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Introduction

Michel André and Daniel Quillen developed independently the ("correct" 1) cohomology the-
ory for commutative rings. Our main goal is to understand this cohomology. We will see
different ways to define it; as a cotriple cohomology, using the cotangent complex or via more
general simplicial resolutions. We will also compute explicit descriptions of this cohomology
in degrees 0 and 1 as well as some more general properties.

In the first chapter we define model categories, and we discuss one main example of a
model category, the category of chain complexes on an abelian category (with "enough pro-
jectives"). In particular, we provide a full proof showing that the category of R-modules for a
commutative ring R is a model category. We also see how to provide a model category struc-
ture on the category of simplicial sets, and on the category of simplicial objects in an abelian
category (with "enough projectives").

We develop a homotopy theory on simplicial sets in such a way that it is equivalent in
a strong sense to the ordinary homotopy theory of topological spaces. The construction of
this homotopy theory looks natural once we realize there is a pair of adjoint functors between
these two categories. On the other hand, we also construct a (co-) homotopy theory on simpli-
cial objects of an abelian category using the (co-) homology theory of chain complexes over
that abelian category. In this case, we do not only have a pair of adjoints relating these two
categories, but they are also inverse equivalences. This is the content of the Dold-Kan corre-
spondence. For the model category and homotopy theory part, the main references are Goerss
and Jardine [3], Hovey [6] and Quillen [12]. In the last section, where we prove the Dold-Kan
correspondence, we follow Weibel [17].

In the second chapter, we mainly work in the category of commutative rings. As in any
abelian category, the derived functors are defined using resolutions of rings and applying ho-
mology and cohomology to the image of resolutions under those functors. The Dold-Kan
correspondence allows us to look at these resolutions as augmented simplicial rings. Thus, we
can define homology and cohomology on rings using the homotopy and cohomotopy theory
of simplicial rings that we built in the previous chapter. We define cotriples ("comonads"
in Mac Lane [8]) on a category, and we use them to define certain augmented simplicial
objects. In the category of rings, we construct an explicit cotriple that provides (cofibrant)
augmented simplicial rings over any given ring. This important feature exhibits the relation
between cotriple cohomology and the (André-Quillen) cohomology for commutative rings. In
the last section of this chapter, we describe how the cohomology of rings looks like in low
degrees. More specifically, for a k-algebra R, we see that the cohomology of R with values in
an R-module M in degree 0 is just the module of k-derivations Derk(R,M), and in degree one

1In words of Daniel Quillen.
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viii Chapter 0. Introduction

is precisely Exalcommk(R,M), the equivalence classes of extensions of R by M (as defined in
Grothendieck [5]).

In the last chapter, we see how the cotangent complex can help us understand homology
and cohomology of rings in higher degrees. In particular, we realize that the cotangent com-
plex is a free simplicial R-module in the sense of Quillen [14] and therefore we can express
homology and cohomology using the derived functors Tor and Ext respectively. Moreover, for
any A→ B→ C morphisms of rings, we show that the respective cotangent complexes form
a distinguished triangle in the derived category of R-modules. The long exact sequence for
cohomology follows from this fact. We also prove how the cotangent complex behaves under
flat base changes and its consequences for homology and cohomology. The main references
here are Iyengar [7] and Quillen [14].

Finally, we generalize the construction of homology and cohomology of commutative rings
for some other categories. The motivation behind this is realizing that in the category of k-
algebras over R, the abelianization functor is left adjoint to the natural faithful functor. In
particular, this is also true for the category of universal algebras defined by a set of operations
and relations. We use this link to extend the definitions of homology and cohomology for
universal algebras. At the end, we include some remarks on how this cohomology can also be
seen as a cotriple cohomology and as a special case of a more general sheaf cohomology using
Grothendieck topologies. In this last part, we follow Quillen [12] and [13].
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Chapter 1

The Dold-Kan Correspondence

In order to provide a consistent homotopy theory on abelian categories we define model cate-
gories, which axiomatize homotopy properties of well-known homotopy theories for topologi-
cal spaces or even homology over chain complexes.

1.1 Model categories
Definition. Let C be a category. A map f in C is a retract of a map g ∈ C if there is a commu-
tative diagram of the form

A C A

B D B

f

id

g f

id

Definition. A model category is a category C which is equipped with three classes of maps
called weak equivalences, fibrations and cofibrations, subject to the following axioms:

M1: The category C is closed under finite limits and colimits.

M2: For every commutative diagram

A B

C

f

h g

in C, where any two of f , g, h are weak equivalences, then so is the third one.

M3: The three distinguished classes of maps are closed under retracts.

M4: For any commutative diagram of solid arrows in C

A X

B Y

j p

where j is a cofibration, p is a fibration, and one of them is also a weak equivalence, then
the dotted arrow exists making the diagram commutative.

1



2 Chapter 1. The Dold-Kan Correspondence

M5: Any map f : X −→ Y in C can be factored in two ways:

(i) X i−→ Z
q−→Y , where i is a cofibration, and q is a weak equivalence and a fibration,

(ii) X
j−→ Z

p−→Y , where j is a weak equivalence and a cofibration, and p is a fibration.

Definition. A map in a model category C which is both a weak equivalence and a cofibration
is called an acyclic cofibration. Analogously, a map in C which is both a weak equivalence and
a fibration is called an acyclic fibration.

By M1, any model category C has an initial object φ (colimit of the empty diagram) and a
terminal object ⋆ (limit of the empty diagram).

Definition. An object X in a model category C is called cofibrant if the canonical map φ −→ X
is a cofibration. It is called fibrant if X −→ ⋆ is a fibration.

Definition. For i : A→ B, p : X → Y , maps in a category C, we say that i has the left lifting
property (LLP) with respect to p, or that p has the right lifting property (RLP) with respect to
i if for any commutative square of solid arrows

A X

B Y

i p

there exists the dotted arrow making the whole diagram commutative.

Remark. Using these definitions we can characterize fibrations and cofibrations of a model
category C. A cofibration in C has the LLP with respect to all acyclic fibrations (by M4). On
the other hand, if f is a map in C having the LLP w.r.t. all acyclic fibrations, then we can factor
f = qi where i is a cofibration and q an acyclic fibration. Then, f has the LLP w.r.t. q, so there
is some u solving the lifting problem

X Z

Y Y

i

f q

idY

u

and we get a commutative diagram

X X X

Y Z Y

id

f

id

i f

u

id

q

which means that f is a retract of the cofibration i. Thereofore it is also a cofibration. This
shows that a map in C is a cofibration if and only if it has the LLP with respect to all acyclic
fibrations in C. Analogously we see that a map in C is a fibration if and only if it has the LLP
with respect to all acyclic cofibrations.
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Corollary 1.1.1. If the following commutative diagram in a model category C

A C

B D

f g

is a pushout square, and f is a cofibration, then g is also a cofibration. If, on the other hand,
it is a pullback square and g is a fibration, then f is a fibration too.

Proof. Direct consequence of the previuos remark.

Let R be a commutative ring (with 1) and let ModR be the category of R-modules. Then
Ch>0(R) is the category of non-negative chain complexes in ModR. This provides the first
example of a model category.

Theorem 1.1.2. The category Ch>0(R) has the structure of a model category where a mor-
phism f : M•→ N• is

• a weak equivalence if H⋆ f is an isomorphism;

• a fibration if fn : Mn→ Nn is surjective for n > 1, and;

• a cofibration if fn is injective with projective cokernel for n > 0.

In order to prove this theorem we use the following result that characterizes acyclic fibra-
tions in Ch>0(R). For a chain complex M• we denote by ZnM ⊆Mn the cycles in Mn, setting
Z−1M = 0. The differential map is always denoted by ∂ M.

Lemma 1.1.3. Let f : M• −→ N• be a morphism in Ch>0(R). The following are equivalent:

(a) H⋆ f is an isomorphism and fn : Mn→ Nn is surjective for n > 1.

(b) The induced map
f ′ : Mn −→ Zn−1M×Zn−1N Nn

is surjective for n > 0.

Proof. (a)⇒ (b): For n = 0, f ′ is just f0 : M0 −→ N0. Let n ∈ N0. By surjectivity of H0 f there
are some m ∈M0, n ′ ∈ N1 such that n = f0(m)+ ∂ N

1 (n ′). By surjectivity of f1 there is some
m ′ ∈M1 with f1(m ′) = n ′, and therefore f0(m+ ∂ M

1 (m ′)) = f0(m)+ ∂ M
0 ( f1(m ′)) = n. Thus,

f0 is surjective. Now let n > 1 and form the diagram

Mn

Zn−1M×Zn−1N Nn Nn

Zn−1M Zn−1(N)

fn

∂ M
n

f ′

p2

p1 ∂ N
n

fn−1

For any (m,n) ∈ Zn−1M×Zn−1Nn , there is some m ′ ∈Mn with fn(m ′) = n. Then

∂
M
n (m ′)−m ∈ Zn−1M
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and fn−1(∂
M
n (m ′)−m) = 0. Since fn is surjective for all n > 0 we get a short exact sequence

of chain complexes

0 ker( f )• M• N• 0
f

and since H⋆ f is an isomorphism, applying the long exact sequence of homology we get that
the complex ker( f )• is acyclic. Hence, there is some m ′′ ∈ ker( fn) such that

∂
M
n (m ′′) = ∂

M
n (m ′)−m,

and therefore f ′(m ′−m ′′) = (m,n).
(b) ⇒ (a): Let n > 1. For any n ∈ Zn(N), let (0,n) ∈ Zn−1M×Zn−1N Nn and by surjectivity
of f ′ there is some m ∈ Mn such that f ′(m) = (0,n). Then ∂ M

n (m) = 0, so m ∈ ZnM and
fn(∂

M
n (m)) = n, so fn : ZnM −→ ZnN is surjective for all n > 1. But then, the map p2 is also

surjective, and thus fn is surjective. This also gives surjectivity of H⋆ f . To see injectivity, let
m ∈ Zn−1M, such that fn−1(m) = ∂ N

n (n) for some n ∈ Nn. Then (m,n) ∈ Zn−1M×Zn−1N Nn, and
we can take some m ′ ∈Mn such that f ′(m ′) = (m,n). But then ∂ M

n (m ′) = m so m is in fact a
boundary of Zn−1M.

Proof of Theorem 1.1.2. First note that Ch>0(R) is closed under finite limits and colimits. Let
us see that the classes of maps defined as in the statement satisfy the rest of the axioms. Axioms
M2 and M3 are clear.

Let us denote by D(n), n > 1 the chain complex given by

D(n)k =

{︄
R for k = n−1,n

0 for k ̸= n−1,n
∂k =

{︄
idR for k = n

0 for k ̸= n.

In particular, note that Hm(D(n)) = 0 for all m > 0. There is a natural isomorphism

HomCh>0(R)(D(n),N•) −→ Nn

h ↦−→ hn(1R).

If f : M• −→ N• is a fibration, then for every n > 1 there is a solution to the lifting problem

0 Mn

R Nn

fn

since R is a projective R-module. Hence, f has the RLP w.r.t. the maps 0−→ D(n), n > 1. On
the other hand, if f : M• −→ N• is a map having the RLP w.r.t. all the maps 0 −→ D(n), for
n > 1, then for any n > 1 and x ∈ Nn, x determines a map h : D(n)−→ N• such that hn(1R) = x.
The solution to the lifting problem

0 M•

D(n) N•

f
u

h

provides a map u such that fn(un(1R)) = hn(1R) = x. Hence, the map fn is surjective for all
n > 1. Thus, a map is a fibration if and only if it has the RLP w.r.t. all maps 0−→D(n), n > 1.
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For a chain complex M•, we define the chain complex

P(N•) =
⨁︂
n>0

⨁︂
x∈Nn

D(n)[x]

where D(n)[x] denotes a copy of D(n). We define an evaluation morphism ε : P(N•) −→ N•,
where any r ∈ D(n)[x]n is sent to x ∈ Nn. Hence, ε is surjective in every degree, so it is a
fibration. Moreover, Hm(P(N•)) = 0 for all m > 0, so it is an acyclic complex. For any map
X• −→ Y• which is degree-wise surjective, the lifting problem on the left

X•

P(N•) Y•

u
Xn

P(N•)n Yn

un

has a solution u whose degree n is given by the solution of the lifting problem on the right,
which exists since P(N•)n is a free R-module with basis {x | x ∈ Nn∪Nn+1}.

We prove first axiom M5. Let f : M• −→ N• be a morphism of chain complexes. By the
universal property of the coproduct we can factorize f as

M• M•⊕P(N•) N•
j p

where q is surjective in every degree since it is the composite

P(N•) M•⊕P(N•) N•

ε

p

and ε is surjective in every degree. So p is a fibration. On the other hand, j is injective in every
degree, and coker( jn)∼= P(N•)n which is a projective module. Since P(N•) is acyclic,

Hn(M•⊕P(N•))∼= Hn(M•)

and H⋆ j is indeed an isomorphism. Thus j is an acyclic cofibration. This proves the factor-
ization in M5 (ii). For the other one, we proceed by the following induction on n > 0: for all
0 6 k 6 n−1 we assume there are R-modules Qk and maps ik : Mk −→Qk, qk : Qk −→ Nk and
∂

Q
k : Qk −→ Qk−1 such that fk = qk ik, (∂ Q

k )2 = 0, ik is a cofibration and the induced map

Qk Zk−1Q×Zn−1N Nk

is surjective for all 0 6 k 6 n−1. For the case n = 0 we just choose a surjection P0 � N0 with
P0 projective module and factorize f0 as

M0 M0⊕P0 N0
i0 q0

i0 is injective with projective cokernel P0 and q0 is surjective since the map P0 � N0 is surjec-
tive. We set Q0 = M0⊕P0. Finally

Q0 Z−1Q×Z−1N N0 ∼= N0
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is isomorphic to the surjective map q0.
For the inductive step, we consider the commutative diagram

Mn Zn−1M Zn−1Q

Nn Zn−1N

fn

∂ M
n Zn−1 in−1

Zn−1 qn−1

∂ N
n

which gives a map

f ′ : Mn Zn−1Q×Zn−1N Nn

factoring fn. Let us call Nn
′ = Zn−1Q×Zn−1N Nn, and choose a surjection Pn

′� Nn
′ with P ′n a

projective module such that f ′ is factorize as

Mn Mn⊕P ′n Nn
′in q ′n

where in is injective with projective cokernel P ′n and q ′n is surjective since P ′n � Nn
′ is sur-

jective. Setting Qn = Mn⊕P ′n, and qn = prNn
q ′n : Qn −→ Nn. This completes the induction,

where the differential map ∂
Q
n is given by the diagram

P ′ Zn−1Q×Zn−1N Nn

Qn Qn−1

Mn Mn−1

prZn−1Q

∂
Q
n

∂ M
n

Induction gives a chain of R-modules Q• and chain maps i : M• −→Q•, q : Q• −→ N• such
that f = qi. The map i is degree-wise injective with projective cokernel, so it is a cofibration.
The map q induces a surjection Mn −→ Zn−1Q×Zn−1N Nn for n > 0, so by Lemma 1.1.3 is an
acyclic fibration.

For axiom M4 assume we are given a commutative diagram

A• M•

B• N•

f gu (1.1)

where g is an acyclic fibration, and f is a cofibration. We construct the map u by induction on
its degree. Lemma 1.1.3 for n = 0 says that the map g0 : M0 −→ N0 is surjective. Since f0 is
injective, B0 ∼= A0⊕ coker( f0), where coker( f0) is a projective module. Hence, the following
lifting problem

A0 M0

A0⊕ coker( f0) N0

g0
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has a solution which is precisely u0. Assume now that uk : Bk→Mk is given for k < n. To build
un we need to solve the lifting problem

An Mn

Bn Zn−1M×Zn−1N Nn

fn
un

where the map on the right is surjective by Lemma 1.1.3. Moreover, fn is injective, so we
have Bn ∼= An⊕ coker( fn), where coker( fn) is a projective module. Hence the problem has a
solution which is the map un.

Assume now that in (1.1) g is a fibration and f is an acyclic cofibration. We can apply the
acyclic cofibrant-fibrant factorization to the map f and we have

A• A•⊕P(B•)

B• B•

j

f p

id

u

where j is an acyclic cofibration and p is a fibration. Since both j, f are weak equivalences, by
M2 p is a weak equivalence too, so it an acyclic fibration, and therefore the map u exists. We
get a commutative diagram

A• A• A• M•

B• A•⊕P(B•) B• N•

id

f j

id

f g

u

id

p

and by the lifting property of P(B•) we get a map A•⊕P(B•) −→ M• making the diagram
commutative, whose composition with u gives the desired map B•−→M• solution of (1.1).

