme S. We want

to construct a locally free OS−module TdR(M) endowed with �ltrations W and F .

In this section we shall use (and generalize) some results we have proved in Chapter

2.

Again, we consider our 1−motive as a complex of group schemes in degrees 0 and

−1.

De�nition 3.7. A Ga−extension of M is an extension (as complexes of group



CHAPTER 3. 1−MOTIVES AND THEIR REALIZATIONS 37

schemes) of M by a vector group (considered as a complex concentrated in degree

0) which is universal (in the sense of De�nition 2.3) among all the extensions of M

by vector groups.

We want to prove that any semi-abelian group G admits a universal extension.

This will allow us to prove the remarkable result that any 1−motive (over any base

S) admits a universal Ga−extension.

Proposition 3.8. For any semi-abelian group G over any base S, the universal

extension E(G) of G exists and is isomorphic to E(A)×A G.

Proof. By Proposition 2.4, any semi-abelian groupG admits a universal extension by

the vector group Ext1S(G, Ga)
∨ if G is such thatHomS(G, Ga) = 0 and Ext1S(G, Ga)

is a vector space of locally �nite rank. Consider the exact sequence:

0 −→ T −→ G −→ A −→ 0

de�ning G as an extension of an abelian variety A by an algebraic torus T , and

apply to this sequence the functor HomS(−, Ga,S) to obtain the following long

exact sequence:

0 HomS(A, Ga,S) HomS(G, Ga,S) HomS(T, Ga,S)

Ext1S(A, Ga,S) Ext1S(G, Ga,S) Ext1S(T, Ga,S) . . .

By what we have seen in Section 2, we know that HomS(A, Ga,S) = 0 since

Ga,S is a quasi-coherent locally free OS−module, but also HomS(T, ) is 0 (since

HomS(Gm,S, Ga,S) is trivial), so HomS(G, Ga,S). Moreover, Ext1S(T, Ga,S) = 0

(cfr. [9, 10.1.7.b]), and in particular we have that Ext1S(A, Ga,S) (which is locally

free of �nite rank) is isomorphic to Ext1S(G, Ga,S) by the map that sends an ex-

tension E of A by Ga,S to the extension E ×A G of G by Ga,S. In particular, we

have that the universal extension E(G) of G by Ga,S exists and is isomorphic to

E(A)×A G.

Let us remark that the extensions of M by Ga,S do not have automorphisms,

so HomS(M, Ga,S) is trivial (since HomS(X, Ga,S) and HomS(G, Ga,S) are) and

Ext1S(M, Ga,S) is a �nite dimensional locally freeOS−module. since Ext1S(X, Ga,S) =

0. This allows us to say that, over any base S, there exists a universal extension

(which we shall denote M ♮ = [X
u♮−→ G♮]) of M by the vector group Ext1S(M, Ga)

∨,

considered as a complex concentrated in degree 0:
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0 X X

0 Ext1S(M, Ga)
∨

G♮ G 0

	 	

In particular we have that the extension of G by Ext1S(M, Ga)
∨ is the extension of

G obtained via pull-back along the inclusion Ext1S(G, Ga)
∨ ↪−→ Ext1S(M, Ga)

∨ by

the universal extension of G:

0 Ext1S(G, Ga)
∨ E(G) G 0

0 Ext1S(M, Ga)
∨

G♮ G 0

	 	

Remark 3.9. In general we do not have that G♮ is the same universal extension

E(G) of G, unless X = 0.

De�nition 3.10. The de Rham realization of the 1−motiveM over S is TdR(M) : =

Lie(G♮) with the Hodge �ltration given by F 0TdR(M) = ker(Lie(G♮) −→ Lie(G)) ∼=
Ext1k(M, Ga)

∨.

TdR andM ♮ are constructions which are functorial inM , and we de�ne the �ltration

W of TdR(M) by taking the �ltration induced by the �ltration W of M .

What we shall prove now is the comparison isomorphism that relates the Hodge

realization TZ(M) and the de Rham realization TdR(M) of a 1−motive M , that

holds in all generality for any 1−motive M over C.

Proposition 3.11. Let M be a 1−motive over C. Then:

(TdR(M), W, F ) ∼= (TC(M), W, F )

where TC(M) := TZ(M)⊗Z C.

Proof. ExtiC(X, Ga), ExtiC(A, Ga) and ExtiC(T, Ga), by what we have seen in Sec-

tion 2.5, can be considered in both an analytic and an algebraic context which are

equivalent. Consider the morphism TC(M) = TZ(M)⊗Z C −→ Lie(G) −→ G. We

have the diagram:

X
TC(M)

H1(G)

X G
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which de�nes an extension ofMan by the vector group F 0TC(M), and thus an exten-

sion ofM by that algebraic vector group. We only need to prove that this extension

is universal: it su�ces to show that the category of extensions of
[
X −→ TC(M)

H1(G)

]
by Ga is trivial, that is it consists of one object (up to isomorphism). This is equiv-

alent to the category of the extensions of
TC(M)

TZ(M)
by Ga and in fact we have:

ExtiC(TC(M), Ga) = 0

for i = 0, 1.

Remark 3.12. Of course, an abelian variety over a �eld k is naturally identi-

�ed with the 1−motive de�ned by M = (0, A, 0, A, 0). In this setting then

Ext1k(M, Ga) ∼= Ext1k(A, Ga) and then Ext1k(A, Ga)
∨ is precisely the vector group

V (A) of Proposition 2.4. So Lie(A♮) ∼= Lie(E♮) where E♮ is the universal extension

(in the sense of Chapter 2) of the dual abelian variety A∗, and we know that this

is isomorphic to the �rst de Rham cohomology vector space of the abelian variety.

Morevoer, by the above construction, TZ(A) is precisely the �rst cohomology group

H1(A, Z).
In this way, we can immediately conclude that for abelian varieties the usual �rst

de Rham cohomology vector space is precisely the vector space detected by the de

Rham realization of the associated 1−motive, and by the isomorphism TdR(M) ∼=
TZ(M)⊗Z C, we have the usual comparison isomorphism:

H1
dR(A)

∼= H1(A, Z)⊗Z C

3.4 Picard 1−motive

In this section, we shall focus on 1−motives over a �eld k of characteristic 0, in

order to de�ne the generalization in the 1−motivic setting of the relative Picard

variety of an arbitrary algebraic variety X over k. Its de Rham realization will

be strongly related to the �rst de Rham cohomology vector space of the starting

algebraic variety X (see also [3]).

3.4.1 Simplicial Picard functor

Let π : V∗ −→ S be a simplicial scheme over S (that is, a simplicial object in the

category of schemes, in the sense of De�nition C.26), with morphisms dik : Vi −→
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Vi−1. Denote with Pic(V∗) the group of isomorphism classes of simplicial line bundles

on V∗ (that is, invertible OV∗−modules).

Proposition 3.13. The elements of Pic (V∗) isomorphically correspond to isomor-

phism classes of line bundles L on V0, together with an isomorphism α : (d1
0)
∗L

∼=−→
(d1

1)
∗L satisfying the following cocycle condition: the composite:

(
(d21)

∗(α)
)−1 ◦ ((d22)∗(α)) ◦ ((d20)∗(α))

yields the identity 1 ∈ Γ(V2, Gm,S).

Moreover, there is a functorial isomorphism:

Pic (V∗) ∼= H1
(
V∗, O∗V∗

)
Proof. [3, Proposition 4.1.1].

De�nition 3.14. The simplicial relative Picard functor PicV∗/S on the category of

schemes over S is the shea��cation of the functor de�ned by T ↦→ Pic(V∗×S T ) with
respect to the fpqc topology.

This means in particular that if π : V∗ ×S T −→ T is the structural morphism,

then:

PicV∗/S(T ) ∼= H0
fpqc

(
T, R1 π∗

(
O∗V∗×ST

))
Now let us focus on the case in which the base scheme S is the spectrum of a �eld

k.

Lemma 3.15. If X∗ is a simplicial scheme which is proper and smooth over k then

the functor PicV∗/k is representable by a group scheme locally of �nite type over k

(that is, a k−group variety).

Proof. [3, section A.3].

3.4.2 Cohomological Picard 1−motive of an algebraic variety

Let X∗ be a smooth simplicial k−variety, regarded as an open Zariski subset of a

proper smooth simplicial scheme X∗ such that the complement Y∗ = X∗ \ X∗ has
components Yi which are normal crossing divisors in X i.

We have a spectral sequence:

Ep,q
1 := Hq

Yp

(
Xp, O∗Xp

)
=⇒ Hp+q

Y∗

(
X∗, O∗X∗

)
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In the above formula, Hq
Yp

(
Xp, O∗Xp

)
= Rq

(
ΓYq

(
Xp, O∗Xp

))
, where ΓYq

(
Xp, O∗Xp

)
is the abelian sheaf

{
s ∈ Γ

(
Xp, O∗Xp

)
such that supp(s) ∈ Yp

}
, denotes the coho-

mology with support in Yp.