There is another important example of model category, which is the category of topological
spaces, Top. More precisely, we focus our attention on the category of complactly generated
Hausdorff spaces, CGH, for reasons that will be clear later on. Weak equivalences in CGH are
the weak homotopy equivalences (whence the name), and fibrations are the Serre fibrations.
Cofibrations are uniquely determined by the maps having the LLP with respect to all acyclic
fibrations.

1.2 Fibrant simplicial sets
We define the category ∆ whose objects are totally ordered sets n = {0 < 1 < .. . < n} with
n+1 elements, and whose morphisms f : m→ n are order-preserving set functions.

Definition. For any category A, a simplicial object A⋆ in A is a functor A⋆ : ∆op −→ A.
Equivalently, a cosimplicial object C⋆ in A is a functor C⋆ : ∆ −→ A. For simplicity, we
will denote An = A⋆(n), whose elements are called n-simplicies (we also say vertices for the
0-simplicies), Cn =C⋆(n) and A⋆( f ) = f ⋆ for f a map in ∆. A simplicial map is just a natural
transformation. We will denote by SA the category of simplicial objects in A together with
these simplicial maps as morphisms.
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Example 1.2.1. For any object A in a category A we can construct a "constant" simplicial
object cA = (cA)⋆ ∈ SA given by (cA)n = A for all n > 0, and taking f ⋆ = idA for every map
f in ∆.

The following result shows a way to characterize simplicial objects that will be useful.

Proposition 1.2.2. Let A be a category. A simplicial object A⋆ in A is just a sequence of
objects An, n > 0 together with maps

di : An→ An−1, 0 6 i 6 n (face maps)

s j : An→ An+1, 0 6 j 6 n (degeneracy maps)

which satisfy the following simplicial identities

did j = d j−1di if i < j

sis j = s j+1si if i 6 j

dis j =

⎧⎪⎪⎨⎪⎪⎩
s j−1di if i < j

identity if i = j, j+1

s jdi−1 if i > j+1

Proof. In the category ∆ we define the coface maps di : n−1→ n and codegeneracy maps
si : n+1→ n as follows:

di( j) =

{︄
j if j < i

j+1 if j > i
, si( j) =

{︄
j if j 6 i

j−1 if j > i
,

i.e., di is the unique (order-preserving) injective map whose image does not contain i ∈ n, and
si is the unique surjective map that sends two different elements in n+1 to i ∈ n. These maps
satisfy the following cosimplicial identities:

d jdi = did j−1 if i < j

s jsi = sis j+1 if i 6 j

s jdi =

⎧⎪⎪⎨⎪⎪⎩
dis j−1 if i < j

identity if i = j, j+1

di−1s j if i > j+1

Moreover, for any map f ∈ Hom∆(n,m) which is not the identity map, we can write is, . . . , i1
for the elements in m which are not in the image of f (in that order respectively), and j1, . . . , jt
the elements in n such that f ( j) = f ( j+1). Then,

f = di1 · · ·diss j1 · · ·s jt , 0 6 is < · · ·< i1 6 m, 0 6 j1 < · · ·< jt < n, n− t + s = m.

This factorization is unique. If A⋆ is a simplicial object according to our initial definition, i.e.,
a functor A⋆ : ∆op→A, then we just set An = A⋆(n), and di = A⋆(di), si = A⋆(si). On the other
hand, for a sequence of objects An in A and maps di, si satisfying the simplicial identities we
define a functor A⋆ : ∆op→A by setting A⋆(n) = An. For any map f ∈Hom∆(n,m), if f is the
identity map, then we send f to the identity map in An, and if it is not the identity map, then we
use the previous factorization f = di1 · · ·diss j1 · · ·s jt and define A⋆( f ) = s jt · · ·s j1dis · · ·di1 .
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A simplicial set is a simplicial object in the category of sets. Analogously, we can talk of
simplicial groups, simplicial modules and so on depending on the choice of the category A.

Example 1.2.3. For any k > 0, we let ∆k : ∆op −→ Set be the contravariant functor which is
represented by k ∈ ∆. In other words, for any n ∈ ∆,

∆
k(n) = Hom∆(n,k),

and for any map f : n→m in ∆,

∆k( f ) : Hom∆(m,k) −→ Hom∆(n,k).
g ↦−→ g f

Thus, we get a simplicial set ∆k for all k > 0 which is called standard k-simplex. Moreover,
any map f : n→m in ∆ induces a map of standard simplicies f : ∆n −→ ∆m by composition
with f .

Definition. Let K⋆ be a simplicial set and let x ∈ Kn, then

(i) x is called degenerate if it the image of some degeneracy map, i.e., x = si(y) for some si
and y ∈ Kn−1,

(ii) x is called non-degenerate if it is not of the form si(y) for any y∈Kn−1 and si : Kn−1→Kn
for i = 0, . . . ,n−1,

(iii) x is a face (of Kn) if it is in the image of some face map di : Kn+1→ Kn.

Remark. Yoneda Lemma 1 tells us that for a simplicial set K⋆, there is a natural bijection

HomSSet(∆
n,K⋆)∼= Kn.

In particular, any vertex k ∈ K0 can be seen as a simplicial map k : ∆0 −→ K⋆. More generally,
in order to define a map of simplicial sets f : K⋆ −→ L⋆, it is enough to define the image for
the simplicies of K⋆ which are not faces and non-degenerate. Indeed, all degenerate and face
simplicies are uniquely determined by the naturality of the map f .

We define two subcomplexes of ∆, the boundary of ∆n is a simplicial set ∂∆n which is the
smallest subcomplex of ∆n containing the faces d j(idn), 0 6 j 6 n, so

(∂∆
n) j =

{︄
(∆n) j if 0 6 j 6 n−1

degenerate elements of (∆n) j if j > n.

We set ∂∆0 = /0 to be the simplicial set with the empty set in every degree. On the other hand,
the k-th horn of ∆n is the simplicial set Λn

k for 0 6 k 6 n, which the the subcomplex of ∆n gen-
erated by all faces d j(idn) except the k-th face dk(idn). Intuitively, one may think of ∆0 as the
one point space, and ∆1 as the interval. The maps d0, d1 : 0→ 1 induce maps d0, d1 : ∆0−→ ∆1

which can be though as the inclusions of "end points".

1Mac Lane [8] III.2.
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Let us see how can we obtain a topological space |K⋆| out of a simplicial set K⋆. For any
n > 0, we denote by |∆n| the geometric n-simplex, i.e.,

|∆n|=

{︄
(t0, . . . , tn) ∈ Rn+1 | ti > 0,

n

∑
i=0

ti = 1

}︄
.

Notice that any map f : n→m in ∆ induces a map f⋆ : |∆n| → |∆m| given by

f⋆(t0, . . . , tn) =

⎛⎝ ∑
i∈ f−1(0)

ti, . . . , ∑
i∈ f−1(m)

ti

⎞⎠ .

Definition. Let K⋆ be a simplicial set. We define the simplex category ∆ ↓ K⋆ (the category of
objects over K⋆) whose objects are maps σ : ∆n −→ K⋆ (or simplicies), and whose morphisms
are commutative diagrams of simplicial maps

∆n ∆m

K⋆

σ

θ

τ

where θ is a map in ∆.

Lemma 1.2.4. For a simplicial set K⋆ there is a natural bijection

K⋆
∼= lim−→

∆n→ K⋆

in ∆ ↓ K⋆

∆
n.

Proof. Note that ∆ is a small category, and SSet is cocomplete. Hence, there is a pair of
adjoints 2

SSet −→ SSet
K⋆ ↦−→ (n ↦→ HomSSet(∆

n,K⋆)),

SSet −→ SSet
K⋆ ↦−→ lim−→ ∆n→ K⋆

in ∆ ↓ K⋆

∆n.

But by Yoneda Lemma, the first map is the identity, so by uniqueness of the adjoint, the other
map should also be isomorphic to the identity map, which gives the result.

This lemma motivates the following definition for the geometric realization of a simplicial
set.

Definition. Let K⋆ be a simplicial set. The geometric realization of K⋆ is the colimit

|K⋆|= lim−→
∆n→ K⋆

in ∆ ↓ K⋆

|∆n|.

in the category of topological spaces.
2Mac Lane and Moerdijk [9] I. Theorem 2.
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Remark. Note that any simplicial map f : K⋆→ J⋆ induces a map f⋆ : ∆ ↓ K⋆→ ∆ ↓ J⋆, where

( f⋆)(∆n −→ K⋆) = ∆
n −→ K⋆

f−→ J⋆ ∈ ∆ ↓ J⋆.

This way, the geometric realization becomes in fact a functor

| · | : SSet−→ Top.

Example 1.2.5. As notation suggests, for any n > 0, the geometric realization of the standard
n-simplex ∆n is precisely the geometric n-simplex |∆n|, since the simplex category ∆ ↓ ∆n has
id∆n : ∆n −→ ∆n as terminal object.

Let us go now the other way around, so building a simplicial set starting from a topological
space. Let X be a topological space, and n > 0. A singular n-simplex is a continuous map
σ : |∆n| → X . If we denote the set of n-simplices by

S(X)n = {σ : |∆n| → X , σ continuous},

we can obtain a simplicial set S(X)⋆ viewed as a functor S(X)⋆ : ∆ −→ Set. For any n ∈ ∆,
S(X)⋆(n) = S(X)n, and for any map f : n→m in ∆, recall the induced function f : ∆n→ ∆m

and define
S(X)⋆( f ) : S(X)m −→ S(X)n

σ ↦−→ σ f

This is a well-defined functor and S(X)⋆ is in fact a simplicial set. Moreover, any continuous
map g : X → Y between topological spaces induces maps

S( f )n : S(X)n −→ S(Y )n

σ ↦−→ gσ

Thus, we get a functor
S : Top−→SSet.

Proposition 1.2.6. There is a pair of adjoint functors

| · | : SSet Top : S,

where, with this notation, we always mean that | · | is the left adjoint and S the right adjoint.

Proof. Let K⋆ be a simplicial set, X a topological space. First of all, notice that for any n > 0
we have a natural isomorphism

HomTop(|∆n|,X)∼= HomSSet(∆
n,S(X)⋆)

since any continuous map σ : |∆n| → X , defines a simplicial map that sends any θ ∈ (∆n)m to
the composite

|∆m| |∆n| X ∈ S(X)m.
|θ⋆| σ

The inverse is given by σn(idn), for σ a simplicial map ∆n→S(X)⋆. Hence, there are a natural
isomorphisms

HomTop(|K⋆|,X) ∼= lim←−
∆n→K⋆

HomTop(|∆n|,X)∼= lim←−
∆n→K⋆

HomSSet(∆
n,S(X)⋆)

∼= HomSSet(K⋆,S(X)⋆).
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Proposition 1.2.7. For any simplicial set K⋆, |K⋆| ∈ CGH.

Proof. See Goerss and Jardine [3] I, Proposition 2.3.

The category of simplicial sets SSet is closed under finite limits and colimits. The realiza-
tion functor | · | preserves colimits since it is left adjoint by Proposition 1.2.6, and finite limits
(see Hovey [6] Lemma 3.2.4.). We can define a model structure on SSet using the model
category CGH, and the realization functor. Formally, this is done using a Quillen equivalence.

Definition. Let C, D be two model categories. A Quillen functor from C to D is a pair of
adjoint functors

F : C D : G

such that

• the functor F preserves cofibrations and weak equivalences between cofibrant objects,

• the functor G preserves fibrations and weak equivalences between fibrant objects.

A Quillen functor is a Quillen equivalence if for all cofibrant objects X ∈ C and all fibrant
objects Y ∈ D, a morphism

X −→ G(Y )

is a weak equivalence if and only if the adjoint map

F(X)−→ Y

is a weak equivalence in D.

Theorem 1.2.8. The geometric realization functor and the singular set functor give a Quillen
equivalence

| · | : SSet CGH : S

for the model category structure on SSet where a morphism f : K→ J is

• a weak equivalence if | f | : |K| → |J| is a weak equivalence of topological spaces;

• a cofibration if fn : Kn→ Jn is injective for n > 0, and;

• a fibration if f has the RLP with respect to all the inclusions Λn
k ⊆ ∆n, for n > 1 and

0 6 k 6 n.

Proof. See Quillen [12] I.4 and II.3.

Remark. Let X ∈ CGH, and consider the lifting problem in SSet given by

Λn
k S(X)⋆

∆n ⋆

for some 0 6 k 6 n, which by adjointness is the same as the lifting problem in CGH

|Λn
k | X

|∆n| ⋆
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for which the dotted arrow always exists since |Λn
k | is a strong deformation retract of |∆n|.

Hence, the canonical map S(X)⋆ −→ ⋆ has the RLP with respect all inclusions Λn
k ⊆ ∆n, so it

is a fibration. Thus, S(X)⋆ is a fibrant simplicial set for all X ∈ CGH.

Lemma 1.2.9. For every 0 6 k 6 n, HomSSet(Λ
n
k ,K⋆) is in bijective correspondence with the

set of n-tuples (x0, . . . ,xk−1,xk+1, . . . ,xn), xi ∈ Kn−1 for all i ̸= k, such that dix j = d j−1xi for all
i < j (i, j not equal to k).

Proof. For any 0 6 i < j 6 n, with i, j ̸= k, consider the fibre product

∆n−1×Λn
k

∆n−1 ∆n−1

∆n−1 Λn
k

p1

p2 d j

di

where di, d j are the induced maps ∆n−1→ ∆n, but since i, j ̸= k they always lie in Λn
k . We get

a coequalizer ⨆︂
i< j

∆
n−1×Λn

k
∆

n−1
⨆︂
i̸=k

∆
n−1

Λn
k .

p1

p2

Let us consider now the following commutative diagram

n−2 n−1

n−1 n

d j−1

di di

d j

(1.2)

For any maps f1, f2 : m→ n−1 in ∆ such that f1 di = f2 d j = h, we have that i, j /∈ im h, and
hence we can factor h as

m n

n−2

h

g
d jdi=did j−1

and we get a commutative diagram

m

n−2 n−1

n−1 n

f1

f2

g
d j−1

di di

d j

which means that (1.2) is a pullback in ∆. Thus, we get

∆
n−1×Λn

k
∆

n−1 ∼= ∆
n−1×∆n ∆

n−1 ∼= ∆
n−2.

and the coequalizer can be rewritten as⨆︂
i< j

∆
n−2

⨆︂
i ̸=k

∆
n−1

Λn
k .

d j−1

di
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Corollary 1.2.10 (Kan condition). A simplicial set K⋆ is fibrant if and only if for all 0 6 k 6 n,
and any set of n-tuples

(x0, . . . ,xk−1,xk+1, . . . ,xn), xi ∈ Kn−1, with dix j = d j−1xi ∀i < j(i, j ̸= k),

there is some y ∈ Kn such that diy = xi for all i ̸= k.

Proof. Assume first that K⋆ is fibrant, and we are given a set of n-tuples as in the heading. By
the previous lemma we get a map u : Λn

k −→ K⋆, and since K⋆ is fibrant, it can be extended to
a map v : ∆n −→ K⋆. Taking y = vn(idn) we get that for all i ̸= k,

di(y) = di(vn(idn)) = vn−1(di(idn)) = un−1(di(idn)) = xi.

On the other hand, assume we are given a lifting problem

Λn
k K⋆

∆n

p

q

and consider the n-tuple

(pn−1(d1(idn)), . . . , pn−1(dk−1(idn)), pn−1(dk+1(idn)), . . . , pn−1(dn(idn))) ∈ (Kn−1)
n

which satisfies

di pn−1d j(idn) = did j pn(idn) = d j−1di pn(idn) = d j−1 pn−1di(idn), ∀i < j.

Hence, we get some y ∈ Kn such that diy = xi for all i ̸= j. The map q is then well defined by
sending idn to y ∈ Kn.

Example 1.2.11 (Moore). Let G⋆ be a simplicial group. Then, its underlying simplicial set is
fibrant. To see this let 0 6 k 6 n+ 1, and let xi ∈ Gn for i ̸= k such that dix j = d j−1xi for all
i < j. We proceed by induction on r, such that there is some gr ∈ Gn+1 with di(gr) = xi for
i 6 r, i ̸= k. We set g−1 = 1, and assume gr−1 is given. If r = k, then we just set gr = gr−1. In
other case, we let u = x−1

r dr(gr−1). Then, for i < r, i ̸= k we have

di(u) = di(x−1
r dr(gr−1)) = di(x−1

r )dr−1di(gr−1) = di(x−1
r )dr−1(xi) = di(x−1

r )di(xr) = 1,

and so di(sr u) = 1 too. Therefore, taking gr = gr−1 sr(u)−1 we have

di(gr) = di(gr−1) = xi, for i < r, i ̸= k,

dr(gr) = dr(gr−1)u−1 = xr, for r ̸= k,

which completes the induction step.
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1.3 Simplicial homotopy groups
Given two simplicial sets K⋆ , L⋆ , the product K⋆×L⋆ is the simplicial set given by

(K⋆×L⋆)n = Kn×Ln,

and for any map f : n→m in ∆,

f ⋆ = f ⋆× f ⋆ : Km×Lm→ Kn×Ln.