By our assumption, every component of X∗ is smooth, and thus Hq
Yp

(
Xp, O∗X∗

)
̸= 0

if and only if q = 1, in which case one has:

H1
Yp

(
Xp, O∗Xp

)
∼= DivYp

(
Xp

)
where DivYp

(
Xp

)
is the group of divisors D on X supported on Yp. So our spectral

sequence yields that:

H1
Y∗

(
X∗, O∗X∗

)
∼= ker

(
DivY0

(
X0

) d∗0−d∗1−→ DivY1
(
X1

))
We denote with DivY∗

(
X∗
)
the shea��cation of the group functor on Sch/k that

associates to any k−variety T the subgroup of divisors on X0,T given by:

ker

(
DivY0,T

(
X0,T

) d∗0−d∗1−→ DivY1,T
(
X1,T

))
We have a canonical morphism:

DivY∗
(
X∗
)
= H1

Y∗

(
X∗, O∗X∗

)
−→ H1

(
X∗, O∗X∗

)
∼= PicX∗/k

Denote with Pic0
(
X∗
)
the identity component Pic0X∗/k

⊆ PicX∗/k, and denote with

Div0Y∗
(
X∗
)
the inverse image of Pic0

(
X∗
)
via the canonical morphism above.

De�nition 3.16 (Cohomological Picard 1−motive). Let X be an algebraic variety

over k, and consider X∗ a proper smooth hypercovering such that X∗ is in every

component the complement in a proper smooth compact simplicial scheme X∗ of

Y∗ which is in every component a normal crossing divisor. Then the cohomological

Picard 1−motive of X is:

Pic+(X) :=
[
Div0Y∗

(
X∗
)
−→ Pic0

X∗/k

]
Remark 3.17. This de�nition makes sense, sinceDiv0Y∗

(
X∗
)
is a Z−module of �nite

type (being abelian and �nitely generated) and Pic0X∗/k
is a semi-abelian variety ([3,

Proposition 4.1.3]).

Theorem 3.18. Let X be an algebraic variety de�ned over C. Then the Hodge

realization TZ(Pic
+(X)) is isomorphic to H1(X)(1), where the twist is the Tate
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twist.

Sketch of proof. We have an exact sequence:

0 −→ H1(X∗, Z(1)) −→ H1(X, Z(1)) −→ Div0Y∗
(
X∗
)
−→ 0

By universal cohomological descent (see Section C.3 in Appendix C) we have that

H1(X, Z(1)) ∼= H1(X∗, Z(1)∗), and thus the result follows from [3, Lemma 4.3.1].

3.4.3 de Rham realization of Pic+

Let k be a �eld of characteristic 0. Following the notations introduced in 1.4, for

any simplicial k−scheme X∗ we shall denote by Pic♮(X∗) the group of isomorphism

classes of pairs (L∗, ∇∗) where L∗ is a simplicial line bundle over X and ∇∗ is a
simplicial integrable connection (that is, an integrable connection in the sense of

Section B for the simplicial k−scheme X∗):

∇∗ : L∗ −→ L∗ ⊗OX∗
Ω1
X∗/k

De�nition 3.19. The simplicial relative ♮−Picard scheme Pic♮X∗/k
is the shea��ca-

tion (with respect to the fpqc topology) of the functor on Sch/k de�ned by:

T ↦→ Pic♮(X∗ ×k T )

For a given pair (L∗, ∇∗) on X∗ one has clearly a line bundle L and an integrable

connection ∇ on X0, together with an isomorphism:

α : d∗0(L, ∇)
∼=−→ d∗1(L, ∇)

such that α satis�es the cocycle condition described in Proposition 3.13. From that

proposition, together to a simplicial revisit of the construction in Section 1.4 (see

also [9, Construction 10.3.10]), we have the following result:

Proposition 3.20. For any simplicial scheme X∗ over a �eld of characteristic 0, the

elements in Pic♮X∗/k
(k) = Pic♮(X∗) are in natural bijection with isomorphism classes

of triples (L, ∇, α), with L invertible sheaf on X0, ∇ an integrable connection

on L and α an isomorphism between d∗0(L, ∇) and d∗1(L, ∇) satisfying the cocycle

condition of Proposition 3.13. We have a functorial isomorphism:

Pic♮(X∗) ∼= H1
(
X∗,

[
O∗X∗

dlog−→ Ω1
X∗/k

])
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From the above proposition, together with the exact sequence of complexes of

simplicial sheaves:

0 −→ Ω1
X∗/k[−1] −→

[
O∗X∗

dlog−→ Ω1
X∗/k

]
−→ O∗X∗ [0] −→ 0

by analougous arguments to those we did in 2.4.1 we obtain the following exact

sequence of fpqc sheaves:

0 −→ H0
(
X∗, Ω

1
X∗/k

)
−→ Pic♮X∗/k

−→ PicX∗/k −→ H1
(
X∗, Ω

1
X∗/k

)
Again, we have that the semi-abelian variety Pic0X∗/k

is mapped to 0 inH1
(
X∗, Ω

1
X∗/k

)
using the fact that X∗ is smooth and proper over k. By pulling back along the in-

clusion Pic0 ↪−→ Pic we obtain an extension:

0 −→ H0
(
X∗, Ω

1
X∗/k

)
−→

(
Pic♮X∗/k

)0
−→ Pic0X∗/k −→ 0

that is the Ga−extension of the semi-abelian scheme Pic0X∗/k
since

(
Pic♮A/S

)0 ∼=(
Pic0A/S

)♮
(see [3, Lemma 4.5.2]).

More generally, let X∗ be a smooth simplicial k−variety in characteristic 0,

and consider a smooth compacti�cation X∗ with normal crossing boundary divisor

Y∗. We de�ne Pic♮−log(X∗) as the group of isomorphism classes (L∗, ∇log
∗ ) with L∗

simplicial line bundle on X∗ and ∇log
∗ a simplicial integrable connection on L with

logarithmic poles along Y∗. Equivalently, ∇log
∗ is an isomorphism:

L∗
∼=−→ L∗ ⊗OX∗

Ω1
X∗/k (log Y∗)

satisfying the Leibniz product rule. We shea�fy the functor:

T ↦→ Pic♮−log(X∗ ×k T )

to obtain Pic♮−logX∗/k
, which obviously injects into Pic♮X∗/k

.

It is clear, by a natural generalization of Proposition 3.20, that we have the following

result:

Proposition 3.21. For any k−simplicial smooth variety X∗ with smooth compacti-

�cation X∗ with normal crossing boundary divisor Y∗, the elements in Pic♮−logX∗/k
(k) =

Pic♮−log(X∗) are in natural bijection with isomorphism classes of triples (L, ∇log, α),

with L invertible sheaf on X0, ∇log an integrable connection on L and α an iso-
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morphism between d∗0(L, ∇log) and d∗1(L, ∇log) satisfying the cocycle condition of

Proposition 3.13. We have a functorial isomorphism:

Pic♮−log(X∗) ∼= H1
(
X∗,

[
O∗
X∗

dlog−→ Ω1
X∗/k

(log Y∗)
])

We are now ready the main theorem of this section:

Theorem 3.22. Let X be a k−variety, with k �eld of characteristic 0. Then one

has:

TdR(Pic
+(X)) ∼= H1

dR(X)(1)

Proof. Choose a smooth hypercovering X∗ of X and a smooth compacti�cation

X∗ of it with normal crossing boundary divisor Y∗ and consider the cohomological

Picard 1−motive Pic+(X) =
[
Div0Y∗

(
X∗
)
−→ Pic0

X∗/k

]
. We have the following

exact diagram of complexes:

0 O∗
X∗

O∗
X∗ 0

0 Ω1
X∗/k

Ω1
X∗/k

(log Y∗) Q∗ 0

		dlog dlog

where Q∗ denotes the cokernel of the inclusion of Ω1
X∗/k

in Ω1
X∗

(log Y∗). Thus, we

have the following diagram obtained by the push-out along the morphism induced

by the dlog map in cohomology of the Ga−extension of Pic0X∗/k
:

0 H0
(
X∗, Ω

1
X∗/k

) (
Pic♮X∗/k

)0
Pic0X∗/k 0

0 H0
(
X∗, Ω

1
X∗/k

(log Y∗)
) (

Pic♮−logX∗/k

)0
Pic0X∗/k 0

		

Proving that H0
(
X∗, Ω

1
X∗/k

(log Y∗)
)
is isomorphic to Ext1k(Pic

+(X), Ga)
∨ then

completes the proof. In fact, TdR(Pic
+(X)) is the Lie algebra of the semi-abelian

variety in degree 0 of the universal extension of Pic+(X), and the isomorphism above

would prove that the universal extension of Pic+(X) is the 1−motive:

Pic+(X)♮ :=

[
Div0Y∗(X∗)

u♮−→
(
Pic♮−logX∗/k

)0]

The Lie algebra of
(
Pic♮−logX∗/k

)0
is canonically isomorphic to H1

(
X∗, Ω

∗
X∗/k

(log Y∗)
)

since
(
Pic♮−logX∗/k

)0
is representable by the pull-back of the universal extension of the



CHAPTER 3. 1−MOTIVES AND THEIR REALIZATIONS 45

abelian quotient of Pic0X∗/k
.

Its Lie algebra is canonically isomorphic to H1
(
X∗, OX∗

−→ Ω1
X∗/k

(log Y∗)
)
. Such

isomorphism is compatible with the Hodge structures if we shift the index of the

�ltration on H1
dR(X) by 1, and this proves our claim (see also [3, Lemma 4.3.1]).