Definition. Let K⋆,L⋆ be simplicial sets. The function complex Hom(K,L)⋆ is the simplicial
set given by

Hom(K,L)n = HomSSet(K⋆×∆
n,L⋆), n > 0,

and for any map θ : m→ n in ∆,

θ ⋆ : Hom(K,L)n −→ Hom(K,L)m

(K⋆×∆n f−→ L⋆) ↦−→ (K⋆×∆m id×θ−→ K⋆×∆n f−→ L⋆).

Remark. Let i : J⋆ ↪→ K⋆ be an inclusion of simplicial sets. Precomposition with i gives rise
to a map

i⋆ : Hom(K,L)⋆ −→Hom(J,L)⋆ .

Let f , g : K⋆ −→ L⋆ be maps of simplicial sets. They induce vertices ˆ︁f , ˆ︁g : ∆0 −→Hom(K,L)⋆
of Hom(K,L)⋆ sending id0 to f and g respectively. If their restriction to J⋆ is the same, i.e.,

u = f |J⋆ = g|J⋆ : J⋆ −→ L⋆

then i⋆(ˆ︁f ) = i⋆(ˆ︁g) = ˆ︁u, where ˆ︁u : ∆0 −→ Hom(J,L)⋆ is the vertex of Hom(J,L)⋆ that sends
any n→ 0 to

J⋆×∆n J⋆ L⋆ .
prJ⋆ u

where prJ⋆ denotes the projection onto J⋆. Thus, ˆ︁f and ˆ︁g are just vertices on the fibre of ˆ︁u.

If K⋆,L⋆ are simplicial sets, then there is a canonical evaluation map

ev : K⋆×Hom(K,L)⋆ −→ L⋆

which is given in degree n > 0 by

Kn×Hom(K,L)n −→ Ln

(x,g) ↦−→ gn(x, idn).

Theorem 1.3.1 (Exponential law). Let J⋆ ,K⋆ ,L⋆ be simplicial sets. The function

ev⋆ : HomSSet(J⋆,Hom(K,L)⋆) −→ HomSSet(K⋆× J⋆,L⋆)

(J⋆
f−→Hom(K,L)⋆) ↦−→ (K⋆× J⋆

id× f−→ K⋆×Hom(K,L)⋆
ev−→ L⋆).

is a bijection which is natural in J⋆,K⋆,L⋆.
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Proof. Let g : K⋆× J⋆ −→ L⋆ be a map of simplicial sets. For any n-simplex x ∈ Jn, we can
define a map u : K⋆×∆n −→ L⋆, given in degree m by

(k,m θ−→ n) ↦−→ gm(k,θ ⋆(x)) ∈ Lm

This way we can construct the map

ev−1
⋆ : HomSSet(K⋆× J⋆,L⋆) −→ HomSSet(J⋆,Hom(K,L)⋆)

g ↦−→ (x ↦→ u)

which is the inverse of ev⋆. For instance, let g = ev(id× f ) for some f : J⋆→ Hom(K,L)⋆.
By naturality of f there is a commutative diagram

Jn Jm

Hom(K,L)n Hom(K,L)m

θ⋆

fn fm

θ⋆

and thus,
fn(x)(idK⋆×θ) = fm(θ

⋆(x))

for any x ∈ Jn and θ ∈ (∆n)m. Hence, for any x ∈ Jn, (k,θ) ∈ Km× (∆n)m we have

((ev−1
⋆ (g))n(x))m(k,θ) = gm(k,θ ⋆(x)) = evm(idKm× fm)(k,θ ⋆(x)) = evm(k, fm(θ

⋆(x)))

= ( fm(θ
⋆(x)))m(k, idm) = ( fn(x)(idK⋆×θ))m(k, idm)

= ( fn(x))m(k,θ),

so in fact ev−1
⋆ (g) = f . On the other hand, let g∈HomSSet(K⋆×J⋆,L⋆), let us call h= ev−1

⋆ (g),
and for any (x,k) ∈ Kn× Jn

Kn× Jn
id×hn−→ Kn×Hom(K,L)n

evn−→ Ln

(k,x) ↦−→ (k,hn(x)) ↦−→ (hn(x))n(k, idn) = gn(k, id⋆n(x)) = gn(k,x).

This composition is precisely ev⋆(h)n(k,x), and therefore ev⋆(h) = g.

Proposition 1.3.2. Let i : K⋆ L⋆ be an inclusion of simplicial sets and let p : X⋆→ Y⋆ be a
fibration. Then the map

Hom(L,X)⋆ Hom(K,X)⋆×Hom(K,Y )⋆ Hom(L,Y )⋆ ,
(i⋆,p⋆)

induced by the diagram

Hom(L,X)⋆ Hom(L,Y )⋆

Hom(K,X)⋆ Hom(K,Y )⋆ ,

i⋆

p⋆

i⋆

p⋆

is a fibration. Moreover, it is a weak equivalence if either i or p is a weak equivalence.
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Proof. See Goerss and Jardine [3] I, Proposition 5.2.

Remark. For the "model category" reader, this property is just saying that SSet is a closed
simplicial model category.

Corollary 1.3.3. If X⋆ is a fibrant simplicial set, and i : K⋆ L⋆ is an inclusion of simplicial
sets, then the induced map

i⋆ : Hom(L,X)⋆ Hom(K,X)⋆

is a fibration.

Proof. We just apply the last proposition to the fibration X⋆ −→ ⋆.

Recall that in Top (or CGH) two continuous maps f ,g : X → Y are homotopic if there is a
continuous map H : X×|∆1| → Y such that the following diagram commutes

X ∼= X×|∆0| X×|∆1| X×|∆0| ∼= X .

Y

id×(d0)⋆

f H g

id×(d1)⋆

Definition. Let f , g : K⋆ −→ L⋆ be maps of simplicial sets. A simplicial homotopy from f to
g is a map of simplicial sets h : K⋆×∆1→ L⋆ such that the following commutes

K⋆
∼= K⋆×∆0 K⋆×∆1 K⋆×∆0 ∼= K⋆

L⋆

id×d1

f h g

id×d0

The maps f , g are said (simplicially) homotopic and we write f ≃ g. Moreover, if i : J⋆ ↪→ K⋆

denotes the inclusion of a subcomplex J⋆ of K⋆, and f |J⋆ = g|J⋆ , a simplicial homotopy from f
to g (rel J) is a simplicial homotopy from f to g, h : K⋆×∆1 −→ L⋆, such that the following
diagram

J⋆×∆1 J⋆

K⋆×∆1 L⋆

prJ⋆

i×id g|J⋆= f |J⋆
h

commutes. In this case we will also write f ≃ g (rel J⋆). A homotopy that can be factored as

K⋆×∆1 K⋆ L⋆
prK⋆ k

for some map k is called a constant homotopy (at k).

Remark. A homotopy h : K⋆×∆1 −→ L⋆ is just a 1-simplex of Hom(K,L)⋆. Moreover, if
f ≃ q : K⋆ −→ L⋆ (rel J⋆) via h, then calling k = f |J⋆ = g|J⋆ : J⋆→ L⋆ there is a commutative
diagram

J⋆×∆1 J⋆

K⋆×∆1 L⋆

prJ⋆

i×id k

h
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and (i⋆)1(h) is the 1-simplex of Hom(J,L)⋆ which is a constant homotopy at k. Moreover, by
the exponential law (Theoreom 1.3.1), there is a bijection

HomSSet(∆
1,Hom(K,L)⋆)∼= HomSSet(K⋆×∆

1,L⋆).

Recall a previous remark where we obtained vertices ˆ︁f , ˆ︁g of the function complex Hom(K,L)⋆
out of maps f , g : K⋆ −→ L⋆. This bijection is telling us that homotopies between maps f , g
are just homotopies between vertices ˆ︁f , ˆ︁g.

Example 1.3.4. For any n > 0, the simplicial set ∆n is homotopy equivalent to ∆0, that is, there
are maps f : ∆n → ∆0 and g : ∆0 → ∆n such that f g ≃ id∆0 , and g f ≃ id∆n . To see this, let
gm(m→ 0) = m→ 0 i→ n, where i sends 0 to n ∈ n, and m→ 0 is the only m-simplex in ∆0.
f is the only map ∆n→ ∆0. Then, f g = id∆0 . Let h : ∆n×∆1→ ∆n be given for any m > 0 by

hm : (∆n)m× (∆1)m −→ (∆n)m

(α,β ) ↦−→

(︄
i ↦→

{︄
α(i), if β (i) = 0,

m, if β (i) = 1

)︄
.

Then, h(id×d1) = id∆n and h(id×d0) = g f .

Lemma 1.3.5. If K⋆ is a fibrant simplicial set, then simplicial homotopy is an equivalence
relation on the vertices ∆0→ K of K⋆.

Proof. For an n-simplex σ , we denote its boundary by ∂σ = (d0σ , . . . ,dnσ). Let x, y : ∆0→K⋆

be two vertices. A homotopy from x to y is just a 1-simplex v ∈ K1 such that ∂v = (y,x). If
we take the 1-simplex s0x, then ∂ (s0x) = (x,x), so x≃ x and the relation is reflexive. If x≃ y,
then there is a 1-simplex v2 such that ∂v2 = (y,x). Take v1 = s0x such that d1v1 = x = d1v2. By
Lemma 1.2.9 this defines a map u : Λ2

0→ K⋆, and we have

Λ2
0 K⋆

∆2 ⋆

u

v

where the dotted arrow v exists since K⋆ is fibrant. Moreover, we have

d0 d0v = d0 d1v = x, d1 d0v = d0 d2v = y,

so the 1-simplex d0v satisfies ∂ (d0v) = (x,y), so y ≃ x and the relation is symmetric. Finally,
let z : ∆0 → K⋆ be another vertex such that x ≃ y via v2 ∈ K1, and y ≃ z via v0 ∈ K1. Then,
d0v2 = y = d1v0, so it defines a map u ′ : Λ2

1→ K⋆, and there is a map v ′ making the following
diagram commutative

Λ2
1 K⋆

∆2 ⋆

u ′

v ′

since K is fibrant. Moreover, v ′ satisfies

d0 d1v ′ = d0 d0v ′ = z, d1 d1v ′ = d1 d2v ′ = x

so taking the 1-simplex d1v ′, we have ∂ (d1v ′) = (z,x), so x≃ z and the relation is also transi-
tive.
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Definition. For a fibrant simpliciat set K⋆ we define π0 K⋆ to be the set of homotopy classes
of vertices of K⋆. For any vertex k ∈ K0, we denote by π0(K⋆ ,k) the pointed set π0 K⋆ with
basepoint the homotopy class [k] of k.

Example 1.3.6 (∆n is not fibrant). Let n > 1, and take the vertices ι0, ι1 : ∆0→ ∆n, where for
any m > 0,

ι0(m→ 0) = m→ n
i ↦→ 0

ι1(m→ 0) = m→ n.
i ↦→ 1

Now, we can consider the map ˆ︁u : 1→ n sending 0 ↦→ 0, and 1 ↦→ 1, and the induced 1-simplex
u : ∆1→ ∆n given by composition. Then d0 u = ι1, and d1 u = ι0, so ι0 ≃ ι1. But in order to
have ι1 ≃ ι0 we need a 1-simplex v : ∆1→ ∆n, which we can see as a map ˆ︁v : 1→ n such that
d0β = ι0 and d1β = ι1. But this means that ˆ︁vd0 : 0→ n sends 0 ↦→ 0 and ˆ︁vd1 : 0→ n sends
0 ↦→ 1, i.e., ˆ︁v(0) = 1, and ˆ︁v(1) = 0, which cannot happen since ˆ︁v is a map in ∆. Hence, ι0 ̸≃ ι1.
By Lemma 1.3.5, it follows that ∆n is not a fibrant simplicial set.

Proposition 1.3.7. The functor S : Top−→SSet preserves homotopy.

Proof. Let f , g : X → Y be homotopic continuous maps between topological spaces such that
H : X × [0,1]→ Y is a homotopy from f to g. There is a canonical map of simplicial sets
u : ∆1→S(|∆1|)⋆ given by ( f : n→ 1) ↦→ ( f⋆ : |∆n| → |∆1|). Let us call by h the composite

S(X)⋆×S(|∆1|)⋆ S(X)⋆×S([0,1])⋆ S(X× [0,1])⋆

S(X)⋆×∆1 S(Y )⋆.

id×ι⋆ ∼=

H⋆id×u

h

The third map is an isomorphism since any map σ : |∆n| → X × [0,1] corresponds to a pair of
continuous maps |∆n|→X , and |∆n|→ [0,1]. For i= 0,1, the image of (σ ,0n)∈S(X)n×(∆0)n
under the composition

S(X)⋆×∆0 S(X)⋆×∆1 S(X)⋆×S(|∆1|)⋆ S(X)⋆×S([0,1])⋆
id×di id×u id×ι⋆

is (σ ,σ1−i) ∈ S(X)n×S([0,1])n where σ1−i : ∆n → [0,1] has constant value 1− i. Hence,
h (id×d1)= (H|X×{0})⋆= f⋆ and h (id×d0)= (H|X×{1})⋆= g⋆. So h is a simplicial homotopy
from f⋆ to g⋆.

This shows that our definition of homotopy for simplicial sets "makes sense", since it
"agrees" with the topological notion of homotopy. At this point, one may be tempted to define
homotopy groups in SSet following its construction in Top (or more precisely in CGH), which
we could attempt grosso modo by setting πn(K) to be the set of maps σ : ∆n→ K modulo the
relation ≃ (rel ∂∆n). But in order to do so, we need the simplicial homotopy relation ≃ to be
an equivalence relation, and this is not necessarily true, since it fails in general to be symmetric
and transitive. Nevertheless, for fibrant simplicial sets, ≃ is an equivalence relation. Recall
that in fact S(X) is fibrant for all X ∈ CGH.

Proposition 1.3.8. Let L⋆ be a fibrant simplicial set and let J⋆⊆K⋆ be an inclusion of simplicial
sets, then

(a) the homotopy relation ≃ is an equivalence relation in HomSSet(K⋆,L⋆), and
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(b) the homotopy relative relation ≃ (rel J⋆) is an equivalence relation in HomSSet(K⋆,L⋆).

Proof. Part (a) is a particular case of part (b) taking J⋆ = /0. Therefore, we only need to prove
(b). We have seen that homotopy of maps f , g : K⋆→ L⋆ are just homotopy of vertices ˆ︁f , ˆ︁g of
Hom(K,L)⋆, and in this case they are also on the fibre of the vertex ˆ︁u, with u = f |J⋆ = g|J⋆ in
the map

i⋆ : Hom(K,L)⋆ −→Hom(J,L)⋆.

By Corollary 1.3.3 the map i⋆ is a fibration. Calling X⋆ the fibre of ˆ︁u in i⋆, we get a pullback
diagram

X⋆ Hom(K,L)⋆

ˆ︁u Hom(J,L)⋆

i ′ i⋆

Hence by Corollary 1.1.1, i ′ is also a fibration, so X⋆ is a fibrant simplicial set. By Lemma
1.3.5 simplicial homotopy is an equivalence relation on the vertices of X⋆.

This allows us to define homotopy groups for simplicial sets.

Definition. Let K⋆ be a fibrant simplicial set, and let k ∈ K0 be a vertex in K⋆. For n > 1 we
define

πn K⋆ = πn(K⋆ ,k) = [(∆n,∂∆
n),(K⋆ ,k)]≃

the set of homotopy classes (rel ∂∆n) of simplicial maps f : ∆n→ K⋆ such that

∂∆n ∆0

∆n K⋆

k
f

commute. Moreover, we also denote the composition

∆n ∆0 K⋆
k

by k, and we call it the constant map at k. We write [ f ] for the equivalence class in πn K⋆ of f .

Theorem 1.3.9. πn(K⋆ ,k) has a group structure for n > 0, which is abelian for n > 2. It
is called the n-th homotopy group of K⋆. Moreover, the neutral element of the group is the
homotopy class [k].

Proof. See Goerss [3] I, Theorem 7.2.

Remark. As one might guess from the construction, these homotopy groups are isomorphic to
the homotopy groups over topological spaces, in the sense that there are natural isomorphisms

π0(K⋆,k) ∼= π0(|K⋆|, |k|),
πn(K⋆,k) ∼= πn(|K⋆|, |k|), for n > 1.

For a complete proof one can see Lemma 3.4.2 and Proposition 3.6.3 in Hovey [6].
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1.4 The Dold-Kan correspondence
The main goal of this section is to show that for every abelian categoryA, the category of non-
negative chain complexes in A, Ch>0(A), is equivalent to SA. Moreover, this equivalence
will preserve homotopy. In the next chapter we will see a nice application regarding resolution
of objects. First we need to define homotopy on simplicial objects in an abelian category.

Definition. Let A⋆ be a simplicial object in an abelian category A. The unnormalized chain
complex associated to A⋆ is a chain complex C• = C(A⋆) with Cn = An as n-chains and with
boundary map ∂ : Cn→Cn−1 given by

∂ =
n

∑
i=0

(−1)idi : An→ An−1.

This definition makes sense since ∂ 2 = 0 (as a direct consequence of the simplicial identi-
ties satisfied by the di’s) so C is in fact a chain complex. Moreover, this defines a functor from
SA to Ch>0(A).

Definition. Let A⋆ be a simplicial object in an abelian category A. We define

πn(A⋆) = Hn(C(A⋆)) for n > 0.

This being done, we need now to refine the unnormalised chain complex C(A⋆) into a new
chain complex whose homology will be naturally isomorphic to the homology of C(A⋆) but
that will behave nicer with chain homotopic maps. Notice that we have only used the face
maps in A⋆ to define the chain complex C(A⋆). Hence, if we are given a simplicial object A⋆ in
A and we "forget" about the degeneracy maps we are still able to compute the chain complex
C(A⋆). This motivates the following definition.

Definition. Let ∆s denote the category whose objects are the objects in ∆ and whose morphisms
are order-preserving injective set functions. A semisimplicial object in a categoryA is a functor
A⋆ : ∆

op
s −→ A. The category of semisimplicial objects in a category A will be denoted by

sSA.

Remark. The characterization of a simplicial object given in Proposition 1.2.2 tells us that
a semisimplicial object is just a simplicial object with no degeneracy maps and therefore the
only simplicial identities that face maps di satisfy now are did j = d j−1di for i < j.

We define the forgetful functor

F : SA −→ sSA

that makes any simplicial object into a semisimplicial object by forgetting degeneracies. This
functor has a left adjoint

G : sSA −→ SA

when the category A has finite coproducts, that is defined as follows. For any B⋆ ∈ sA, we set

GBn =
⨆︂

f :n�k
Bk[ f ],

where the coproduct runs through all possible surjections f : n � k in ∆, and Bk[ f ] denotes a
copy of Bk. Also, for any morphism g : n→m in ∆, we define the map G(g) : GBm→GBn by
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defining its restrictions to each of the components of GBm. We do it as follows: let Bk[ f ] be
one of them for a surjection f : m � k. The map f g factors as

n m

q k

g

s f

d

with s surjective and d injective (as seen in the proof of Proposition 1.2.2). Then, the restriction
of G(g) to Bk[ f ] is the map B(d) : Bk→ Bq = Bq[s] ⊆ GBn. This makes GB into a simplicial
object ofA: for idn : n→ n identity map, then G(idn) : GBn→GBn is clearly the identity map
in GBn. On the other hand, for g1 : n→ n ′, g2 : n ′→m maps in ∆, let

n ′ q kp s

be the epi-monic factorization of f g2 and let

n q ′ qp ′ s ′

be the epi-monic factorization of pg1. We get a commutative diagram

n n ′ m

q ′ q k

g1

p ′ p

g2

f

s ′ s

and

n q ′ kp ′ ss ′

is the epi-monic factorization of f g2 g1. Commutativity of the diagram means that

G(g2 g1) = G(g2) G(g1).

Lemma 1.4.1. G is left adjoint to F,

G : sSA SA : F.

Proof. Let A⋆ ∈ SA, and B⋆ ∈ sSA. We have to show

HomSA(G(B⋆),A⋆)∼= Hom sSA(B⋆,F(A⋆)).

If k < n and f : n � k is a surjection in ∆, it can be factorized as

n n−1 ksi

f

g

for some si and g. We get a commutative diagram

n n−1

k k

si

f g

id
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and hence the map si : G(B)n−1→ G(B)n identifies the factor Bk[g] of G(B)n−1 with Bk[ f ] of
G(B)n, and we write Bk[ f ] = si Bk[g]. Now, if n−1 = k, then g = idk, and if n−1 < k we can
repeat this procedure. It follows that any factor Bk[ f ] of G(B)n, for f : n � k with f ̸= id, is
of the form (siℓ · · · si1 Bk)[idk] where f = si1 · · · siℓ . Therefore, in order to define a morphism
hn : G(B)n → An, we only need to specify the image of Bn[idn] for all n > 0. Hence, any
morphism h : B⋆→ F(A⋆) defines a map ˆ︁h : G(B⋆)→ A⋆ where the restriction of ˆ︁hn to Bn[idn]

is just hn : Bn→ An. Moreover, any morphism ˆ︁h : G(B⋆)→ A⋆ defines a map h : B⋆→ F(A⋆)

in a natural way, given by hn : Bn→ An to be just ˆ︁hn|Bn[idn]. These maps are well-defined and
they are clearly inverse of each other.

For a simplicial object A⋆ in an abelian category A we denote by D = D(A⋆) be the
subcomplex of C(A⋆) such that D(A⋆)n is generated by the images of the degeneracy maps
si : An−1→ An for i = 0, . . . ,n−1.

Proposition 1.4.2. D(A⋆) is a chain subcomplex of the unnormalized chain complex C(A⋆).

Proof. The only thing we need to check is that for any a ∈ Dn, ∂ (a) is in fact an element
in Dn−1, i.e., it can be written as a sum of elements in the image of the degeneracy maps
s j : An−2→ An−1. But this is clear if we use the simplicial identities, since for s j : An−1→ An,
we have

∂ s j =
n
∑

i=0
(−1)idis j

=
j−1
∑

i=0
(−1)is j−1di + (−1) jd js j + (−1) j+1d j+1s j +

n
∑

i= j+2
(−1)is jdi−1

=
j−1
∑

i=0
(−1)is j−1di +

n
∑

i= j+2
(−1)is jdi−1

The singularity of this chain complex is stated in the following lemma.

Lemma 1.4.3. D(A⋆) is an acyclic chain complex, that is,

Hn(D(A⋆)) = 0 for all n > 0.

Proof. Let us consider the following filtration of D = D(A⋆)
3

F0Dn = 0, FpDn = s0(An−1)+ . . .+ sp(An−1), n 6 p, FnDn = Dn.

Using the computation of the last proposition we see that ∂ s j can be written in terms of s j−1
and s j and therefore FpDn is indeed a subcomplex of Dn. This filtration is bounded, so by
the Classical Convergence Theorem 4, we get a bounded spectral sequence that converges to
H⋆(D):

E1
pq = Hp+q(FpD/Fp−1D) =⇒ Hp+q(D).

Hence, we just need to show that the complexes FpDn/Fp−1Dn are acyclic. Note that Fn−1Dn =
FnDn = Dn, so if n 6 p the quotient is zero. For n > p, let us see that (−1)psp : An−1→ An

3For a proof avoiding the use of spectral sequences see Jardine and Goerss [3] III. Theorem 2.4.
4Weibel [17] Theorem 5.5.1.
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induces a chain homotopy from the identity map to 0 in FpDn/Fp−1Dn, i.e., that in FpDn we
have

(∂ sp + sp∂ )sp ≡ (−1)psp mod Fp−1Dn.

Using again the computation from the last result, we see that

∂ sp ≡
n

∑
i=p+2

(−1)ispdi−1 mod Fp−1Dn,

and therefore modulo Fp−1Dn we have

∂ s2
p + sp∂ sp ≡

n+1
∑

i=p+2
(−1)ispdi−1sp +

n
∑

i=p+2
(−1)is2

pdi−1

= (−1)p+2sp +
n+1
∑

i=p+3
(−1)is2

pdi−2 +
n
∑

i=p+2
(−1)is2

pdi−1 = (−1)psp.

Hence the identity map in FpDn/Fp−1Dn is null homotopic, so Hm(FpDn/Fp−1Dn) = 0 for all
m > 0.

Due to this result, it makes sense to consider the complex C(A⋆)/D(A⋆) since it will have
the same homology as the unnormalized chain complex C(A⋆). We will call this resulting
complex N(A⋆), and it can be expressed as follows.

Definition. Let A⋆ be a simplicial object in an abelian category A. The normalized chain
complex is a chain complex N• = N(A⋆) with

Nn =
n−1⋂︂
i=0

ker(di : An −→ An−1)

as n-chains and with boundary map ∂ given by

∂ = (−1)ndn : Nn −→ Nn−1.

Note that N(A⋆) is in fact a subcomplex of C(A⋆) since the boundary map ∂ N in N is just
the restriction of the boundary map in C to N, since ∂ (a) = (−1)ndn(a) = ∂ N(a) for every
a ∈ Nn. This also justifies the abuse of notation we make here by calling both boundary maps
in C and N by the same name. Moreover, this defines a functor

N : SA −→ Ch>0(A),

where face maps in the simplicial objects of A are not needed, so it can also be seen as a
functor

N : sSA −→ Ch>0(A).

Proposition 1.4.4. Let A⋆ be a simplicial object in an abelian category A. Then

C(A⋆) = N(A⋆)⊕D(A⋆).
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Proof. For n > 0, we will show that the natural map induced by the inclusions

ϕ : Nn⊕Dn −→ An

is an isomorphism of chain complexes. For n = 0, D0 ∼= 0, and N0 ∼= A0. Let n > 0, and
y ∈ Nn∩Dn, so that y = ∑

n−1
j=0 s j(y j) for some yi ∈ An−1. Let i be the smallest integer such that

si(yi) ̸= 0, we claim that di(y) = yi. If n = 1, then y = s0(y0)+ s1(y0) and{︄
d0(y) = d0s0(y0)+d0s1(y1) = y0 if s0(y0) ̸= 0,

d1(y) = d1s1(y1) = y1 if s0(y0) = 0.

For n > 1, we can rewrite the sum so that dis j(y j) = 0 for i < j. To see this, notice that
disi = idAn−2 means that we can write

An−1 ∼= ker(di)⊕ im(si).

Thus, we write y j = a j + si(b j) for a j ∈ ker(di), b j ∈ An−2 and for any j > i we have

s j(y j) = s j(a j)+ s j(si(b j)) = s j(a j)+ si(s j−1(b j)),

and so

y =
n−1

∑
j=i

s j(y j) = si

(︄
yi +

n−1

∑
j=i+1

s j−1(b j)

)︄
+

n−1

∑
j=i+1

s j(a j)

where in fact dis j(a j) = s j−1di(a j) = 0 for i < j. With this remark the claim follows,

di(y) =
n−1

∑
j=i

dis j(y j) = disi(yi)+
n−1

∑
j=i+1

dis j(y j) = yi.

Hence, for i < n, di(y) = yi ̸= 0, so y is not in the kernel of di, contradicting y ∈Nn. This shows
that Nn∩Dn = 0, and hence ϕ is injective. Let

N j An =
j⋂︂

i=0

ker(di)⊆ An.

Clearly Nn−1An = Nn ⊆ imϕ . We now proceed by downward induction on j to show that

N jAn ⊆ imϕ for all j = n−1, . . . ,0.

Assume N jAn ⊆ imϕ and let y ∈ N j−1An. Then y ′ = y − s jd j(y) satisfies

d j(y ′) = d j(y)−d j(y) = 0, di(y ′) = di(y)− s j−1d j−1di(y) = 0 for i < j.

So y ′ ∈ N j ⊆ imϕ . Recall that s jd j(y) ∈ ims j ⊆Dn ⊆ imϕ too, so y = y ′+ s jd j(y) ∈ imϕ . So
the induction works, and we get N0An = ker(d0)⊆ imϕ . Finally, using again the decomposition
An ∼= ker(d0)⊕ im(d0), we see that An ⊆ imϕ .

Corollary 1.4.5. Let A be a simplicial object in an abelian categoryA. Then, there is a natural
isomorphism

π⋆(A⋆) = H⋆(C(A⋆))∼= H⋆(N(A⋆)).
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Proof. Direct consequence of the last proposition and Lemma 1.4.3.

In Section 1.3 we defined simplicial homotopies for simplicial sets so that it behaved nicely
with homotopy in CGH. We can now extend this definition for simplicial objects in an abelian
category and check that it also behaves nicely with homology of chain complexes. For K⋆ a
simplicial set and A⋆ a simplicial object in a categoryA having products, we define the product
A⋆⊗K⋆ to be the simplicial object in A where

(A⋆⊗K⋆)n = An×Kn

is just the product of Kn copies of An. Notice that if each Kn is finite, then A need only to have
finite products (as it is the case for abelian categories).

Definition. Let f , g : A⋆ → B⋆ be maps of simplicial objects in an abelian category A. A
simplicial homotopy from f to g is a simplicial map h : A⋆⊗∆1→ B⋆ such that the following
commutes

A⋆
∼= A⋆⊗∆0 A⋆⊗∆1 A⋆⊗∆0 ∼= A⋆

B⋆

id×d1

f h g

id×d0

The maps f , g are said (simplicially) homotopic and we will write f ≃ g.

Lemma 1.4.6. Let f , g : A⋆ −→ B⋆ be homotopic maps of simplicial objects in an abelian
category A. Then,

N( f )≃ N(g) : N(A⋆)−→ N(B⋆)

are chain homotopic maps.

Proof. For any n > 0, we can characterize the maps in (∆1)n by the preimage of 0 ∈ 1, i.e.,

(∆1)n = { fi : n→ 1 ∈ Hom(n,1) | f−1
i (0) = {0, . . . , i}}i=−1,...,n

Let h : A⋆⊗∆1→ B⋆ be the simplicial homotopy from f to g. Then, hn : An× (∆1)n→ Bn is
just a collection of maps hi

n : An×{ fi} ∼= An→ Bn for i =−1, . . . ,n, such that

di h j
n =

⎧⎨⎩ h j−1
n−1 di, i 6 j

h j
n−1 di, i > j

, si h j
n =

⎧⎨⎩ h j+1
n+1 si, i 6 j

h j
n+1 si, i > j

,

⎧⎨⎩ h−1
n = g

hn
n = f

.

We define kn = ∑
n
j=0(−1) j(h j

n+1s j− s j fn) : An→ Bn+1. For i < n+1 we have

di kn =
i−2
∑
j=0

(−1) j(h j
ns jdi−1− s jdi−1 fn)+(−1)i−1(hi−1

n − fn)+(−1)i(hi−1
n − fn)

+
n
∑

j=i+1
(−1) j(h j−1

n s j−1di− s j−1di fn)

=
i−2
∑
j=0

(−1) j(h j
ns jdi−1− s j fn−1di−1)+

n
∑

j=i+1
(−1) j(h j−1

n s j−1di− s j−1 fn−1di)

and therefore the restriction of kn to Nn(A) lies in Nn+1(B). Moreover,

dn+1kn =
n−1
∑
j=0

(−1) j(h j
ns jdn− s jdn fn)+(−1)n(hn

n− fn)

=
n−1
∑
j=0

(−1) j(h j
ns jdn− s j fn−1dn)+(−1)n(gn− fn)

= kn−1dn +(−1)n(gn− fn).



Cohomology of Commutative Rings and the Cotangent Complex - P. Mateo Segura 27

Hence,

∂n+1kn + kn−1∂n = (−1)n+1dn+1kn +(−1)nkn−1dn = (−1)n+1(dn+1kn− kn−1dn)

= (−1)n+1(−1)n(gn− fn) = fn−gn

and {kn} is a chain homotopy from N( f ) to N(g).

For an abelian category A, let C• be a chain complex in Ch>0(A) with boundary map ∂ .
For any injective map f : n→m in ∆, we define the map L( f ) : Cm −→Cn to be

L( f ) =

⎧⎪⎪⎨⎪⎪⎩
idCn , if n = m,

(−1)n+1∂n+1, if m = n+1, and f = dn,

0, else.

Taking Cn as n-simplicies, we get a semisimplicial object C⋆ in A. This defines a functor

L : Ch>0(A) sSA.

Construction of maps may seem odd, but one may note similarities with the definition of the
normalized chain complex N(A). They are not casual, in fact, N and G L are inverse equiva-
lences.

Theorem 1.4.7 (Dold-Kan). Let A be an abelian category. There is an equivalence of cate-
gories

SA Ch>0(A)
N

G L

under which simplicial homotopy in SA corresponds to homology in Ch>0(A) and simplicially
homotopic morphisms correspond to chain homotopic maps.