Denote by K the kernel sheaf ker
(
H0
(
X∗, Q∗) −→ H1(X∗, Q∗

))
and consider the

exact sequence (where the vertical maps are induced by universal properties):

0 Ext1k
(
Pic0

X∗/k
, Ga

)∨
Ext1k

(
Pic+(X), Ga

)∨ Homk

(
Div0Y∗(X), Ga

)∨
0

0 H0
(
X∗, Ω

1
X∗/k

)
H0
(
X∗, Ω

1
X∗/k

(log Y∗)
)

K 0

		∼=

The �rst vertical map is an isomorphism, so by proving that also the third one is

an isomorphism we can conclude by the �ve lemma. For any index i, Yi in Xi is a

normal crossing divisor, and we have an exact sequence (compatible with the face

and degeneracy morphisms of the simplicial scheme X∗):

0 −→ Ω1
Xi/k
−→ Ω1

Xi/k
(log Yi) −→ ⊕i,jOYi,j −→ 0

where Yi,j is the j−th smooth component of Yi.

By this construction we have a canonical identi�cation:

H0(X∗, Q∗) = ker

(
⊕
0,j

H0
(
Y0,j, OY0,j

)
→ ⊕

1,j
H0
(
Y1,j, OY1,j

)) ∼= DivY∗ (X∗)⊗ k
Then, Div0Y∗(X∗) ⊗ k = ker

(
DivY∗

(
X∗
)
⊗ k −→ H1

(
X∗, Ω

1
X∗/k

))
, and since we

have that Div0Y∗(X∗)⊗ k ∼= Hom
(
Div0Y∗(X), Ga

)∨
, the proof is complete.

Putting together the results in Proposition 3.11 and Theorems 3.18 and 3.22, we

easily obtain the following result.

Corollary 3.23. For any complex algebraic variety X, there is a comparison iso-

morphism:

H1
dR(X) ∼= H1(X, Z)⊗Z C

Remark 3.24. By proving Theorem 3.22, we have in a purely algebraic way that

the Hodge �ltration of H1
dR(X) does not depend on the choice of the hypercovering

X∗ and of its compacti�cation X∗, since Pic+(X) does not depend on such choices.

This is proved by showing that Tét(Pic
+(X)) ∼= H1

ét(X, Z(1)) ([3, Theorem 4.4.3])

and the fact that Tét is a faithful functor from Sch/k that re�ects isomorphisms ([3,
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Proposition 1.3.1]), together with the fact that pull-backing cycles and simplicial

line bundles of two di�erent hypercoverings and compacti�cations in a third hyper-

covering and compacti�cation which maps to them, one obtains an isomorphism of

the étale realizations of the two Pic+(X) motives, and thus the isomorphism of the

two motives themselves.



Appendix A

Fundamentals of algebraic geometry

This chapter collects some useful tools of algebraic geometry which are employed

extensively in our dissertation, such as the de�nitions and main properties of group

and abelian schemes or the main motivations and results of descent theory.

The most elementary de�nitions and constructions of the geometry of schemes will

be omitted, but we follow the standard notations of algebraic geometry literature

(see [15] or [18] for example).

A.1 Group and abelian schemes over an arbitrary

base

A.1.1 De�nitions

In this section, we shall introduce the concepts of group scheme over a base scheme

S.

De�nition A.1. A group scheme G over a base scheme S is a group object in the

category Sch/S, that is an S−scheme with:

1. an S−morphism m : G×G −→ G;

2. an S−morphism i : G −→ G;

3. an S−point e : S −→ G;

satisfying the axioms:

1. (associativity) the following diagram commutes:

47
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G×S G×S G G×S G

GG×S G

	

m×S idG

midG ×S m

m

2. (identity) the following diagrams commute:

G×S S G×S G

G

S ×S G G×S G

G

	 	

idG ×S e

mp1

e×S idG

p2 m

3. (inverse) the following diagram commutes:

G G×S G G×S G G

S

	

idG ×S i

i×S idG

∆ m

πG e

An abelian scheme A over S is an S−group scheme of �nite type with connected

�bers such that A is smooth and proper over S.

Grothendieck ([13, EGA IV]) proved that a group scheme has connected �bers

if and only if it has geometrically connected �bers, thus the non-ambiguity of the

notation. An abelian scheme is commutative, that is, denoting with s : G×S G −→
G×S G the obvious switching isomorphism, then the following diagram commutes:

G×S S G×S G

G

	

s

mm

Remark A.2. It is important to remark that if S is a normal scheme (e.g., S is the

spectrum of a �eld) then an abelian scheme A is projective over S ([28]).

Our de�nition is not so practical. To de�ne a group scheme over S we need several

morphisms over S and then we have to verify they respect the axioms above. To

avoid this problem, we use the following fundamental result of category theory in

our discussion:
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Theorem (Yoneda lemma). Let F : Cop → Set a contravariant functor from a cate-

gory C to Set, and let HA be a representable functor (that is there exists a natural

isomorphisms between HA and the functor HomC(−, A) for some object A of C).
Then there exists a natural isomorphism (in Set, this means a bijection) between

the set Hom(HA, F ) of the natural transformations of functors between HA and F ,

and the set F (A), which is functorial in A and F .

Let us return to the discussion of group schemes. Any S−scheme X can be

canonically interpreted as the representant of the contravariant functor HX from the

category Sch/S of schemes over S to the category Set of sets, and this association

de�nes a covariant functor from Sch/S to the category of contravariant functors from
Sch/S to Set (that we denote with SetSch

op
/S). This means that the maps de�ning

the structure of an S−group scheme G become natural transformations between

functors satisfying analogous axioms.

Moreover, using Yoneda lemma, we have that for any S−scheme X, T there is

a natural bijection:

Hom(HT , HX) ∼= HX(T ) = HomS(T, X)

where HomS(T, X), by the de�nition of T−valued points of an S−scheme X, is

nothing more than the set of T−valued points of X.

It follows that giving a structure of S−group schemes to G is equivalent to give

a group structure to the set G(T ) of its T−valued points, which is functorial in T

([21, Prop. 3.6]). Moreover, if G is an abelian group over S, it is easily checked that

the group structure on G(T ) is that of a commutative group.

In this way, we can identify an S−scheme X with the contravariant functor from

Sch/S to Set it represents (that will be said the functor of points of X). This result

has important theoretical implications: to convert the usual constructions of group

theory (e.g. kernels and quotients of group homomorphisms) in the theory of group

schemes, it is more convenient to think them as the category theoretical functors

satisfying their universal property, and then to study their representability.

A.1.2 Elementary examples

We shall now discuss some notable examples of group schemes. Following the above

discussion, we shall �rst describe them via their functor of points and then show

their representant, if it exists.
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A.1.2.1 The additive group scheme

We denote with Ga,S the contravariant functor from Sch/S to Set which associates

to an S−scheme T the additive group (OT (T ),+) of its global sections. This functor

is representable, and its representant is a group scheme (denoted with Ga,S as well

and called the additive group scheme over S). When S = Spec(R) is a�ne, Ga,S is

the a�ne line Spec (R[t]) = A1
R over R.

A group scheme that is locally isomorphic to a product of d copies of the S−additive
group scheme Ga,S will be called a vector group of rank d over S.

A.1.2.2 The multiplicative group scheme

We denote with Gm,S the contravariant functor from Sch/S to Set which associates

to an S−scheme T the multiplicative group (O∗T (T ),×) of invertible elements of

its global sections. This functor is representable, and its representant is a group

scheme (denoted with Gm,S as well and called the multiplicative group scheme

over S). When S = Spec(R) is a�ne, Gm,S is the a�ne line without one point

Spec
(
R[t, 1

t
]
)
= A1

R \ {0} over R.
A group scheme that is locally isomorphic to a product of d copies of the S−multiplicative
group scheme Gm,S will be called an algebraic torus of rank d over S.

A.1.2.3 The kernel of a group scheme morphism

Let F , G be two contravariant group functors in SetSch
op
/S , represented respectively

by two group schemes F and G, and let f : F −→ G be a natural transformation

of functors. Denote with ker(f) the contravariant functor that associates to an

S−scheme T the group ker(fT : F (T ) −→ G(T )). This functor is representable, and

its representant is the group scheme of the kernel of the morphism of group schemes

f : F −→ G, which is a closed subscheme of F ([27]).

Suppose that S = Spec(R), F = Spec(A) and G = Spec(B) are all a�ne group

schemes; by the equivalence of categories between a�ne schemes and the opposite

category of commutative unitary rings, a morphism of S−schemes f : F −→ G

corresponds to a morphism of commutative rings φ : B −→ A. Then the kernel

group scheme ker(f) is the pull-back of the diagram:

F G

Sker(f)

	

f

eG
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Translating this in the language of commutative unitary rings, it follows that ker(f)

is the a�ne group scheme Spec(A ⊗B R) where R is seen as a B−algebra via the

identity section e : B −→ R.

This morphism is surjective, soR ∼= B
ker(e)

and thus the above tensor product becomes
A

ker(e)·A
∼= A

(φ(ker(e)))
, thus ker(f) = Spec

(
A

(φ(ker(e)))

)
.

A.1.2.4 The Hom scheme

Given two schemes X and Y de�ned over a base scheme S, consider the functor

HomS(X, Y ) which maps an S−scheme T to the set HomT (XT , YT ). This functor

is called the Hom functor.

The representability of the Hom functor, under certain hypotesis, is guaranteed by

the following result of Grothendieck ([11, FGA II, exp. 221]).