Proof. Let K = GL and C ∈ Ch>0(A) with boundary map ∂ . There is a natural inclusion of
the normalized chain complex into the unnormalised chain complex

Ψn(C) : Nn(K(C)) ↪→Cn(K(C)) = K(C)n =
⨁︂

f :n→k
Ck[ f ], n > 0.

Here, we adopt the usual convention of denoting by ⊕ the coproduct in an abelian category.
Consider the face maps di : KCn → KCn−1 in the simplicial object K(C) and in particular,
their restriction to the factor Cn[idn] = Cn of K(C)n. For any di : n−1→ n the epi-monic
factorization

n−1 n

n−1 n

di

id id

di

shows that the image of di restricted to Cn is the zero map for all i = 0, . . . ,n−1, and for i = n
(−1)n∂n : Cn→Cn−1[idn−1]. Hence,

Cn ⊆
n−1⋂︂
i=0

kerdi = Nn(K(C)) = imΨn(C).
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Any other factor in K(C)n which is not Cn is of the form Ck[ f ] for f : n→ k surjective and
k < n. Thus, it can be factorized as

n n−1 ksi

f

g

for some s i and g. Hence, the degeneracy map si : KCn−1→ KCn restricted to Ck[g] has im-
age Ck[ f ], so Ck[ f ] ∈ Dn(K(C)) and by Proposition 1.4.4 it cannot be in the image of Ψn(C).
Therefore, im Ψn(C) = Cn, i.e, Nn(K(C)) ∼= Cn is a natural isomorphism. Moreover, the dif-
ferential in NK(C) is given by (−1)ndn : Nn(K(C))→ Nn−1(K(C)) which is precisely the map
(−1)n(−1)n∂n = ∂n : Cn→Cn−1. Thus,

NK(C)∼=C.

On the other hand, let A⋆ ∈ SA. There is a natural map

Φn(A⋆) : Kn(N(A⋆)) =
⨁︂

f :n→k
Nk(A⋆)[ f ]−→ An, n > 0,

whose restriction to Nk(A⋆)[ f ] for a surjection f : n→ k is defined as the composite

Nk(A⋆)[ f ] Ck(A⋆) = Ak An.
f ⋆

For g : m→ n a map in ∆, with decomposition

m n

l k

g

h f

j

there is a commutative diagram

Kn(N(A⋆)) Nk(A⋆)[ f ] Ak An

Km(N(A⋆)) Nl(A⋆)[h] Al Am

g⋆ g⋆|Nk(A⋆)
j⋆|Nk(A⋆) j⋆

f ⋆

g⋆

h⋆

So Φn(A⋆) is a simplicial map. We prove by induction on n that it is an isomorphism. For
n = 0, note that N0(A⋆) = A0, and hence

Φ0(A⋆) : K0(N(A⋆)) = N0(A⋆)[id0]
∼=−→ A0

is an isomorphism. Now assume Φ j(A⋆) is an isomorphism for j < n− 1. Let us show that
Φn(A⋆) is also an isomorphism. Φn(A⋆) restricted to the factor Nn(A⋆)[idn] is the natural identi-
fication of Nn(A⋆)[idn] with Nn(A⋆). Hence Nn(A⋆)⊆ im Φn(A⋆). Since Φn−1(A⋆) is surjective,
An−1 ⊆ im Φn−1(A⋆), and for 0 6 i 6 n,

si Φn−1(A⋆) = Φn(A⋆)si,

so si(An−1)⊆ im (Φn(A⋆)si). Thus D(A⋆)⊆ im Φn(A⋆). Finally, by Proposition 1.4.4,

An = Nn(A⋆)⊕Dn(A⋆)⊆ im Φn(A⋆),
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so it is a surjection. To see injectivity we use elements. For 0 6 k < n, and any surjection
f : n � k we can choose a section f ′ : k ↪→ n such that

f ′(i) = max{ j | f ( j) = i}.

For any two f ,g : n � k, we define the equivalence relation

f 6 g⇐⇒ f ′(i)6 g ′(i) for all 0 6 i 6 k.

In particular, notice that if g f ′ = idk then we must have f 6 g. Now, let (xh) ∈ ker Φn(A⋆). If
a component x f ̸= 0 for some f : n � k, we take the maximal such f with respect to 6. We
have a commutative factorization

k n

k k

id

f ′

fg

id

and if there is some other g : n � k making the diagram commute, then f 6 g, so 0 = xg ∈ (xh).
Therefore, the component of ( f ′)⋆((xh)) ∈ KkN(A⋆) in the factor Nk(A⋆)[idk] is just x f . But
( f ′)⋆((xh)) ∈ ker Φk(A⋆) = 0 by induction, so we must have x f = 0. Hence, we get x f = 0
for all f ̸= idn. Finally, the restriction of Φn(A⋆) to Nn(A⋆)[idn] is just the natural inclusion
Nn(A⋆) ↪→ An, so xidn = 0. Hence, (xh) = 0 and Φn(A⋆) is injective.
We are just left to show that simplicially homotopic maps correspond to chain homotopic maps.
We have already proven one direction in Lemma 1.4.6. Let f , g : C→ D be chain maps, and
let {kn} be a chain homotopy from f to g. We define maps hi : K(C)n→ K(D)n+1. As we saw
in the proof of Lemma 1.4.1, we only need to specify the restriction of hi to the factor Cn[idn]
of K(C)n, which is given by

hi|Cn[idn] : Cn[idn]−→ K(D)n+1 =

⎧⎪⎪⎨⎪⎪⎩
si f if i < n−1

sn−1 f − sn kn−1 d if i = n−1

sn ( f − sn−1 d)− kn if i = n

.

We set now hi
n : K(C)n→ K(D)n for i =−1, . . . ,n by⎧⎨⎩ h−1

n = K(g), hn
n = K( f )

hi
n = di+1hi, for 0 6 i < n

.

By the description of simplicial homotopies we did in the poof of Lemma 1.4.6, this gives a
simplicial homotopy h : K(C)⊗∆1→ K(D) from K(g) to K( f ) and ends the proof.

Proposition 1.4.8. Let A be an abelian category, then there are pairs of adjoints

(a)

L : Ch>0(A) sSA : N,

(b)

K = GL : Ch>0(A) SA : N.
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Proof. (a) Let C ∈ Ch>0(A), and A⋆ ∈ sSA. We have to see

HomsSA(L(C),A⋆)∼= HomCh(C,N(A⋆)).

Let h ∈ HomsSA(L(C),A⋆), since it is a natural transformation, the following diagram is com-
mutative

Cn An

Cn−1 An−1

hn

di di

hn−1

For i = 0, . . . ,n−1, the left arrow in the diagram is the zero map (by definition of L(C)), and
hence di hn = 0, so

im(hn)⊆
n−1⋂︂
i=0

ker di = Nn.

Therefore, h induces a map ˆ︁h : C→ N(A⋆) given by ˆ︁hn = hn : Cn → Nn. Conversely, a mapˆ︁h ∈ HomCh(C,N(A⋆)) also induces a map h : L(C)→ A⋆ given by the composition

hn : Cn Nn An.
ˆ︁hn

(b) Direct consequence of (a) and Lemma 1.4.1.



Chapter 2

(Co-) Homology of Commutative Rings

In this chapter we will use simplicial objects to define resolutions of an object in an abelian
category. Then, we will apply the homotopy theory we have just constructed to the category of
commutative rings in order to define homology and cohomology here.

Definition. An augmented simplicial object in a category A is a simplicial object A⋆ together
with a morphism ε : A0 → A−1 to a fixed object A−1 ∈ A such that εd0 = εd1. It is called
aspherical if π0(A⋆)∼= A−1 and πn(A⋆) = 0 for all n > 1. We will denote it by A⋆→ A−1.

If A is an abelian category, then A⋆ is aspherical if the underlying unnormalized (or nor-
malized) chain complex associated to A⋆ is exact. Therefore, C(A⋆) (or N(A⋆)) is a resolution
of A−1 in A.

2.1 Cotriple homology and cohomology
Let C be a category, T : C → C a functor and d : T → T 2 a natural transformation with com-
ponents dC : T (C)→ T 2(C) for all C ∈ C. We denote by T d, dT the natural transformations
T 2→ T 3 with components (T d)C = T (dC), and (dT )C = dT (C) respectively.

Definition. A cotriple (⊥,ε,δ ) on a category C is a functor ⊥ : C → C together with natural
transformations ε :⊥→ idC , δ :⊥→⊥2 such that the following diagrams commute

⊥ ⊥2

⊥2 ⊥3

δ

δ ⊥δ

δ⊥

⊥

⊥ ⊥2 ⊥.

= =
δ

ε⊥ ⊥ε

Example 2.1.1. In any category C there is always a trivial cotriple taking ⊥= idC , and ε = δ

to be the constant natural transformation idC → idC .

Remark. If we apply naturality of ε to the map ⊥ jεA : ⊥ j+1A→ ⊥ jA for j ≥ 0 we a get
commutative diagram

⊥(⊥ j+1A) ⊥(⊥ jA)

⊥ j+1A ⊥ jA

⊥ j+1(εA)

ε⊥ j+1A ε⊥ jA

⊥ jεA

31



32 Chapter 2. (Co-) Homology of Commutative Rings

which means that ε satisfies the identity (ε⊥ j)(⊥ j+1ε) = (⊥ jε)(ε⊥ j+1) for all j > 0. Simi-
larly, applying naturality of δ to ⊥ j−1δA :⊥ jA→⊥ j+1A we get

(δ⊥ j+1)(⊥ j
δ ) = (⊥ j+1

δ )(δ⊥ j), for j > 0.

Finally, naturality of ε applied to ⊥ jδA, and naturality of δ applied to ⊥ j−1εA gives

(ε⊥ j+2)(⊥ j+1δ ) = (⊥ jδ )(ε⊥ j+1), for j > 0,

(δ⊥ j−1)(⊥ jε) = (⊥ j+1ε)(δ⊥ j), for j > 0,

respectively.

Given an object C ∈ C we can use a cotriple (⊥,ε,δ ) to construct an augmented simplicial
object ⊥⋆C→C in C by taking

⊥nC =⊥n+1C, di =⊥i
ε⊥n−iC :⊥n+1C→⊥nC, si =⊥i

δ⊥n−iC :⊥n+1C→⊥n+2C,

and setting ⊥0C =⊥C→C to be εC. The simplicial identities are satisfied:

did j = ⊥i(ε⊥ j−i−1)(⊥ j−iε)⊥n− j =⊥i(⊥ j−i−1ε)(ε⊥ j−i)⊥n− j = d j−1di, for i < j,

sis j = ⊥i(δ⊥ j−i+1)(⊥ j−iδ )⊥n− j =⊥i(⊥ j−i+1δ )(δ⊥ j−i)⊥n− j = s j+1si, for i 6 j,

dis j = ⊥i(ε⊥ j−i+1)(⊥ j−iδ )⊥n− j =⊥i(⊥ j−i−1δ )(ε⊥ j−i)⊥n− j = s j−1di, for i < j,

disi = ⊥i(ε⊥)(δ )⊥n−i = id⊥n+1, di+1si =⊥i(⊥ε)(δ )⊥n−i = id⊥n+1

dis j = ⊥ j(⊥i− jε)(δ⊥i− j−1)⊥n+1−i =⊥ j(δ⊥i− j−2)(⊥i− j−1ε)⊥n+1−i

= s jdi−1, for i > j+1.

Finally, by the previous remark, εC(⊥εC) = εC(ε⊥C), so εCd1 = εCd0. Thus⊥⋆C→C is indeed
an augmented simplicial object.

If E : C → A is a functor to an abelian category, for every C ∈ C, we get an augmented
simplicial object in A, E⊥⋆C→ E(C).

Definition. The cotriple homology of C with coefficients in E (relative to the cotriple⊥) is the
homotopy of the simplicial object E⊥⋆C→ E(C), which by the previous chapter is the same
as the homology of the associated chain complex C(E⊥⋆C). It is denoted H⋆(C ;E), such that

Hn(C;E) = πn(E⊥⋆C), n > 0.

Remark. Although we have been working on simplicial objects, we can dualize everything
for cosimplicial objects. In particular, for every abelian categoryA, there is an equivalence N ⋆

between the cosimplicial objects of A and Ch>0(A) (the category of cochain complexes C• in
A with Cn = 0 for n < 0), where N⋆(A⋆) is a summand of the unnormalized cochain complex
C(A⋆) of A⋆. We define the cohomotopy of a cosimplicial object A⋆ to be the cohomology of
N⋆(A⋆), i.e.,

π
i(A⋆) = H i(N⋆(A⋆)).

In particular, we also have π i(A⋆) ∼= H i(C(A⋆)). Finally, if A has enough injectives, then the
cohomotopy groups π ⋆(A⋆) are the right derived functors of the functor π 0.
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If E : Cop→A is a functor to an abelian category, for every C ∈ C we get an augmented
cosimplicial object in A, E(C)→ E(⊥⋆C).

Definition. The cotriple cohomology of C with coefficients in E (relative to the cotriple ⊥) is
the cohomotopy of the cosimplicial object E(C)→ E(⊥⋆C). It is denoted H⋆(C ;E) such that

Hn(C;E) = π
n(E⊥⋆C), n > 0.

There is an easy way to obtain cotriples using pairs of adjoint functors (besides, every
cotriple arises from a pair of adjoint functors in this manner 1). Let

F : C B : U

be a pair of adjoint functors having unit and counit η : idC→UF and ε : FU→ idB respectively.
Recall that they satisfies the identities

(εF)(Fη) = idF , (Uε)(ηU) = idU , (UFη)η = (ηUF)η .

Let ⊥= FU , and δ = FηU , such that ε :⊥→ idB, and δ :⊥→⊥2. It follows

(UFη)η = (ηUF)η ⇒ (FUFηU)FηU = (FηUFU)FηU =⇒ (⊥δ )δ = (δ⊥)δ ,
(Uε)(ηU) = idU ⇒ F((Uε)(ηU)) = idFU =⇒ (⊥ε)δ = id⊥,

(εF)(Fη) = idF ⇒ ((εF)(Fη))U = idFU =⇒ (ε⊥)δ = id⊥,

so this choice gives in fact a cotriple.

Example 2.1.2. We denote by Algk the category of commutative k-algebras for k a commuta-
tive ring (with 1). The forgetful functor U : Algk −→ Set has a left adjoint F : Set −→ Algk
where F(X) = k[X ] is the polynomial k-algebra on the set X . We see it as a free k-algebra with
basis {ex | x ∈ X}. The unit η and counit ε are given by

ηX : X −→ UF(X)

x ↦−→ ex
,

εR : k[R] −→ R

er ↦−→ r

for any R ∈ Algk and X ∈ Set, where k[R] denotes the polynomial algebra on the underlying
set of R. We get a cotriple

⊥ : Algk −→ Algk

sending a k-algebra R to k[R]. The underlying augmented simplicial set U(⊥⋆R)→ UR is
aspherical, i.e.,

π0U(⊥⋆R)∼=UR, πnU(⊥⋆R) = 0, for all n > 1.

To see this set

f−1 = ηU : U −→U⊥, and fn = ηU⊥n+1 : U⊥n −→U⊥n+1, for n > 0.

Then
(Uε) f−1 = (Uε)(ηU) = idU

d0 fn = (Uε⊥n+1)(ηU⊥n+1) = id⊥n+1.

1See Mac Lane [8] IV. 2.
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Applying naturality of ηU to the maps εR : ⊥R→ R and ⊥i−1ε⊥n−i+1R : ⊥n+1R→⊥nR, we
get

(ηU)(Uε) = (U⊥ε)(ηU⊥) =⇒ f−1(Uε) = d1 f0

(ηU⊥n)(U⊥i−1ε⊥n−i+1) = (U⊥iε⊥n+1−i)(ηU⊥n+1) =⇒ fn−1di−1 = di fn

respectively. Moreover,

(ηU⊥)(ηU) = (ηUF)(η)U = (UFη)(η)U = (Uδ )(ηU) =⇒ f0(ηU) = s0(ηU),

(ηU⊥2)(Uδ )(ηU) = (ηUFUFU)(ηUFU)(ηU)

= (Uδ⊥)(Uδ )(ηU)
=⇒ f1(s0(ηU)) = s2

0(ηU),

and so on, so that

fn(sn−1sn−2 . . .s0(ηU)) = fn(sn
0(ηU)) = sn+1

0 (ηU) = snsn−1 . . .s0(ηU), for all n > 0.

In order to define the homotopy groups we choose as basepoint the vertex k = ηUR(0)∈U⊥0R.
The homotopy groups are

πn (U(⊥⋆R),k) = [(∆n,∂∆
n),(U(⊥⋆R),k)]≃ , for n > 1.