Theorem A.3. Let S be a locally Noetherian scheme, let X be an S−scheme that is

projective and �at over S, while Y is an S−scheme that is quasi-projective over S.

Then the functor HomS(X, Y ) is representable by a locally Noetherian S−scheme.

Let us remark that in our dissertation we are interested in base schemes which

are the spectrum of a �eld k (in particular, they are Noetherian, and all schemes

over Spec(k) are trivially �at). So if X and Y are projective varieties, Homk(X, Y )

is representable.

A.1.2.5 The Cartier dual

Let G be a group scheme over S with structural morphism π : G −→ S. The Cartier

dual GD of G is nothing more than the group of characters of G, that is the functor

HomS(G, Gm,S) (in the sense of the previous de�nition). If G is a commutative

group scheme �nite and locally free over S, then considering the OS−module A :=

π∗OG and its dual AD := HomOS
(A, OS), we have that GD := Spec(AD) is a group

scheme which is commutative, �nite and locally free over S and it represents the

functor GD. Moreover, the homomorphism (GD)D −→ G induced by A −→ (AD)D

is an isomorphism ([27]).

A.1.3 The relative Picard scheme

We recall that the Picard group Pic(X) of a scheme is the group of isomorphism

classes of invertible sheaves (i.e. coherent OX−modules S such that there exists a

coherent OX−module T such that the tensor product S⊗OX
T is isomorphic to OX),

endowed with the tensor product. A standard result in algebraic geometry yields
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that Picard group is isomorphic to the �rst sheaf cohomology group H1(X, O∗X).
We would be tempted to de�ne a functor that maps an S−scheme X to its Picard

group, but in general this presheaf over Sch/S is not representable. Thus, given an

S−scheme π : X −→ S, we de�ne the relative Picard functor PicX/S as the functor:

T ↦→ Pic(XT )

π∗X,T Pic(T )

where πX,T : XT −→ T is the base change structural morphism. Equivalently, this

is the shea��cation of the functor on Sch/S:

T ↦→ coker (Pic(T ) −→ Pic (XT ))

or again the functor that associates to an S−scheme T the group H1
(
XT , O∗XT

)
.

The representability of this functor is a major issue in algebraic geometry.

Grothendieck ([11, FGA II, exp. 232]) proved that if X is projective, �at and �nitely

presented over S, with geometric �bers that are reduced and irreducible, then PicX/S
is representable by a separated S−group scheme which is locally of �nite type over

S. When S is the spectrum of a �eld k, another important result by Murre ([23])

states that whenever X is a proper scheme over k then PicX/k is representable by a

group scheme which is locally of �nite type over k.

A.1.3.1 The dual of an abelian scheme

Let A be a projective abelian scheme de�ned over S. We have seen that in this

case there exists the Picard scheme PicA/S and it is a group scheme over S. We

de�ne Pic0A/S as the connected component of the identity of PicA/S, which is as well

a group scheme over S, separated and locally of �nite type over S. Moreover, if

S = Spec(k) with k �eld, then Pic0A/k is also proper over k.

We have the following result:

Proposition A.4. Let A be a projective abelian scheme de�ned over S, and let

n : PicA/S −→ PicA/S denote the multiplication by n. Then the scheme:

PicτA/S :=
⋃
n>0

n−1
(
Pic0A/S

)
is a projective abelian scheme which coincides with the identity component Pic0A/S.
It is denoted with A∗ and is called the dual abelian scheme of A.

Moreover, A is canonically isomorphic to A∗∗.

Proof. [22, Corollary 6.8].
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A.2 Group and abelian varieties over a �eld

A.2.1 De�nitions and �rst properties

If the base scheme S is the spectrum of a �eld k and G is a k−algebraic variety, then
the de�nitions of group and abelian schemes collapse to the more common notions

of group and abelian varieties respectively.

De�nition A.5.

• A group variety over k is an algebraic variety over k that is a group scheme

over Spec(k).

• An abelian variety over k is an algebraic variety over k that is an abelian

scheme over Spec(k).

The conditions for a group variety to be an abelian variety are not as strict as the

ones for a group scheme over an arbitrary base scheme S. In fact algebraic varieties

are by de�nition of �nite type, and every group variety is separated, as we easily

show with the following proposition and its corollary.

Proposition A.6. An S−group scheme is separated if and only if the identity sec-

tion e : S −→ G is a closed immersion.

Proof.

⇒) In general, given any morphism of schemes f : X −→ Y , a section s : Y −→ X

of f is an embedding and it is closed when f is separated;

⇐) The image of the diagonal ∆: G −→ G×SG is the inverse image of e(S) under

the map:

G×S G
idG×Si−−−−→ G×S G

m−→ G

and therefore is closed.

Corollary A.7. Every group variety G over Spec(k) with k arbitrary �eld is sepa-

rated.

Proof. Of course, the section e : Spec(k) −→ X is a closed embedding, so our result

follows from the above proposition.
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A.2.2 Smoothness and di�erential structure of group vari-

eties

Again, let X be a group variety over k, and let x ∈ X(k) be a k−rational point. We

have two obvious morphisms of k−schemes (the left and right translations by x):

trx : X
∼=−→ X ×k Spec(k)

idX×x−−−−→ X ×k X
m−→ X

tlx : X
∼=−→ Spec(k)×k X

x×idX−−−−→ X ×k X
m−→ X

which on points are given by trr(y) = m(y, x) and tlx(y) = m(x, y).

More generally, for any k−scheme T and for any x ∈ X(T ) there are T−morphisms:

trx : XT

∼=−→ XT ×T T
idXT

×x
−−−−→ XT ×T XT

m−→ XT

tlx : XT

∼=−→ T ×T XT

x×idXT−−−−→ XT ×T XT
m−→ XT

Geometrically, this implies that any group variety X is a principal homogeneous

space over itself, i.e. there is an action of X over X that is regular.

In particular, since the set of points in which X is smooth is a dense Zariski open

subset of X which is stable under translations, this implies that X is smooth with

trivial tangent bundle.

Proposition A.8. Let X be a group variety over k which is geometrically integral.

X is smooth over k and denoting with TX,e the tangent space at the identity e, one

has TX/k ∼= TX,e⊗kOX . In particular, it follows that Ωn
X/k
∼=
(⋀n (TX,e)

∨) ⊗k OX
and if n = dim(X) then Ωn

X/k
∼= OX .

Proof. [21, Proposition 1.5].

If the characteristic of the �eld is 0, we can rely on a more powerful result (that

is, we can omit the hypothesis of geometrically integrity of our group variety).

Theorem A.9 (Cartier). Let G be a group variety over a �eld k of characteristic

0. Then G is reduced, and hence smooth over k.

Proof. The proof is a standard result of Oort ([24]).

So, any group variety over a �eld k of characteristic 0 is smooth, separated and of

�nite type; thus we can reformulate the de�nition of abelian varety in the following

terms:
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De�nition A.10. An abelian variety A over a �eld k of characteristic 0 is an

algebraic variety with connected �bers which is a proper group scheme over Spec(k).

Remark A.11. It is interesting to remark that in general separated group varieties

over a �eld k are smooth only if char(k) = 0. Some counterexamples in char =

p > 0 are the group scheme µp,k (which represents the functor that associates to a

k−scheme the p−th roots of unity in the ring of its global sections) and αp,k (which

represents the functor that associates to a k−scheme the p−nilpotent elements in

the ring of its global sections), which are reduced but not geometrically reduced.

Since we are interested in algebraic varieties de�ned over a �eld k of characteristic

0 (notably, C) this counterexamples are not particularly debilitating.

A.2.3 Lie algebra of a group scheme

In our discussion, we need to de�ne the Lie algebra of a group scheme. The main

references for this section will be [20] (for group varieties) and [14, SGA III] for a

more general approach.

Remember that given a Lie group G (that is, in our notation, a group object in the

category of the di�erentiable manifolds), there is a canonical way to associate to it a

Lie algebra g (that is, a vector space with a non-commutative associative operation

[−,−]) by considering the tangent space at the identity. The operation is given by

the Lie bracket [x, y] := xy − yx.

We want to generalize this construction. We address this issue in two steps: �rst

we start to de�ne the Lie algebra of a group scheme (not necessarily a variety) G

over a �eld k, and then we construct the Lie algebra functor of a group functor

G : Sch/S −→ Set (that, when G is representable, will be representable and its rep-

resentant will yield the desired Lie algebra of G).

Let us study the tangent space at the identity of a group scheme G over k.

Consider the spectrum of the dual numbers Spec
(
k[ε]
(ε2)

)
. This is the tangent space

at the identity, since considering the morphism k[ε] −→ k de�ned by ε ↦→ 0, then in

the sets of k[ε]− and k−valued points respectively of G we have G(k[ε]) −→ G(k).

So we have:

G(k[ε]) G(k)

{e}f−1(e)
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f−1(e) is the tangent space Te(G) but also (by de�nition) the kernel of the map

G(k[ε]) −→ G(k). So we de�ne Lie(G) := ker(G(k[ε]) −→ G(k)).

Thus an element of Lie(G) is a homomorphism ϕ : OG −→ k[ε] such that:

(ε ↦→ 0) ◦ ϕ : OG −→ k

is the coidentity map.

In particular, denoting with I the augmentation ideal (that is, the kernel of the

coidentity map), I ↦→ (ε) and since ε2 = 0 ϕ factors through:

OG
I2
∼= k ⊕ I

I2

and ϕ : (a, b) ↦→ a+D(b) · ε, with D(b) ∈ k. Thus we get a bijection ϕ ↦→ D between

Lie(G) and Homk

(
I
I2
, k
)
.