Let us consider an n-simplex x ∈U⊥nR such that

∂∆n ∆0

∆n U(⊥⋆R)

k

x

is commutative. Hence [x] is a homotopy class element in πn(U(⊥⋆R),k). We want to show
that [x] = [k]. Take y = fn(x) ∈U⊥n+1R. Then,

di(y) = di( fn(x)) = fn−1(di−1(x)) = fn−1(k) = k, for 0 < i 6 n+1

d0(y) = d0( fn(x)) = x.

Hence, we get

y|
Λ

n+1
0

= k|
Λ

n+1
0

: Λ
n+1
0 U(⊥⋆R)

and we can define the map

g : Λ
n+1
0 ×∆1 ⨆︁

Λ
n+1
0 ×∂∆1 ∆n+1×∂∆1 U(⊥⋆R)

by setting g to be k on Λ
n+1
0 ×∆1 and on ∆n+1×{1}, and to be x on ∆n+1×{0}. Let us see

that the map

Λ
n+1
0 ×∆1 ⨆︁

Λ
n+1
0 ×∂∆1 ∆n+1×∂∆1 ∆n+1×∆1 (2.1)
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induced by the inclusions i : ∂∆1 ↪→ ∆1 and Λ
n+1
0 ↪→ ∆n+1 is a cofibration. Let p : A⋆ −→ B⋆

be an acyclic fibration of simplicial sets, and consider the lifting problem

Λ
n+1
0 ×∆1 ⨆︁

Λ
n+1
0 ×∂∆1 ∆n+1×∂∆1 A⋆

∆n+1×∆1 B⋆

p

Using the exponential law from Theorem 1.3.1 we see that this problem is equivalent to lifting
problem

Λ
n+1
0 Hom(∂∆1,A)

∆n+1 Hom(∂∆1,A)×Hom(∂∆1,B) Hom(∆1,B).

(i⋆,p⋆)

But in this last square the lift exists since the map on the right is an acyclic fibration by Propo-
sition 1.3.2. Hence, (2.1) is indeed a cofibration of simplicial sets. From Example 1.2.11 we
get that the simplicial set U(⊥⋆R) is fibrant, thus

Λ
n+1
0 ×∆1 ⨆︁

Λ
n+1
0 ×∂∆1 ∆n+1×∂∆1 U(⊥⋆R)

∆n+1×∆1

g

f

there is a map f : ∆n+1×∆1 −→U(⊥⋆R) making the diagram commutative. We define h to be
the composition

h : ∆n×∆1 ∆n+1×∆1 U(⊥⋆R).d0×id f

Then, notice that the map d0 : ∆n −→ ∆n+1 sends idn to d0(idn+1), which is the only face of
the (n+1)-simplex idn+1 missing in Λ

n+1
0 . Therefore, the following diagram commutes

∆n×∆0 ∆n×∆1 ∆n×∆0

∆n+1∆1

U(⊥⋆R)

id×d0

k

d0×id

id×d1

x
f

meaning that h is a homotopy from x to k. Hence, [x] = [k], and therefore

πn U(⊥⋆R) = [k] = 0, for n > 0.

In addition, recall that two vertices x,z in π0 U(⊥⋆R) are in the same homotopy class if there
is a 1-simplex y ∈ ⊥2R such that ∂y = (d0 y,d1 z) = (x,z). Let us show the following equality,

ker[(Uε) f−1] = ker(d1 f0) = {x ∈ ⊥R | ∃y ∈ ⊥2R with d0(y) = x, d1(y) = 0}.
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The containment ⊆ is clear taking y = f0(x). The other one is also clear since d1 f0(x) =
d1 f0(d0(y)) = d1(y) = 0 for every x in the second set. Thus, the induced map

f−1(Uε) : π0U(⊥⋆R)−→U(⊥R)

is well defined and injective, and it follows that Uε : π0U(⊥⋆R)→ U(R) is also injective.
Hence, it is a bijection and

π0U(⊥⋆R)∼=U(R).

2.2 André-Quillen homology and cohomology
We introduce a brief discussion to show how to define the model category structure on SAlgk.
We proved that for a commutative ring (with 1) R, the category Ch>0(R) has a model structure.
The proof heavily relies on the fact that the category ModR has enough projectives. Actually,
using a similiar proof as in Theorem 1.1.2 we can extend the result for abelian categories with
"enough projectives".

Recall that an object P in an abelian category A is projective if it satisfies the following
universal property: for any surjection g : B−→C in A and any diagram of solid arrows

B

P C

g

there is at least one map P−→ B solving the lifting problem (so that the diagram is commuta-
tive).

Definition. An abelian categoryA has natural projective resolutions if for every object A ∈A
there is a projective object PA ∈ A and a surjection PA→ A which is natural in A.

Theorem 2.2.1. Let A be an abelian category with natural projective resolutions. Then
Ch>0(A) has the structure of a model category where a morphism f : X• −→ Y• is

• a weak equivalence if H⋆ f is an isomorphism;

• a fibration if fn : Xn −→ Yn is surjective for all n > 0, and;

• a cofibration if fn is injective with projective cokernel for n > 0.

Proof. Similar as the proof for Theorem 1.1.2. For details see for instance Gillem [2] Theorem
5.5.2.

Now, for any abelian category A with natural projective resolutions, the Dold-Kan corre-
spondence

SA Ch>0(A)
N

G L

gives a model structure on the category SA.
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Proposition 2.2.2. Let A be an abelian category with enough natural projective resolutions.
Then SA has a model category structure where a simplicial map f : X⋆ −→ Y⋆ is a weak
equivalence, fibration or cofibration if the map N( f ) : N(X)−→ N(Y ) is a weak equivalence,
fibration or cofibration in the model structure of Ch>0(A) respectively.

Proof. Direct consequence of Theorem 2.2.1 and the equivalence of the categories given by
Dold-Kan.

There is another way to induce a model category structure on some categories of the form
SA using the model category structure of SSet. Let C be a category closed under finite limits
and colimits and assume there is a pair of adjoint functors

F : SSet SC : G.

Moreover, assume that for any {Xi}i∈I diagram in C with I a filtered category the natural map

lim−→
I

G(Xi) G

(︄
lim−→

I
Xi

)︄
∼=

is an isomorphism.

Theorem 2.2.3. SC has the structure of a model category where a morphism f in SC is

• a weak equivalence if G( f ) is a weak equivalence in SSet;

• a fibration if G( f ) is a fibration in SSet, and;

• a cofibration if it has the LLP with respect to all acyclic fibrations in SA

if every cofibration with the LLP with respect to all fibrations is an acyclic cofibration.

Proof. See Goerss and Jardine [3] II. Theorem 5.2.

Remark. We have seen two different ways to provide a model structure on categories of the
form SA for an abelian category A. In general, these two different structures have nothing in
common. However, for the case A = ModR, a map f is a fibration (resp. weak equivalence)
in the sense of Theorem 2.2.2 (which is precisely the model structure we showed in Theorem
1.1.2) if and only if the underlying map of simplicial sets U( f ) is a fibration (resp. weak
equivalence) in the sense of Theorem 2.2.3. 2

Example 2.2.4. Let us consider the abelian category Algk which is closed under finite limits
and colimits, and the pair of adjoints from Example 2.1.2

F : Set Algk : U,

where U was the forgetful functor. We can extend this to a pair of adjoint functors

F : SSet SAlgk : U,

taking U(Xn) = U(X)n and so on. We get in fact a model category structure on SAlgk with
Theorem 2.2.3 (see Goerss and Jardine [3] II, or Quillen [12] II.4).

2See Quillen [12] II. 3.
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Corollary 2.2.5. The category SAlgk has the structure of a model category where a morphism
f : X⋆ −→ Y⋆ is

• a weak equivalence if f⋆ : π⋆X⋆→ π⋆Y⋆ is an isomorphism;

• a fibration if as a map of simplicial sets, U( f ), it is a fibration, and;

• a cofibration if it has the LLP with respect to all acyclic fibrations in SAlgk.

Remark. Cofibrations are uniquely characterized by the lifting property they satisfy with re-
spect to fibrations. Moreover, by the previous remark, a map of simplicial rings is an acyclic
fibration if as a map of groups it is an acyclic fibration, i.e., if it induces isomorphisms on
homology and it is surjective in each dimension. Also, for any simplicial k-algebra A⋆, there is
a canonical map ck−→ A⋆ given in degree n > 0 by the structure map k−→ An. Thus ck is the
initial object in SAlgk.

Proposition 2.2.6. Let i : R⋆ −→ S⋆ be a cofibration and p : X⋆ −→ Y⋆ an acyclic fibration in
SSet. Let h : R⋆×∆1 −→ X⋆ and k : S⋆×∆1 −→ Y⋆ be homotopies such that the following
commutes

R⋆×∆1 X⋆

S⋆×∆1 Y⋆

h

i×id
∆1 p

k

(2.2)

and let θ0, θ1 : S⋆→ X⋆ be maps such that the following diagrams commute

R⋆ R⋆×∆1

S⋆ X⋆

S⋆×∆1 Y⋆

id×de

i h
θe

id×de p

k

for e = 0,1.

Then, there is a homotopy ℓ : S⋆×∆1 −→ X⋆ making all the previous diagrams commutative.

Proof. Applying exponential law from Theorem 1.3.1 to (2.2) we get a commutative diagram

R⋆ Hom(∆1,X)⋆

S⋆ Hom(∆1,Y )⋆

i f⋆

We can see (θ1, θ2) ∈HomSSet(S⋆,X⋆)×HomSSet(S⋆,X⋆). Note that ∂∆1 ∼= ∆0×∆0 and using
the exponential law we get a map ϕ ∈ HomSSet(S⋆,Hom(∂∆1,X)⋆) since

HomSSet(S⋆,Hom(∂∆1,X)⋆) ∼= HomSSet(∂∆1×S⋆,X⋆)

∼= HomSSet(S⋆,X⋆)×HomSSet(S⋆,X⋆).
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Then, calling j : ∂∆1 −→ ∆1 the inclusion in SSet we get a commutative diagram

R⋆ Hom(∆1,X)⋆

S⋆ Hom(∂∆1,X)⋆×Hom(∆1,Y )⋆ Hom(∆1,Y )⋆

i ( j⋆,p⋆)

where the map on the right is an acyclic fibration of simplicial sets by Proposition 1.3.2. Hence,
there is a map S⋆ −→ Hom(∆1,X)⋆ making the diagram commutative. This map corresponds
to a map ℓ : S⋆×∆1 −→ X⋆ via the exponential law, which is the solution to our original lifting
problem.

Remark. Note that we are just rewriting Proposition 1.3.2 using the exponential law. There-
fore, we can extend this result for any other category for which an analogous version of Propo-
sition 1.3.2 holds (i.e., for any closed simplicial model category). In particular, this can be
done for simplicial rings using the model structure coming from simplicial sets.3 Thus, we get
the following result:

Proposition 2.2.7. Let i : R⋆ −→ S⋆ be a cofibration and p : X⋆ −→ Y⋆ an acyclic fibration in
SAlgk. Let h : R⋆⊗∆1 −→ X⋆ and k : S⋆⊗∆1 −→ Y⋆ be homotopies such that the following
commutes

R⋆⊗∆1 X⋆

S⋆⊗∆1 Y⋆

h

i×id
∆1 p

k

and let θ0, θ1 : S⋆→ X⋆ be maps such that the following diagrams commute

R⋆ R⋆⊗∆1

S⋆ X⋆

S⋆⊗∆1 Y⋆

id×de

i h
θe

id×de p

k

for e = 0,1.

Then, there is a homotopy ℓ : S⋆⊗∆1 −→ X⋆ making all the previous diagrams commutative.

For any k-algebra R, Algk/R is the category of k-algebras over R, i.e., the category whose
objects are k-algebras P equipped with an algebra map P→ R, and whose morphisms are maps
P→ Q such that the diagram

P Q

R
is commutative. Analogously for any A⋆, B⋆ ∈ SAlgk, we let AlgA/B be the category of sim-
plicial k-algebras under A⋆ over B⋆, i.e., the category whose objects are simplicial k-algebras
T⋆ equipped with structure maps A⋆→ T⋆, T⋆→ B⋆, and whose morphisms are maps T⋆→ T ′⋆
compatible with the structure maps. As a direct consequence of the last proposition we have
the following two corollaries.

3Quillen [12] II.4. Theorem 4.
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Corollary 2.2.8. Let i : A⋆→ B⋆ be a cofibration and p : X⋆→Y⋆ an acyclic fibration in SAlgk.
Then given a commutative square

A⋆ X⋆

B⋆ Y⋆

u

i p

v

any two choices for the dotted arrow are homotopic in AlgA/Y .

Proof. Let us call θ0, θ1 : B⋆ −→ X⋆ any two such lifts. Then last proposition for h and k the
constant maps at u, v respectively gives a map ℓ : B⋆⊗∆1 −→ Y⋆ such that

B⋆ B⋆⊗∆1 B⋆

X⋆

id×d1

θ1
ℓ

id×d0

θ0

commutes, so it is in fact a homotopy from θ1 to θ2.

Corollary 2.2.9. The cofibrant-acyclic fibrant factorization M5 (i) of a map u : A⋆ −→ B⋆ in
SAlgk is unique up to simplicial homotopy in the category AlgA/B.

Proof. If there are two such factorizations

A⋆ T⋆ B⋆,
i p

A⋆ T ′⋆ B⋆
i′ p′

for a given map u : A⋆→ B⋆ in SAlgk, the following commutative diagrams

A⋆ T ′⋆

T⋆ B⋆

i′

i p′

p

A⋆ T⋆

T ′⋆ B⋆

i

i′ p

p′

provide maps ϕ : T⋆→ T ′⋆, ψ : T ′⋆→ T⋆. Then, both maps ψϕ and idT⋆ solve the lifting problem
in the following left diagram, and both ϕψ and idT ′⋆ are lifts in the following right diagram

A⋆ T⋆

T⋆ B⋆

i

i p

p

A⋆ T ′⋆

T ′⋆ B⋆

i′

i′ p′

p′

Thus, by Corollary 2.2.8, ϕψ and ψϕ are homotopic to idT ′⋆ and idT⋆ respectively in AlgA/B.

Definition. Let R ∈ Algk. A simplicial resolution of R is an acyclic fibration E⋆ −→ cR in the
model category SAlgk.

Remark. Let R ∈ Algk. A simplicial object P⋆ in the category Algk/R is just a factorization

ck P⋆ cR (2.3)

of the map ck−→ cR. Hence, a simplicial cofibrant k-algebra resolution of R is just a simplicial
object in Algk/R, P⋆, such that the factorization (2.3) is a cofibrant-acyclic fibrant factorization
in SAlgk.
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For the rest of this section, we fix ⊥ to be the cotriple on Algk constructed in Exam-
ple 2.1.2, so that ⊥R is the polynomial algebra con the underlying set of the k-algebra R. Let
j : k ↪→ k[R] =⊥R be the structure map, and

i : ck −→⊥⋆R, p :⊥⋆R−→ cR

be the maps given in degree n > 0 by the composition

in = sn−1sn−2 . . .s0 j = sn
0 j : k −→⊥nR, pn = εd0d1 . . .dn−1 = εdn

0 :⊥nR−→ R.

Definition. A map of simplicial rings A⋆→ B⋆ is free if for all q > 0 there are subsets Cq ⊆ Bq
such that

(i) η⋆Cq ⊆Cp for every surjective map η : p→ q in ∆,

(ii) Bq is a free Aq - algebra with generators Cq.

Example 2.2.10. The map i : ck −→⊥⋆R is a free map, where

Cq = {er | r ∈ ⊥q−1R} ⊆ k[⊥q−1R] =⊥qR, for q > 0,

with ⊥−1R = R. From the explicit description of the unit η in Example 2.1.2, we see that
δ :⊥−→⊥2 is given by

δA : k[A] −→ k[k[A]]

ea ↦−→ eea .

for any k-algebra A. Given any surjective map η : p→ q in ∆, we can write it as a compostion
η = s j1 · · · s jt of codegeneracy maps. But for 0 6 j 6 h, the map

δ⊥h− j : ⊥h− j+1R −→ ⊥h− j+2R,

er ↦−→ eer

for any r ∈ ⊥h− jR,

sends δ⊥h− jCh− j ⊆Ch− j+1. Recall that for ϕ : R−→ S a map in Algk, ⊥(ϕ) is given by

⊥(ϕ) : k[R] −→ k[S],

er ↦−→ eϕ(r)
for any r ∈ R.

Hence, the map
s j =⊥ j

δ⊥h− j :⊥hR−→⊥h+1R

sends basis elements in ⊥hR to basis elements in ⊥h+1. Therefore

η
⋆Cq = (s jt · · · s j1)Cq ⊆ (s jt · · · s j2)Cq+1 ⊆ . . .⊆Cp.

Proposition 2.2.11. Any free map of simplicial rings is a cofibration.

Proof. See Goerss and Jardine [3] VII. Example 1.14.

Proposition 2.2.12. The composition

ck ⊥⋆R cRi p

is a cofibrant-acyclic fibrant factorization of the canonical map ck −→ cR. Therefore, ⊥⋆R is
a cofibrant simplicial k-algebra resolution of R.
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Proof. The previous example and the last proposition show that i is a cofibration. On the
other hand, the map p is an acyclic fibration if the induced map U(p) : U(⊥⋆R)→U(cR) is
an acyclic fibration. Take the map g : U(cR) −→ U(⊥⋆R) given by gn : R→ U(⊥nR) with
gn(r) = sn

0(er) for r ∈ R and n > 0. Then, g is a section for U(p), i.e., U(p)g = id, and thus
p is an acyclic fibration. The only thing we are left to show is that the composition pi is the
structure map ck −→ cR, but this is clear since the composition ε j is precisely the structure
map k −→ R.

Corollary 2.2.13. For any k-algebra R there is always a unique cofibrant simplicial k-algebra
resolution of R up to simplicial homotopy.

Proof. Direct consequence of Proposition 2.2.12 and Corollary 2.2.9.

We denote by ΩR/k the R-module of Kähler differentials of R over k, and by Derk(R,M)
the R-module of k-derivations R−→M for an R-module M, so that

Derk(R,M)∼= HomR(ΩR/k,M).

Let R∈Algk and M ∈ModR. If we apply the functor Derk(· ,M) : Algk→ModR to a simplicial
k-algebra P⋆, with ε : P⋆→ cR, we obtain a cosimplicial R-module Derk(P⋆,M), given by

n ↦→ Derk(Pn,M).

Note that M is a Pn - module via the map εn. Moreover, if P⋆ and Q⋆ are two simplicial cofibrant
k-algebra resolutions of R, then the simiplicial homotopy equivalence P⋆ ≃ Q⋆ from Corollary
2.2.9 induces a simplicial homotopy equivalence

Derk(P⋆,M)≃ Derk(Q⋆,M).

Definition (André-Quillen). The cohomology of the k-algebra R with values in the R-module
M is the sequence of R-modules

Dn(R/k,M) = π
n Derk(P⋆,M), for n > 0

where P⋆ is a simplicial cofibrant k-algebra resolution of R.

Although this definition seems more general, using Proposition 2.2.12 we realize that it is
just a cotriple cohomology.

Theorem 2.2.14. The cohomology of R with coefficients in an R-module M is the cotriple
cohomology of R with values in Derk( · ,M), i.e.,

Dn(R/k,M) = Hn(R,Derk( · ,M)) = π
nDerk(⊥⋆R,M), n > 0.

In order to better understand this cohomology, and to see how homology can be defined,
we introduce the cotangent complex. We consider the functor

L : Algk/R −→ ModR

P ↦−→ R⊗P ΩP/k
.

As before, if P⋆ and Q⋆ are two simplicial cofibrant k-algebra resolutions of R, then we also
have a homotopy equivalence L(P⋆)≃ L(Q⋆).
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Definition. The cotangent complex LR/k of the k-algebra R is the simplicial R-module L(P⋆)
given by

n ↦→ R⊗Pn ΩPn/k ,

where P⋆ is a simplicial cofibrant k-algebra resolution of R.

Proposition 2.2.15. For all n > 0,

Dn(R/k,M)∼= π
nHomR(LR/k,M).

Proof. Using the cotriple resolution ⊥⋆R→ R, we just need to show that

Derk(⊥⋆R,M)∼= HomR(LR/k,M).

Let n > 0. On the one hand, since ⊥nR = k[⊥nR], then Ω⊥nR/k is just (⊥nR)⊥
nR, the free

(⊥nR)-module with basis {dx : x ∈ ⊥nR}. On the other hand,

Homk[R](k[R],M)∼= HomR(R,M) =⇒ Hom⊥nR(⊥nR,M)∼= HomR(R,M),

and therefore

Derk(⊥nR,M) ∼= Hom⊥nR((⊥nR)⊥
nR,M)∼= HomR(R,M)⊥

nR

∼= HomR(R⊗⊥nR⊥nR,M)⊥
nR ∼= HomR(R⊗⊥nR (⊥nR)⊥

nR,M).

This result motivates the following definition for homology.

Definition (André Quillen). The homology of R with values in an R-module M is the sequence
of R-modules

Dn(R/k,M) = πn(LR/k⊗R M), n > 0.

When M = R we write D⋆(R/k) for D⋆(R/k,R).

The same way we did for cohomology, we can also see this homology as a cotriple ho-
mology for some specific setting. We can extend the cotriple ⊥ in Algk to a cotriple in the
category Algk/R, with⊥(P) =⊥(P,u : P→ R) = (k[P], ũ : k[P]→ R) where ũ sends any p ∈ P
to u(p) ∈ R. By abuse of notation we also call ⊥ the induced cotriple in Algk/R. Hence, we
have:

Theorem 2.2.16. The homology of R with values in an R-module M is the cotriple homology
of R with coefficients in L( ·)⊗R M, i.e.,

Dn(R/k,M) = Hn(R,L( ·)⊗R M) = πn(LR/k⊗R M), n > 0.

Example 2.2.17. If R is a polynomial k-algebra, then the trivial resolution P⋆ −→ R, with
Pn = R, ∂n = idR for all n > 0 is a simplicial polynomial resolution of R. Hence, for any
R-module M and i ̸= 0,

Di(R/k,M) = Di(R/k,M) = 0.
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2.3 Computations in low degrees
For R ∈ Algk, an extension of R by an R-module M is an exact sequence

0 M E R 0i u

where u is a map in Algk such that ker(u)2 = 0, i induces an isomorphism of R-modules
M ∼= ker(u), and the R-module structure of ker(u) is induced by u. Two extensions (E, i,u),
(E ′, i′,u′) of R by M are equivalent if there is an isomorphism of k-algebras f : E → E ′ such
that the following diagram

E

0 M R 0

E ′

u

f

i

i′ u′

is commutative. An extension (E, i,u) is trivial if there is a k-algebra homomorphism s : R→ E
such that us = idR. In this case we say that the short exact sequence splits. We obtain a trivial
extension of R by M by giving the module M⊕R a k-algebra structure via

(m1,r1)(m2,r2) = (r1m2 + r2m1,r1 r2), m1,m2 ∈M, r1,r2 ∈ R.

We get

0 M M⊕R R 0i u

where the maps are given by i(m) = (m,0) and u(m,r) = r for m ∈ M, r ∈ R. The structure
map on M⊕R is given by r ↦→ (0,r). We denote by Exalcommk(R,M) the set of isomorphism
classes of extensions of R by M, and M nR the equivalence class of the trivial extension we
just defined. Notice that any trivial extension will be in the equivalence class MnR.

Lemma 2.3.1. Let R ∈ Algk, M ∈ModR and E ∈ Algk/R with w : E → R. We see M as an
E-module via the map w. There is a bijection

v(−) : Derk(E,M)
∼−→ HomAlgk/R(E,MnR)

D ↦−→ (e ↦→ (D(e),w(e)).

which is natural in E.

Proof. The map is well defined. For any D ∈ Derk(E,M), vD is a k-homomorphism since
the Leibniz rule satisfied by D is compatible with the product defined in M nR. Moreover,
u(D(e),w(e)) = w(e), so there is a commutative diagram

E MnR

R

vD

w u

and vD is in fact a map in Algk/R. Let D, D′ ∈ Derk(E,M) such that vD = vD′ and call
prM : M n R → M the projection to the M factor. Then D = prM vD = prM vD′ = D′.
On the other hand, if v : E →MnR is a map in Algk/R, then w = uv. Take D = prM v. D is a
k-homomorphism, and for e, f ∈ E,

v(e f ) = v(e)v( f ) = (D(e),w(e))(D( f ),w( f )) = (w( f )D(e)+w(e)D( f ),w(e)w( f )),
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so D(e f ) = w(e)D( f )+w( f )D(e), which means that D is in fact a k-derivation from E to M.
Naturality is clear recalling that for any map ϕ : E −→ S in Algk/R the diagram

E S

R

ϕ

w ′ w

commutes and hence wϕ = w ′.

Corollary 2.3.2. There is a pair of adjoint functors

L : Algk/R ModR : T

where T (M) = MnR, for any M ∈ModR.

Proof. Direct consequence of the Lemma. For any M ∈ModR and E ∈ Algk/R,

HomAlgk/R(E,MnR))∼= Derk(E,M)∼= HomE(ΩE/k,M)∼= HomModR(ΩE/k⊗E R,M).

Proposition 2.3.3. Let R ∈ Algk, M ∈ModR, then

(a) D0(R/k,M)∼= Derk(R,M), and D0(R/k,M)∼= ΩR/k⊗R M,

(b) D1(R/k,M)∼= Exalcommk(R,M).

Proof. (a) Recall that ker ε = im (d0−d1). Hence elements in D0(R/k,M) are just derivations
D ∈ Derk(⊥R,M) such that D(d0−d1) = 0, and therefore there is a factorization

⊥R M

⊥R/im(d0−d1) R

D

∼
ε

D′

where D′ ∈ Derk(R,M). For homology, by the last corollary, the functor L is left exact, so if
we apply it to the exact sequence

⊥2R ⊥R R 0
d0−d1 ε

we get ΩR/k
∼= D0(R/k,R). Now, since · ⊗R M is right exact, it follows

ΩR/k⊗R M ∼= D0(R/k,M).

(b) The forgetful functor
(⊥2R) -mod−→ Set

has left adjoint
Set−→ (⊥2R) -mod,

where every set X is sent to (⊥2R)X , the free (⊥2R)-module on X . Since ⊥2R = k[⊥R], then
Ω⊥2R/k is just the free module on the underlying set of ⊥R, (⊥2R)⊥R. This way

HomSet(⊥R,M)∼= Hom⊥2R((⊥2R)⊥R,M)∼= Hom⊥2R(Ω⊥2R/k,M)∼= Derk(⊥2R,M),
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where the composite isomorphism sends a map of sets ϕ : ⊥R→M to a map ⊥2R→M, that
sends the elements eb ↦→ ϕ(b) for all b ∈ ⊥R and is extended k-linearly. For every k-extension
E of R by M we have

0 M E R 0

⊥R

i u

ε
θ

(2.4)

where i is an isomorphism to ker u, and θ makes the diagram commute and is obtained since
⊥R is a polynomial k-algebra, and therefore projective. Recall that εd0− εd1 = 0, so

u(θd1−θd0) = uθd1−uθd0 = εd1− εd0 = 0

and we can consider the k-module homomorphism

θ(d1−d0) :⊥2R→ ker(u).

The (⊥2R)-module structure of ker(u) is given by a · ℓ = bℓ where b ∈ E is such that u(b) =
εd0(a), for any a ∈ ⊥2R and ℓ ∈ ker(u). For very a,b ∈ ⊥2R,

(d1−d0)(ab) = d1(a)d1(b)−d0(a)d0(b)+d1(a)d0(b)−d1(a)d0(b)

= d1(a)(d1−d0)(b)+d0(b)(d1−d0)(a).

and hence
θ(d1−d0)(ab) = b ·θ(d1−d0)(a)+a ·θ(d1−d0)(b)

since u(θd1(c)) = u(θd0(c)) for all c ∈⊥2R. Therefore θ(d1−d0) is a k-derivation, and using
the induced isomorphism i : M ∼→ ker(u) we obtain a k-derivation

D = i−1
θ(d1−d0) :⊥2R→M.

We also have

∂
2(D) = D∂2 = i−1[θd1d0−θd1d1 +θd1d2−θd0d0 +θd0d1−θd0d2] = i−1(0) = 0,

so D ∈ ker(∂ 2). For any other lifting θ ′ : ⊥R→ E with uθ = ε , im(θ −θ ′) ∈ keru ∼= M, and
for all a,b ∈ ⊥R, we have

(θ −θ ′)(ab) = θ(a)θ(b)−θ ′(a)θ ′(b)+θ(a)θ ′(b)−θ(a)θ ′(b)

= a · (θ −θ ′)(b)+b · (θ −θ ′)(a)

again since uθ(c) = uθ ′(c) for all c ∈ ⊥R. Thus, θ ′ is of the form θ ′ = θ +D′ for some
D′ ∈ Derk(⊥R,M). Hence, the class of D in D2(R/k,M) does not depend on the choice of the
lift θ . We get a well-defined map

ϕ : Exalcommk(R,M) −→ D1(R/k,M)

(E,u) ↦−→ [D]

where [D] denotes the class of D in D1(R/k,M). Conversely, let D ∈Derk(⊥2R,M), we define
f = (d0−d1,D) :⊥2R→⊥R⊕M, and E = coker( f ) such that there is a k-extension of R by
M given by

0 M E R 0i u
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where i(m) = [(0,m)], and u([(y,m)]) = ε(y). The map u is well-defined since for any h ∈⊥2R

u([d0−d1(h),D(h)]) = ε(d0−d1(h)) = 0.

Moreover, since ker ε = im (d0−d1), ker u= {[0,m]∈E}. Clearly (ker u)2 = 0. If D ∈ ker(∂ 2),
then i induces an isomorphism between M and ker u

ker(i) = {m ∈M | D(b) = m, for some b ∈ ⊥2R such that d0−d1(b) = 0}
= {m ∈M | D(∂ 2(c)) = m, for some c ∈ ⊥3R}= 0.

This defines a map

Ψ : D1(R/k,M) −→ Exalcommk(R,M)

[D] ↦−→ (⊥R⊕M/im(d0−d1,D), i,u)

which is inverse to ϕ . To see this, note that the map θ :⊥R→ coker( f ) given by θ(b) = [b,0]
for b ∈ ⊥R is well defined and makes the diagram

0 M coker( f ) R 0

⊥R

i u

ε

θ

commute. Then, ϕ(coker( f ), i,u) is given by the class of the derivation

i−1
θ(d1−d0) :⊥2R→M,

with
i−1

θ(d1−d0)(b) = i−1[(d1−d0)(b),0] = i−1[0,D(b)] = D(b),

so [i−1θ(d1−d0)] = [D], i.e., ΦΨ = id. On the other hand, given an extension like (2.4), take
D = i−1(θd1−θd0) and consider the map

(θ + i) : ⊥R⊕M −→ E

(b,m) ↦−→ θ(b)+ i(m).

If (b,m) ∈ ker(θ + i), then we get θ(b) = i(−m), so θ(b) ∈ im(i) = ker(u) which means
that b ∈ ker(ε) = im(d0− d1). Then b = (d0− d1)(c) for some c ∈ ⊥2R, and therefore
i(−m) = θ(d0−d1)(c), so m = i−1(θd1−θd0)(c) = D(c). Thus, ker(θ + i)⊆ im(d0−d1,D).
Moreover, for any c ∈ ⊥2R and f = (d0−d1,D) :⊥2R→⊥R⊕M,

(θ + i)( f (c)) = θ((d0−d1)(c))+ i(D(c)) = θ((d0−d1)(c))+θ((d1−d0)(c)) = 0,

so (θ + i) f = 0 and by the universal property of the cokernel we get an injective map

h : ⊥R⊕M/im(d0−d1,D) −→ E

[b,m] ↦−→ θ(b)+ i(m).

Finally,
E R R/ker(p) R/im(i)

⊥R

p ∼ ∼

θ
ε
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means that there is a surjective map

im(θ) R/im(i)

so R∼= im(θ)+ im(i) and our map h is also surjective. So it is an isomorphism and makes the
following diagram commutative

⊥R⊕M/im(d0−d1,D)

0 M R 0

E

u′

h

i′

i u

where i′(m) = [(0,m)], and u′[y,m] = ε(y) for m∈M,y∈⊥R. Therefore, the class of Ψ(Φ(E))
is the same as the class of E in Exalcommk(R,M), and ΨΦ = id.

Let E, R ∈ Algk, and let w : E −→ R be a k-algebra map. Let M ∈ ModR. For any k-
extension of R by M

0 M A R 0i u

we get a commutative diagram

0 M A R 0

0 M′ A×R E E 0

i u

∼=
p2

p1 w

where M′ is just the kernel of A×R E −→ E which is isomorphic to ker u = im i∼= M. Hence,
the k-algebra A×R E becomes an extension of E by M. Moreover, if B is another extension of
R by M, which is equivalent to A, then B×R E is also equivalent to A×R E. This defines a map

w1 : Exalcommk(R,M) −→ Exalcommk(E,M)

A ↦−→ A×R E.