This gives the correct suggestion in order to de�ne the Lie algebra functor Lie
for a group functor de�ned on Sch/S. We de�ne the dual numbers scheme IS(M) :=

Spec (OS ⊕M), where M is a quasi-coherent OS−module (regarded as a sheaf of

ideals such that M2 = 0). IS is a contravariant functor on the category QCoh/S,
that associates to the morphisms 0 → M and M → 0 the structure morphism

IS(M)→ IS(0) = S and a section S → IS(M) respectively.

Next, given a free OS−module M of �nite type and X a group functor over Sch/S,
we de�ne the tangent bundle TX/S(M) of X over S with respect to M as the group

functor HomS(IS(M), X).

Remark A.12. When M = 0 and X = S, since HomS(IS, X) is canonically iso-

morphic to the functor V (ΩX/S) de�ned on Sch/S that to an S−scheme T associates

HomOT
(ΩX/S ⊗OS

OT , OT ), we have the concept of tangent bundle de�ned in Def-

inition 1.2. In general, the group functor HomS(IS(M), X) is representable by the

vector bundle ΩX/S := Spec(Sym(ΩX/S)), where Sym(ΩX/S) is the symmetric algebra

of the OS−module ΩX/S.

We have the usual pull-back diagram (where e : S −→ X is the identity section):

S X

TX/S(M)P

	

e

and we de�ne LieX/S(M) to be the pull-back P . When M = OS, we denote

LieX/S(M) as Lie(X).
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Theorem. If X is a representable group functor over Sch/S, then the functor

LieX/S(M) is representable. In particular, Lie(X) is represented by the vector

bundle e∗ΩX/S.

Proof. [14, Exp. III, Prop 3.3.].

A.2.4 First in�nitesimal neighborhood of the identity section

and group schemes morphisms

Given a separated group scheme G over S with identity section e, the �rst in�nites-

imal neighborhood G1 of the identity section is de�ned the closed group subscheme

of G with the same underlying topological space cut out by I2, where I is the sheaf
of ideals that de�nes e(S) in G. In other words, G1 := V (I2).
Denote with e1 : S −→ G1 the identity section of this group scheme. The diagram:

G1 G

S

	e e1

is commutative, so this is a morphism of S−pointed S−schemes.

There is a natural isomorphism of functors on Sch/S:

HomS−pointed S−scheme(G1, Gm,S)
∼=−→ e∗Ω1

G/S

By the notation ωG/S, we shall denote the quasi-coherent OS−module de�ned by

either side of this formula. There is a natural isomorphism:

G1

∼=−→ Spec(OS ⊕ ωG/S)

Remark A.13. When S = Spec(k), ωG/S is just the cotangent space of G at the

identity.

Proposition A.14. When the Cartier dual GD of G is representable, then ωGD/S

represents the functor HomGpSch(G, −) on the category QCoh/S of the quasi-coherent
modules over S which sends M to the group HomGpSch(G, M) of the group scheme

morphisms between G and M (see [19, Proposition 1.4]).



Appendix B

Torsors and connections

In this appendix, following the work of Mazur and Messing in [19, �2], we shall

introduce the concepts and properties of G−torsors and connections over G−torsors,
used extensively in Chapter 2.

B.1 G−torsors and connections on OX−modules

De�nition B.1. Let G be a commutative smooth S−group scheme. A torsor P for

G is a principal homogeneous space which is locally trivial for the étale topology,

that is for an étale base change S ′ −→ S the torsor S ′ ×S P becomes the trivial

torsor S ′ ×S G (where G acts only on the second component).

Consider now X an arbitrary S−scheme, G a commutative smooth S−group and
let P be a torsor on X under the group GX . Denote with ∆1(X) = ∆1(X/S) denote

the �rst in�nitesimal neighborhood of the image of X via the diagonal morphism

∆: X −→ X ×S X.

The projections pj : X ×S X −→ X (j = 1, 2) induce obviously the projections

(which we shall denote with the same symbol) pj : ∆1(X) −→ X.

De�nition B.2. A connection ∇ on the GX−torsor P is an isomorphism (as

G∆1(X)−torsors) ∇ : p∗1(P ) −→ p∗2(P ) which restricts to the identity on X (equiva-

lently: ∆∗(∇) = idP ).

Given anOX−moodule E, a connection onE is anO∆1(X)−isomorphism∇ : p∗1(E) −→
p∗2(E) which restricts to the identity on X.

Given (E,∇) an OX−module with a connection, we obtain an OS−linear ho-
momorphism ∇′ : E −→ E ⊗OS

Ω1
X/S in the following way: let j1, j2 be the homo-

58
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morphisms OX −→ O∆1(X) corresponding to p1 and p2 respectively. Then, denoting

with ji(E) the morphisms E −→ p∗i (E), we get ∇′ = (∇−1 ◦ j2(E))− j1(E).

Example B.1.

1. If G = Gm,S, then the connections on a Gm,S−torsor P are in bijection with the

connections on the line bundle corresponding to P;

2. If G = Ga,S, then the Ga,S−torsors P are in bijection with the extensions (ε)

of OX by OX . The connections on P correspond to isomorphisms of extensions

p∗1(ε)
∼=−→ p∗2(ε) which restrict to id(ε) on X.

We have a category having as objects the pairs (P, ∇), with P G−torsor and
∇ connection on P . The homomorphism sets Hom((P, ∇), (Q, ∇′)) are given by

morphisms η : P −→ Q such that:

p∗2(P ) p∗2(Q)

p∗1(Q)p∗1(P )

	

p∗2η

∇

∼=

∇′

p∗1η

∼=

Such morphism η : P −→ Q is said to be horizontal when the connections on P and

Q are understood as being given.

B.2 The curvature of a connection

What we want to do next is to pick an element in Γ(X, Ω2
X/S ⊗OS

Lie(G)) in a

suitable way to de�ne the curvature tensor of a connection, according to the standard

di�erential geometry theory in which the curvature of a connection on a principal

G−bundle E (with G a Lie group) can be seen as a 2−form ω over E ×G g, where

g is the Lie algebra of G.

We shall �rst de�ne the curvature of a connection on the trivial bundle GX and then

show that these tensors can be patched together to give a de�nition for an arbitrary

torsor P .

B.2.1 Connections on GX

A connection on GX is simply an automorphism of G∆1(X) which restricts to the

identity. This is completely determined by telling what it does to the unit section,
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and hence is determined by giving an arbitrary element ξ in ker(Γ(∆1(X), G) −→
Γ(X, G)). We have:

ker(Γ(∆1(X), G) −→ Γ(X, G)) ∼= HomOX
(ωG ⊗OS

OX , Ω1
X/S)

∼= Γ(∆1(X), Ω1
X/S ⊗OS

Lie(G))

Thus, we de�ne the curvature form of the connection to be the image of ξ in

Γ(X, Ω2
X/S ⊗OS

Lie(G)) under the morphism:

d⊗OS
idLie(G) : Ω

1
X/S ⊗OS

Lie(G) −→ Ω2
X/S ⊗OS

Lie(G)

B.2.2 Connections on an arbitrary G−torsor

Now let P be an arbitrary G−torsor on X endowed with a connection ∇. P be-

comes trivial after an étale base change X ′ −→ X, by our de�nition of torsor. We

have an induced connection on PX′ : choosing a trivialization of PX′ , we construct

the curvature of the induced connection which lies in Γ(X ′, Ω2
X′/S ⊗OS

Lie(G)) ∼=
Γ(X ′, f∗Ω

2
X/S ⊗OS

Lie(G)). Note that this equality follows from the fact that X ′ is

étale over X.

In order to show that this local construction descends to de�ne a section in

Γ(X, Ω2
X/S ⊗OS

Lie(G)) (that will be the curvature of the connection ∇), we only
need to show that the curvature of PX′ is independent of the choice of trivialization,

since then the application of p∗1 and p
∗
2 to our section in Γ(X ′, f∗Ω

2
X/S ⊗OS

Lie(G))
yields the same section of Γ(X ′ ×X X ′, f∗ΩX′×XX′/S ⊗OS

Lie(G)) and thus we can

apply descent.

To do this, take two trivializations ϕ : P −→ G and ψ : P −→ G, and express the

comparison ψ ◦ ϕ−1 as an S−morphism g : X −→ G.

The di�erence between the two curvatures obtained by the above process is then

dα ∈ Γ(X, Ω2
X/S ⊗OS

Lie(G)), where α = p∗2(g)− p∗1(g) is interpreted as an element

in Γ(X, Ω1
X/S ⊗OS

Lie(G)) via the isomorphism:

ker(HomS(∆
1(X), G)) −→ HomS(X, G))

∼=−→ Γ(X, Ω1
X/S ⊗OS

Lie(G))

and d is induced from the exterior di�erential:

d: Ω1
X/S −→ Ω2

X/S

Lemma B.3. dα = 0.
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Proof. Let πG : G −→ S and πX : X −→ S the structure morphisms of G and

X respectively. α can be viewed as a homomorphism α : ωG −→ π∗ΩX/S via the

isomorphism:

Γ(X, Ω1
X/S ⊗OS

Lie(G)) ∼= HomOS
(ωG, π∗Ω

1
X/S)

Let us study the diagram:

X G S

∆1(X) ∆1(G) Inf1S(G)

G×S G G

		

		

g

(p1 ◦ g, p2 ◦ g)

By the isomorphisms above we have that α is the composition of the two top hori-

zontal arrows in the following diagram:

ωG π∗Ω
1
G/S π∗Ω

1
X/S

π∗Ω
2
G/S π∗Ω

2
X/S

	

d g

d d

The image of ωG in π∗Ω1
G/S is killed by d, thus by the commutativity of the diagram

it follows that dα = 0.

This ends the discussion on the construction of the global curvature of the

G−torsor P .

B.3 ♮−torsors

De�nition B.4.

1. A connection ∇ on P is integrable if the curvature associated to (P, ∇) is 0.

2. A G−torsor endowed with an integrable connection is a ♮−torsor.
♮−torsors form a full subcategory of the category of G−torsors with connection
(P, ∇) that we denote with T ors♮(X,G).

Since by our hypothesis G is commutative, we can de�ne the contracted product

P
G
∧ Q of two G−torsors P , Q in the following way: it is the shea��cation of the

presheaf given by the quotient of P ×SQ by the action of G : g(p, q) = (g ·p, g−1 · q).
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P
G
∧Q is a G−torsor by letting G act on either of the factors.

If P and Q are endowed with connections ∇P and ∇Q respectively, then we have a

connection de�ned on P
G
∧Q in the following way:

∇P

G
∧∇Q : p∗1(P )

G
∧ p∗1(Q) p∗1(P

G
∧Q)

p∗2(P )
G
∧ p∗2(Q) p∗2(P

G
∧Q)

∼= ∼=
∼=

The curvature tensor associated to ∇P

G
∧ ∇Q is the sum of the curvature tensors

associated to ∇P and to ∇Q. In particular, it is obvious that if P and Q are both

♮−torsors then also P
G
∧Q is a ♮−torsor.

If X is an S−group, then it is possible to impose additional structures on a

GX−torsor P requiring that P is an S−group. Thus, we obtain a central extension

of S by G:

e −→ G −→ P −→ S −→ e

To do so, the most convenient way, denoting with πj : X ×S X −→ X the projec-

tion maps and with s : X ×S X → X the addition law, is to give an isomorphism

β : π∗1(P )
G
∧ π∗2(P )

∼=−→ s∗(P ), and requiring the diagrams that express associativity

and commutativity to commute.

De�nition B.5. A ♮−extension of the smooth group G by the commutative group

X is a triple (P, ∇, β), with (P, ∇) a ♮−torsor on X under G and where β is a

horizontal morphism π∗1(P )
G
∧ π∗2(P )

∼=−→ s∗(P ) such that (P, β) de�nes a group

structure on P making it an extension of X by G.



Appendix C

Hodge theory

Motivations

The cohomology vector spaces Hn(X, C) of a compact Kähler variety X over C are

endowed with a Hodge structure of weight n, that is a natural bigraduation:

Hn(X, C) ∼=
⨁
p+q=n

Hp,q

such that Hp,q ∼= Hq,p. In this appendix, following the work of Deligne ([8] and

[9]) and the account on Hodge theory of Steenbrink ([26]), we shall de�ne the main

concepts and results of Hodge theory, and show that the complex cohomology of

a nonsingular algebraic variety (not necessarily compact) is endowed with a more

general structure which makes Hn(X, C) into a "sequence of extensions" of Hodge

structures with descending weights 2n ≤ p ≤ n, whose Hodge numbers hp,q =

dimHp,q are 0 for all p, q ≥ n. In the end we give the de�nition of hypercoverings,

which are used in Chapter 1 in order to de�ne the algebraic de Rham cohomology

for arbitrary varieties in characteristic 0.

C.1 Filtrations

C.1.1 Filtered objects

Let A be an abelian category.

De�nition C.1. A descending �ltration F of type Z of an object A of A is a family

F n(A)n∈Z of subobjects of A such that for all n ≤ m Fm(A) ⊆ F n(A). If F is a

descending �ltration on A, set F∞(A) = 0 and F−∞(A) = A.

A �ltered object is an object endowed with such a �ltration.

63
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Remark C.2. There is the obvious, dual de�nition of ascending �ltration of an

object. It is straightforward to see that if F is a descending �ltration, then by the

law:

Fn(A) := F−n(A)

we have an ascending �ltration of A. The converse trivially holds.

Thus we can restrict ourselves to consider only descending �ltrations.

De�nition C.3. The shifted �ltration of a descending �ltration W is by de�nition

the �ltration given by:

W [n]p(A) := W n+p(A)

De�nition C.4. A �ltration is �nite if there exist integers n, m such that F n(A) =

A and Fm(A) = 0.

De�nition C.5. A morphism of �ltered objects (A, F ) −→ (B, F )1 is a morphism

f : A −→ B in the category A such that f(F n(A)) ⊆ F n(B).

The �ltered objects (and the �nitely �ltered objects) of an abelian category form

an additive category in which there exist direct and inverse limits (and thus kernels,

cokernels, images and coimages).

Let j : X ↪−→ A be a subobject of a �ltered object (A, F ). It inherits a �ltered

structure in the following way:

F n(X) := F n(A) ∩X

Analougously, if we consider the quotient q : A −→→ A

X
it has a �ltered structure in

the following way:

F n

(
A

X

)
:= q (F n(A)) ∼=

(F n(A) +X)

X

De�nition C.6. A morphism of �ltered objects f : (A, F ) −→ (B, F ) is strict (or

strictly compatible) if the canonical morphism CoIm(f) ↪−→ Im(f) is an isomor-

phism of �ltered objects.

In particular, in the categoryModR of modules over a commutative unitary ring

R, a morphism of �ltered objects f : A −→ B is strict if and only if f(F n(A)) =

f(A) ∩ F n(B).

1We use the same symbol for the �ltrations on A and B, since there will be hardly any confusion.
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De�nition C.7. If (A, F ) is a �ltered object in A, we have a graded object GrF (A)

in AZ de�ned by:

GrnF (A) :=
F n(A)

F n+1(A)

De�nition C.8. Let ⊗ : A1×· · ·×An −→ B be a right exact multiaddictive functor,

and consider Ai a �ltered object with �nite �ltration in Ai. We de�ne a �ltration

on ⊗ni=1(Ai) by:

F k

(
n⨂
i=1

(Ai)

)
:=

∑
∑
ki=k

(
Im

(
n⨂
i=1

F ki(Ai) −→
n⨂
i=1

(Ai)

))
2

Dually, if H is a left exact multiadditive functor, we set:

F k (H(Ai)) :=
⋂

∑
ki=k

(
ker

(
H(Ai) −→ H

(
Ai

F ki(Ai)

)))

If F is an exact functor, the two de�nitions are equivalent.

In this setting, we have two obvious morphisms:

n⨂
i=1

(GrF (Ai)) −→ GrF

(
n⨂
i=1

(Ai)

)

and:

GrF (H(Ai)) −→ H (GrF (Ai))

If F is an exact functor, these two morphisms are isomorphisms and one is the in-

verse to the other.

Let ◦ : A −→ Aop be the identity contravariant functor, and let (A, F ) be a

�ltered object of A. Then, the
(

A

F n(A)

)◦
's are subobjects of A◦.

De�nition C.9. The dual �ltration of F of A◦ is given by:

F n(A◦) :=

(
A

F 1−n(A)

)◦
We have that the bidual (A◦)◦ is isomorphic to A as �ltered objects.

From this de�nition, we extend the notion of a �ltration to contravariant functors

in certain variables. In particular, for the contravariant left exact functor Hom, we
2We mean sum of subobjects.
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set:

F k(HomA(A, B)) := {f : A −→ B such that f(F n(A)) ⊆ F n+k(B) for all n}

In particular, F 0(HomA(A, B)) = Hom((A, F ), (B, F )).

C.1.2 Opposed �ltrations

LetA be an object inA endowed with two �ltrations F andG. We have (GrnGGrmF (A))n,m∈Z.

Moreover we have a canonical isomorphism:

GrnGGrmF (A)
∼=−→ GrmF GrnG(A)

Consider nowH a third �ltration onA. It induces a �ltration onGrF (A), GrGGrF (A)

and GrF GrG(A). In general they are not the same: in the formula:

GrH GrGGrF (A)

H and G play a symmetric role, but not G and F .

De�nition C.10. Two �ltrations F and F on A are said to be n−opposed if

GrpF Grq
F
(A) = 0 for p+ q ̸= n.

Given a bigraded object Ap,q in A such that:

1. Ap,q = 0 for all but a �nite number of couples (p, q);

2. Ap,q = 0 for all p and q such that p+ q ̸= n;

then one can de�ne two n−opposed �ltrations of A in the following way:

• F p(A) :=
⨁
p′≥p

Ap
′,q′ ;

• F q
(A) :=

⨁
q′≥q

Ap
′,q′ .

Ap,q is then given by GrpF Grq
F
(A).

Conversely:

Proposition C.11. Let F and F be two �nite �ltrations on A. F and F are

n−opposed if and only if for all p, q such that p+ q = n+ q one has:

F p(A)⊕ F q
(A)

∼=−→ A



APPENDIX C. HODGE THEORY 67

Moreover, if F and F are two n−opposed �ltrations, by setting:⎧⎨⎩Ap,q = 0 if p+ q ̸= n

Ap,q = F p(A) ∩ F q
(A) if p+ q = n

then A =
⨁

Ap,q and F and F are deduced by the bigraduation Ap,q of A in the way

described above.

Proof. It is a trivial result that follows immediately by applying downward induction

to our de�nitions.

The previous proposition establishes an equivalence between the category of the

objects of A endowed with two n−opposed �nite �ltrations and the category of the

objects of A endowed with a bigraduation of the type described in C.1.2.

De�nition C.12. Three �nite �ltrations W , F and F on A in A are said to be

opposed if GrpF Grq
F
GrnW (A) = 0 for all p+ q + n ̸= 0.

This condition is symmetric in F and F . This means that F and F induce two

n−opposed �ltrations on
W n(A)

W n+1(A)
, by setting Ap,q := GrpF Grq

F
Gr−p−qW (A), from

which follows the decomposition:

W n(A)

W n+1(A)
=

⨁
p+q=−n

Ap,q

which makes GrW (A) a bigraded object.

Lemma C.13. Let W , F and F three �nite opposed �ltrations on A, let σ =

{(pi, qi)}i∈I≥0
with I ⊆ Z× Z such that:

a. pi ≤ pj and qi ≤ qj for all i ≥ j;

b. for all i > 0, pi + qi = p0 + q0 + 1− i.

Setting p = p0, q = q0, n = −p− q and:

Aσ :=

(∑
0≤i

(
W n+i(A) ∩ F pi(A)

))⋂(∑
0≤i

(
W n+i(A) ∩ F qi

(A)
))

then the quotient π : W n(A) −→→ GrnW (A) induces an isomorphism Aσ
∼=−→ Ap,q ⊆

GrnW (A).

We can state the main theorem of this section (for details, see [9, Theorem

1.2.10]):



APPENDIX C. HODGE THEORY 68

Theorem C.14. Let A be an abelian category, and denote with A′ the category of

the objects of A endowed with three opposed �ltrations W , F and F , with morphisms

given by the morphisms in A compatible with the three �ltrations. Then:

• A′ is an abelian category;

• The kernel (respectively the cokernel) of a morphism f : A −→ B in A′ is
the kernel of the morphism f in A endowed with the �ltration induced as a

subobject of A (respectively is the cokernel of the morphism f in A endowed

with the �ltration induced as a quotient of B);

• All the morphisms f : A −→ B in A′ are strictly compatible with the �ltrations

W , F and F . The morphism GrW (f) is compatible with the bigraduations

of GrW (A) and GrW (B). The morphisms GrF (f) and GrF (f) are strictly

compatible with the �ltration induced by W ;

• The forgetful functor, and the functors GrW , GrF , GrF and GrW GrF ∼=
GrF GrW ∼= GrF GrF GrW ∼= GrF GrW ∼= GrW GrF from A′ to A are all exact.

C.2 Hodge structures

C.2.1 Pure structures

In this section, we shall work with R and its algebraic closure C. We shall denote

by S the real algebraic group deduced by Weil restriction of scalars from the group

Gm over C, that is, de�ning the contravariant functor ResC/R(Gm) from Sch/R to

Set given by:

T ↦→ Gm(T ×R C)

the evaluation of ResC/R(Gm) in R (see also [5, Section 7.6].

It is clear that the R−rational points of ResC/R(Gm) are the C−rational points of
Gm, that is: S(R) = C∗.
This is a connected group of multiplicative type, so it is an algebraic torus. Thus,

it is described by the abelian group of �nite type:

X(S) := HomC(SC, Gm) = HomR(S, Gm)(C)

of its complex characters, endowed with the action of GalC/R ∼= Z
2Z .

The group X(S) is generated by z and z which induce respectively the identity
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and the complex conjugation:

C∗ = S(R) −→ S(C) −→ Gm(C) = C∗

The complex conjugation switches z and z.

One has a canonical morphism w : Gm −→ S that, on the real points, induces

the inclusion R ↪−→ C. So z ◦ w = z ◦ w = id.

De�nition C.15. A real Hodge structure is a �nitely generated vector space V

endowed with an action of the algebraic real group S.

To give a real vector space V with an action of S is equivalent to giving a bi-

�ltration V p,q on VC := V ⊗R C such that V p,q = V q,p for all indexes p and q ([8,

2.1.5]). The action of S and the bigraduation are mutually determined by the fact

that, on V p,q, S acts by multiplication of zp · zq.

Given the commutative monoid (C, ×) let S be theWeil restriction ResC/R(C, ×).
If V is a real vector space, it is veri�ed that to give an action of S on V is equivalent

to giving a bi�ltration V p,q on VC := V ⊗RC such that p, q V p,q = V q,p for all indexes

p and q and such that V p,q = 0 if p · q < 0 ([8, 2.1.6]).

De�nition C.16. Let V be a real Hodge structure de�ned by a representation σ of

S and by a bigraduation V p,q. The graduation of VC by V n
C :=

⨁
p+q=n

V p,q is de�ned

over R and it is said to be a graduation of weights.

V is said to be a Hodge structure of weight n if V p,q = 0 for all p+ q ̸= n.

Let V be a real Hodge structure. The Hodge �ltration on VC is de�ned by:

F p(VC) :=
⨁
p′≥p

V p′,q′

It follows from the previous discussion that:

Proposition C.17. Let n be an integer. We have an equivalence between the cat-

egory of real Hodge structures of weight n and the category of the couples formed

by a real vector space V and a �ltration on VC which is n−opposed to its complex

conjugate F .

De�nition C.18. A Hodge structure H of weight n consists of:

1. A Z−module of �nite type HZ (the integer lattice);
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2. A real Hodge structure of weight n on HR = HZ ⊗Z R.

A Hodge structure of weight n is said to be of type S ⊆ Z × Z if Hp,q
C = 0 for all

(p, q) /∈ S.

A morphism of Hodge structure f : H −→ H ′ is a homomorphism f : HZ −→ H ′Z
such that fR : HR −→ H ′R is compatible with the action of S (equivalently, such that

fC is compatible with the bigraduation of HC or, again, such that fC is compatible

with the Hodge �ltration).

With these notations, the Hodge structures of weight n form an abelian category.

If H is a Hodge structure of weight n and H ′ is a Hodge structure of weight n′, one

de�nes the Hodge structure H ⊗H ′ of weight n+ n′ in the following way:

1. (H ⊗H ′)Z := HZ ⊗Z H
′
Z;

2. The action of S on (H ⊗H ′)R = HR⊗RH
′
R is the tensor product of the action

on HR with the action on H ′R.

The bigraduation (respectively, the Hodge �ltration) on (H ⊗H ′)C = HC ⊗C H
′
C is

the tensor product of the bigraduations (respectively of the Hodge �ltrations) of HC

and H ′C.

In a similar way, one de�nes the Hodge structure Hom(H, H ′) of weight n−n′, the
hodge structure

⋀pH of weight p · n and the dual Hodge structure H∗ of H.

Remark C.19. The Hodge structure Hom(H, H ′) and the group of the homomor-

phisms Hom(H, H ′) are linked. In fact, the latter is the subgroup of Hom(H, H ′)Z

formed by the homomorphisms of type (0, 0).

De�nition C.20. The Tate Hodge structure Z(1) is the Hodge structure of weight
−2, of rank 1, purely in bidegree (−1, −1), with integer lattice given by 2πiZ ( C.
The action of S on Z(1) is the multiplication by the inverse of the norm:

N : S −→ Gm

which on the real points is identi�ed by the norm NormC/R : C∗ −→ R∗.

For n ∈ Z, one de�nes the twisted Tate Hodge structure Z(n) as the n−th tensor
power of Z(1). As such, Z(n) is a Hodge structure of weight −2n, rank 1, purely in

bidegree (−n, −n), with integer lattice given by (2πi)nZ ( C. The action of S is

given by the n−th iteration of the inverse of the norm N .

We de�ne the real Tate Hodge structure R(n) (and analougously the real Tate Hodge
structure R(n)) to be the underlying real Hodge structure of Z(1) (analougously of

Z(n)).
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De�nition C.21. A polarization of a Hodge structure H of weight n is a homo-

morphism:

(x, y) : H ⊗H ′ −→ Z(−n)

such that the real bilinear form (2πi)n(x, iy) is symmetric and positive de�nite.

Analougously, one de�nes a polarization of a real Hodge structure H of weight

n to be a homomorphism:

(x, y) : H ⊗H −→ R(n)

such that the real bilinear form (2πi)n(x, iy) de�ned over HR is symmetric and

positive de�nite.

C.2.2 Mixed structures

De�nition C.22. A mixed Hodge structure H consists of:

1. A Z−module HZ of �nite type (the integer lattice);

2. An ascending �nite �ltration Wn of HQ = HZ⊗Z Q (the �ltration of weights);

3. A descending �nite �ltration F p of HC = HZ ⊗Z C (the Hodge �ltration).

such that the �ltrations WC (deduced from W by extension of scalars), F and its

complex conjugate F form a system of three opposed �ltrations (in the sense of

De�nition C.12).

Denoting again with W the �ltration on HZ deduced by W by taking its inverse

image with respect to the natural inclusion Z ↪−→ Q, the axioms of mixed Hodge

structure means that for all n the �ltrations F and its complex conjugate F induce

on C⊗ZGrWn (HZ) a system of n−opposed �ltrations. Moreover, GrWn (HZ) is endowed

with a Hodge structure of weight n with the Hodge �ltration induced by F .

De�nition C.23. A pure Hodge structureH of weight n is a mixed Hodge structure

with integer lattice HZ and Hodge �ltration F on HC such that the �ltration of

weights W on HQ is given by:⎧⎨⎩Wi(HQ) = 0 if i ̸= n

Wi(HQ) = HQ if i = n

We have the categoryMHS whose objects are mixed Hodge structures and whose

arrows f : H −→ H ′ are homomorphisms HZ −→ H ′Z compatible with �ltrations W



APPENDIX C. HODGE THEORY 72

and F (note that this condition assures that f is compatible with F too).

Then, as an immediate corollary of Theorem C.14, we obtain the following result.

Theorem C.24.

1. MHS is an abelian category;

2. The kernel (respectively the cokernel) of a morphism f : H −→ H ′ is the mixed

Hodge structure whose underlying integer lattice is K := ker(f : HZ −→ H ′Z)

(respectively, C := coker(f : HZ −→ H ′Z)). Thus, K ⊗Z Q and K ⊗Z C are

endowed with the subobject �ltrations (respectively, C ⊗Z Q and C ⊗Z C are

endowed with the quotient �ltrations) of the �ltrations W and F of HQ and

HC;

3. All the morphisms f : H −→ H ′ are strictly compatible with the �ltrations

W of HQ and H ′Q and F of HC and H ′C. This induces morphisms of Hodge

structures:

GrWn (f) : GrWn (HQ) −→ GrWn (H ′Q)

and morphisms which are strictly compatible with the induced by WC

GrpF (f) : GrpF (HC) −→ GrpF (H
′
C)

4. The functor GrWn is an exact functor from MHS to the category of rational

Hodge structures of weight n;

5. The functor GrpF is an exact functor.

Let H be a mixed Hodge structure. The Wn(HZ) endowed with the �ltrations

induced byW and F form a system of mixed Hodge substructuresWn(H) of H. The

quotient
Wn(H)

Wn−1(H)
is identi�ed with GrnW (HZ) endowed with the Hodge structure

described in De�nition C.23.

We shall denote such Hodge structure with GrWn (H).

De�nition C.25. Denote with Hp,q := GrpF Grq
F
GrWp+q(HC). The Hodge numbers

are the integers hp,q = dimC(H
p,q).

The Hodge numbers of a mixed Hodge structure H coincide thus with the Hodge

numbers of Hodge structure GrWp+q(H).
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C.2.3 Hodge structure on the singular cohomology of a smooth

complex algebraic variety

The most important result of this discussion is that for any smooth complex al-

gebraic variety X, the singular cohomology group H∗(X, Z) is the underlying in-

teger lattice of a mixed Hodge structure. This is obtained by considering X as

an open dense Zariski subset of a smooth compact variety X with normal cross-

ing boundary divisor Y = X \ X. We have that for any good compacti�cation X

with boundary normal crossing divisor Y one has that H∗(X, C) is isomorphic to

H∗
(
X, Ω∗

X/C (log Y )
)
([26, Theorem 4.2]). So, we consider the ascending �ltration

of weights on Ωp

X/C (log Y ) given by the submodules WnΩ
p

X/C (log Y ) generated by

elements of the form:
d ti(1)
ti(1)

∧ . . .
d ti(m)

ti(m)

for m ≤ n, with α holomorphic and ti(j) local equation of the distinct local com-

ponent Yj of Y ([8, 3.1.5]). Together with the trivial �ltration by truncations, this

construction gives a structure of bi�ltered complex on Ωp

Xn/C
(log Yn).

We have thus two spectral sequences WE
p,q and FE

p,q. The �rst, changing the in-

dexes WE
p,q
1 ↦→ E2p+q,−p

2 is nothing more than the Leray spectral sequence of the

inclusion j : X ↪−→ X ([8, 3.2.4]), while the second is described by:

FE
p,q
1 = Hq

(
X, Ωp

X/C (log Y )
)
=⇒ Hp+q(X, C)

These two sequences converge and provide two �ltrationsW and F on H∗(X, C). In
particular W is deduced by an ascending �ltration W on H∗(X, Q) := H∗(X, Z)⊗Z

Q, and thus we have that:

H∗(X) := (H∗(X, Z), H∗(X, C), W, F )

is a mixed Hodge structure, whose construction is funtorial in X and which does

not depend on the choice of the smooth compacti�cation X ([8, Theorem 3.2.5]).

C.3 Cohomological descent and hypercoverings

De�nition C.26.

1. The simplicial indexing category∆ is the category whose objects are the totally

ordered sets ∆n = {0, 1, . . . , n}, with n + 1 face arrows δi : ∆n −→ ∆n+1

such that {i} /∈ Im δi and n degeneracy arrows σi : ∆n −→ ∆n−1 such that
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σi(i) = σi(i+ 1) = i;

2. A simplicial object in a category C is a contravariant functor from ∆ to C.

3. A simplicial topological space X∗ is a simplicial object in the category T op
of topological spaces. A sheaf F∗ on a simplicial topological space X∗ is a

collection of sheaves Fn on Xn such that for any f : ∆n −→ ∆m there is a map

F∗(f) : Fn −→ Fm.

Given a simplicial topological space X∗, one can consider the global sections

functor Γ(X, −) on the category of sheaves on X∗. This functor is left exact, thus

one can derive it to obtain:

Hi (X∗, F∗) := Ri Γ (X∗, F∗)

Consider now a simplicial topological space X∗ with an augmentation morphism

a : X∗ −→ S. For any sheaf F over S, we have the morphism:

ϕ : F −→ a∗a
∗F

De�nition C.27. a : X∗ −→ S is a morphism of cohomological descent if for all

abelian sheaves F over S one has:

F
∼=−→ ker (a0∗a

∗
0F −→ a1∗a

∗
1F)

and Ri Γ (S, a∗a
∗F) = 0 for i > 0.

If a : X∗ −→ S is of cohomological descent, then for any complex K∗ of quasi-

coherent sheaves on S such that Ki = 0 for all i ≤ 0 we have that the canonical

morphism:

RΓ (S, K∗) −→ RΓ (S, R a∗a
∗K∗) ∼= RΓ (S, a∗K∗)

is an isomorphism ([9, 5.3.3]). In particular, for any abelian sheaf F on S we have

a spectral sequence:

Ep,q
1 = Hq

(
Xp, a

∗
pF
)
=⇒ Hp+q (S, F)

and for any complex of abelian sheaves K∗ on S we have a spectral sequence:

Ep,q
1 = Hq

(
Xp, a

∗
pK∗

)
=⇒ Hp+q (S, K∗)

Given a morphism X −→ S of topological spaces, we can obtain a simplicial topo-
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logical space X∗ with augmentation X∗ −→ S in the following way: set X0 := X,

and consider X1 := X ×S X. Then the two face maps σi : X1 −→ X0 correspond

to the projection and the degeneracy map δ0 : X0 −→ X1 corresponds to the di-

agonal morphism. For n = 2, X2 is the subspace of X ×S X ×S X formed of the

triples (x0, x1, x2) such that δ0(x0) = δ0(x1), δ1(x0) = δ0(x2) and δ1(x1) = δ1(x2).

Inductively, Xn is the subspace of the (n + 1)−fold �ber product of X over S and

the map ϕ : ∆n −→ ∆m corresponds to the morphism described in coordinates by

(x0, . . . , xm) ↦→ (xϕ(0), . . . , xϕ(n)).

This construction yields in all generality whenever C has all �nite limits, and gives

rise to a right adjoint functor to the natural n−truncation functor skn from the

category ∆ to the category ∆≤n. The space Xn is also called the n−coskeleton of

X∗, and is denoted with cosk(skn(X∗)) (see [9, 5.1.1]).

De�nition C.28. A continuous function X −→ S is of cohomological descent if

the augmentation morphism of X∗ −→ S is of cohomological descent. A continuous

function X −→ S is universally of cohomological descent if for any base change

T −→ S the continuous function XT −→ T is of cohomological descent.

We can now state the fundamental result of this section, which due to Grothendieck

([14, SGA 4, V bis]).

Theorem C.29.

1. The continuous morphisms of universal cohomological descent form a Grothendieck

topology on the category of topological spaces, called the universally cohomo-

logical descent topology.

2. Any proper and surjective morphism is universally of cohomological descent.

3. Any morphism X −→ S admitting local sections over S is universally of co-

homological descent.

4. Given a k−truncated simplicial topological space X∗ −→ S, for any k ≥ n ≥
−1 we have a natural map:

ϕn : cosk(X∗) −→ cosk(skn(X∗))

Then X∗ is a k−truncated hypercovering of S for the universally cohomological

descent topology if the morphisms:

(ϕn)n+1 : Xn+1 −→ cosk(skn(X∗))n+1
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is universally of cohomological descent.

We can explicitly construct a proper hypercovering of a topological space S.

First, we choose a morphism X0 −→ S which is proper and surjective. Then,

consider cosk({X0}) = X0 ×S X0 and take a proper surjective morphism N1 −→
cosk({X0}). In general we do not have a morphism X0 −→ N1, so we consider

X1 := N1

∐
X0. Inductively, we construct topological spaces Xn and n−truncated

simplicial topological spaces nX∗ −→ S which are successive n−skeletons of a proper
hypercovering of S.
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