On the other hand, if j : k −→ E, w : E −→ R are maps of rings, then for every E-extension A
of R by an R-module M, we can see A and E as k-algebras via j and hence we get a k-extension
of R by M. This defines a map

j1 : ExalcommE(R,M) −→ Exalcommk(R,M).

Proposition 2.3.4. Let k, E, R be commutative rings, k
j−→ E, E w−→ R two ring homomor-

phisms and let M be an R-module, which is also an E-module via w. There is an exact sequence

0 DerE(R,M) Derk(R,M) Derk(E,M)

ExalcommE(R,M) Exalcommk(R,M) Exalcommk(E,M)

j0 w0

∂

j1 w1

where for any D ∈ Derk(E,M), ∂ (D) is the class of the E-extension of R by M defined by the
structure map vD : E −→MnR.
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Proof. Exactness at DerE(R,M) and at Derk(R,M) follow from the first fundamental exact
sequence for differentials 4. The kernel of ∂ is given by derivations D ∈ Derk(E,M) such that
the E-extension ∂ (D) is E-trivial, i.e., the extensions

0 M ∂ (D) R 0i u

s

such that there is an E-homomorphism s : R−→ ∂ (D), c ↦→ (s̃(c),c). Furthermore, this is a k-
homomorphism, and us = idR, so using Lemma 2.3.1. for E = R and w = idR, we see that such
s is of the form c ↦→ (c,D′(c)) where D′ ∈ Derk(R,M). By the commutativity of the diagram

E

MnR R

vD w
u

s

we see that for every e ∈ E,

(D(e),w(e)) = vD(e) = s(w(e)) = (D′(w(e)),w(e)),

and hence D(e) = D′(w(e)), so D = D′w = w0(D′). This shows exactness at Derk(E,M).
For any D ∈ Derk(E,M), there is a k-homomorphism R→ ∂ (D) given by c ↦→ (c,0), which
makes the sequence

0 M ∂ (D) R 0

a split short exact sequence and therefore ∂ (D) is a trivial k-extension of R by M. Thus,
j1∂ = 0. The kernel of j1 is given by the E-extensions of R by M that are k-trivial when seen
as k-algebras via j, so we can assume they are E-algebras over the k-algebra MnR. Note that
w is trivially a map of Z-algebras, so by Lemma 2.3.1. any structure of E-algebra on MnR is
given by a map

E −→ MnR

e ↦−→ (D(e),w(e))

where D∈DerZ(E,M). The structure of k-algebra can hence be seen as t ↦→ (0,w( j(t))) where
the diagram

k

E MnR

j

must be commutative. Hence, (0,w( j(t))) = (D( j(t)),w( j(t)), so D( j(t)) = D(0) for all t ∈ k.
This means that D is a k-derivation, and the extension defined on MnR is precisely ∂ (D). This
shows exactness at ExalcommE(R,M).
The kernel of w1 is given by the k-extensions A of R by M

0 M A R 0i u

such that the k-extension of E by M

0 M A×R E E 0
p2

s

4Matsumara [10] Theorem 25.1.
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is trivial. This means that there is some k-homomorphism s : E −→ A×R E with p2 s = idE .
But such an s induces a k-homomorphism s ′ = p1 s : E −→ A and a commutative diagram

E

k R.

A

s ′

wj

u

Thus, A can be seen as an E-algebra via s ′, and the image of this E-algebra under j1 is precisely
our original k-algebra A. Therefore ker w1 ⊆ im j1. On the other hand, for every E-extension
A of R by M, the structure map E −→ A gives a k-homomorphism s : E −→ A×R E with
s p2 = idE , so that the k-extension

0 M A×R E E 0
p2

s

is trivial. This means that w1 j1 = 0, and hence the sequence is also exact at Exalcommk(R,M).



Chapter 3

(Co-) Homology for Universal Algebras

We begin this chapter by pointing out some important properties of the cotangent complex and
its direct implications to the cohomology of commutative rings. Then, we will extend these
definitions to more general categories, and we will see how this cohomology is related to other
cohomology theories.

3.1 The cotangent complex
Let k, R be commutative rings (with 1). In the previous chapter we saw that any map of
simplicial rings of the form ck → cR had a cofibrant factorization (unique up to simplicial
homotopy). Moreover, this factorization came through a simplicial ring ⊥⋆R which is a free
k-algebra in each degree. From now on, we will omit the star (⋆) notation for simplicial objects
in order to simplify notation.

Remark. Any map of simplicial rings A −→ B admits also a cofibrant-acyclic fibrant factor-
ization where the first map is free 1, which by Corollary 2.2.9 is also unique up to simplicial
homotopy. We call this a free A-algebra resolution of B. Note how this just extends what
happens for constant simplicial rings to arbitrary simplicial rings.

Definition. A simplicial module P over a simplicial ring A is free if for all q > 0 there are
subsets Cq ⊆ Pq such that

(i) η⋆Cq ⊆Cp for every surjective map η : p→ q in ∆,

(ii) Pq is a free Aq-module with basis Cq.

Proposition 3.1.1. Let R ∈ Algk. The cotangent complex LR/k is a free simplicial R-module.

Proof. Let ck−→⊥⋆R−→ cR be the free cotriple k-algebra resolution of R. For each⊥nR we
call Cn the set of generators {er | r ∈ ⊥n−1R} ⊆ ⊥nR. Then, the sets

C ′n = {db⊗1 | b ∈Cn} ⊆Ω⊥nR/k⊗⊥nR R = (LR/k)n

are an R-basis for the free modules (LR/k)n. Moreover, for a surjective map η : p→ q in ∆, we
saw in Example 2.2.10 that η⋆Cq ⊆Cp, and therefore η⋆C′q ⊆C′p. So LR/k is a free simplicial
R-module.

1See the proof of Quillen [14] II.4. Proposition 3.

51



52 Chapter 3. (Co-) Homology for Universal Algebras

This proposition shows that LR/k is a projective resolution for R, and this provides an
alternative way to look at homology and cohomology:

Dn(R/k,N)∼= TorR
n (LR/k,N), Dn(R/k,N)∼= ExtnR(LR/k,N),

for any R-module N. Using the long exact sequences for the derived functors Tor and Ext we
get the following long exact sequences.

Corollary 3.1.2. If 0→M′→M→M′′→ 0 is an exact sequence of R-modules, then there are
long exact sequences

0→ D0(R/k,M′) D0(R/k,M) D0(R/k,M′′) D1(R/k,M′)→ . . .

and

. . .→ D1(R/k,M′′) D0(R/k,M′) D0(R/k,M) D0(R/k,M′′)→ 0.

Corollary 3.1.3. There is a universal coefficient spectral sequence

E2
pq = TorR

p(Dq(R/k),M) =⇒ Dp+q(R/k,M).

Proof. This is just the base-change for Tor 2 once we realize that

D⋆(R/k) = D⋆(R/k,R) = π⋆(LR/k).

Definition. Let C be a model category. The homotopy category Ho(C) is the category obtained
from C by formally inverting the weak equivalences.

Remark. In the case C is the category of simplicial R-modules, then Ho(C) is equivalent to the
full subcategory of the derived category of R-modules consisting of the bounded above cochain
complexes. We denote this category byDModR. If S is a simplicial ring, we denote by SModS
the category of simplicial S-modules.

Let S be a simplicial ring and A and B are two simplicial S-modules. We define the hypertor
simplicial S-module TorS

p(A,B) by

n ↦→ TorSn
p (An,Bn), for all n > 0.

In particular, if
S−→ P→ A, S−→ Q→ B

are two cofibrant-acyclic fibrant factorizations, then the homology of P⊗S Q is independent of
the choice of the factorization. We denote by A⊗L

S B the total derived tensor product of A and
B, so that inDAb (the full subcategory of the the derived category of abelian groups consisting
of the bounded above cochain complexes) there is an isomorphism A⊗L

S B ∼= P⊗S Q. Recall
that it defines a functor

⊗L
S : Ho(SModS)×Ho(SModS)−→DAb.

2Weibel [17] Theorem 5.5.6.
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Proposition 3.1.4. There is a spectral sequence

E2
pq = Hp(TorS

q(A,B)) =⇒ Hp+q(A⊗L
S B)

where A, B are two simplicial S-modules. Moreover, the edge morphism

Hn(A⊗L
S B)−→ Hn(A⊗S B)

is induced by the canonical map A⊗L
S B−→ A⊗S B.

Proof. See Quillen [12] II. Theorem 6.

Corollary 3.1.5. If TorS
q(A,B) = 0 for q > 0, then A⊗L

S A∼= A⊗S B in DAb.

Proof. Direct consequence of the previous proposition since TorS
q(A,B) = 0 for q > 0 means

that the spectral sequence collapses to the first row, and hence the canonical map

A⊗L
S B−→ A⊗S B

is a weak equivalence.

Theorem 3.1.6. If A→ B→C are morphisms of rings, then there is a canonical distinguished
triangle in the derived category CModR

C⊗B LB/A LC/A

LC/B

.

Proof. Let P be a free A-algebra resolution of B and let Q be a free P-algebra resolution of C,
so that there is a commutative diagram

Q

P Q⊗P B

A B C

i2
q

p

j

r
i

u v

i1

By the first fundamental exact sequence applied to A→ P→ Q we get a split (since Qn a free
Pn-module for every n) short exact sequence

0 Q⊗P ΩP/A ΩQ/A ΩQ/P 0

and we obtain the exact sequence

0 C⊗B (B⊗P ΩP/A) C⊗Q ΩQ/A C⊗Q ΩQ/P 0

where the first term is precisely C⊗B LB/A and the second one is LC/A. As for the last one we
have

C⊗Q⊗PB ΩQ⊗PB/B
∼=C⊗Q⊗PB (ΩQ/P⊗P B)∼=C⊗Q⊗PB (ΩQ/P⊗Q (Q⊗P B))∼=C⊗Q ΩQ/P.
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Recall that · ⊗L
P Q defines a functor in the derived category of P-modules, where p is an

isomorphism. Hence p⊗L
P idQ : P⊗L

P Q → B⊗L
P Q is also a weak equivalence. Note that

TorP
q (P,Q) = TorP

q (B,Q) = 0 for all q > 0, so

p⊗L
P idQ ∼= i2 : P⊗P Q→ B⊗P Q,

which shows that i2 is a weak equivalence. Then, r is a weak equivalence by commutativity
of the diagram since q is a weak equivalence too. The map r is also surjective in every degree
since q is, so it is an acyclic fibration. Recall that cofibrations are the maps that have the RLP
with respect to all acyclic fibrations. For any such acyclic fibration X → Y in SAlgA, and a
commutative digram

P B X

Q Q⊗P B Y

p

j i1
i2

there is a lifting Q→ X making the diagram commute since j is a cofibration. This map
induces a map Q⊗P B→ X . Hence, i1 is also a cofibration. Note that we have showed the
more general fact that cofibrations are closed under cobase change. Therefore, Q⊗P B is a
cofibrant simplicial B-algebra resolution of C, so

LC/B
∼=C⊗Q⊗PB ΩQ⊗PB/B.

The cofibration sequence in the derived category of C-modules associated to this exact se-
quence gives the desired triangle.

As a direct consequence of this theorem we can extend the exact sequence we obtained in
Proposition 2.3.4.

Corollary 3.1.7. Let k, E, R be commutative rings, k→ E, E → R two ring homomorphisms
and let M be an R-module. There is a long exact sequence

0 DerE(R,M) Derk(R,M) Derk(E,M)

ExalcommE(R,M) Exalcommk(R,M) Exalcommk(E,M)

D2(R/E,M) D2(R/k,M) D2(E/k,M)

Dn(R/E,M) Dn(R/k,M) Dn(E/k,M)→ . . .

Theorem 3.1.8 (Flat base change). If B and C are A-algebras such that TorA
q (B,C) = 0 for

q > 0. Call D = B⊗A C, then there are isomorphisms in the derived category of D-modules

LD/C
∼= LB/A⊗A C,

LD/A
∼= (LB/A⊗A C)⊕ (B⊗A LC/A).

Proof. Let P be a cofibrant A-algebra resolution of B, which induces a morphism of simplicial
C-algebras P⊗A C −→ B⊗A C. We let qi be the cofibrant factorization of this map such that
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there is a commutative diagram

P P⊗A C Q

B B⊗A C B⊗A C

i

q

=

where Q is a simplicial C-algebra. The map C −→ P⊗A C is a cofibration since A −→ P is
a cofibration and we showed in the proof of Theorem 3.1.6 that cofibrations are closed under
cobase change. Since i is also a cofibration, it follows that C −→Q is a cofibration. Moreover,
the commutative diagram of solid arrows

C Q

P⊗A C B⊗A C

q

shows that there is a map P⊗A C −→ Q since q is an acyclic fibration and the map on the left
is a cofibration of simplicial C-algebras. We get a map of simplicial D-modules

ΩP⊗AC/C⊗P⊗AC D ΩQ/C⊗Q D

where the second term is precisely LD/C. As for the first one, we have

ΩP⊗AC/C⊗P⊗AC D ∼= (ΩP/A⊗A C)⊗P⊗AC (B⊗A C)

∼= (ΩP/A⊗P (P⊗A C))⊗P⊗AC (B⊗A C)

∼= (ΩP/A⊗P B)⊗A C ∼= LB/A⊗A C.

Note that P−→ B is a weak equivalence, so the derived morphism P⊗L
A C −→ B⊗L

A C is also
a weak equivalence. TorA

p(P,C) = TorA
p(B,C) = 0 for all p > 0, so this maps is isomorphic to

P⊗A C −→ B⊗A C. So
C −→ P⊗A C −→ D

is a cofibrant factorization and we have

LD/C
∼= ΩP⊗AC/C⊗P⊗AC D∼= LB/A⊗A C.

To see the second isomorphism let R be a cofibrant A-algebra resolution of C. Since TorA
q (B,C)

vanishes for q > 0, by Corollary 3.1.5, the map P⊗A R −→ B⊗A C is a weak equivalence.
Since it is also surjective it is an acyclic fibration. On the other hand, A−→ P is a cofibration,
so by cobase change, R −→ R⊗A P is also a cofibration. A −→ Q is a cofibration too, so the
composition A−→ P⊗A R is a cofibration. Hence,

A−→ P⊗A R−→ D

is a cofibrant factorization, and we have

LD/A
∼= ΩP⊗AR/A⊗P⊗AR D∼= (R⊗A ΩP/A⊕P⊗A ΩR/A)⊗P⊗AR D

∼= (ΩP/A⊗P B)⊗A C⊕ (ΩR/A⊗R C)⊗A B∼= (LB/A⊗A C)⊕ (LC/A⊗A B).
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Corollary 3.1.9. Let E, R be k-algebras and let M be a E⊗k R-module. If Tork
q(E,R) = 0 for

q > 0, then there are isomorphisms

Dq(E⊗k R/R,M)∼= Dq(E/k,M),

Dq(E⊗k R/E,M)∼= Dq(E/k,M)⊕Dq(R/k,M).

3.2 Homology and cohomology for universal algebras

We fix a category C, and we denote by U : Ab→ Set the forgetful functor. For simplicity, we
will write hA for the contravariant representable functor HomC(· ,A), where A ∈ C.

Definition. An abelian functor on C is a functor F : Cop −→ Ab to the category of abelian
groups. An abelian object is an object A ∈ C such that hA =U F for some abelian functor F on
C. We denote by Cab the subcategory of abelian objects in the category C.

For an abelian object A ∈ Cab, the abelian functor F induces natural transformations

hA×hA
m−→ hA, hA

J−→ hA, 1
e−→ hA

where for any B ∈ C, m(B) is the abelian group operation on F(B), J(B) is the opposite map
on F(B) and e(B) sends the singleton to the neutral element in F(B). Therefore, the following
diagrams are commutative:

hA×hA×hA hA×hA

hA×hA hA

m×id

id×m m

m

hA×hA

hA 1 hA

hA×hA

mid×J

J×id

π e

m

hA×1 hA×hA

hA hA

1×hA hA×hA

id×e

mid×π

π×id

id

e×id
m

where π : hA→ 1 send any B∈ C to the singleton. Now, if we let C = Algk/R, with A u→ R∈ C.
Then 1∼= hR and by Yoneda Lemma we get maps

A×A
µ−→ A, R ε−→ A, A ι−→ A
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in Algk/R, called multiplication, unit and inverse map respectively, such that

A×A×A A×A

A×A A

µ×id

id×µ µ

µ

A×A

A R A

A×A

µid×ι

ι×id

u ε

µ

A×R A×A

A A

R×A A×A

id×ε

µid×u

u×id

id

ε×id
µ

Example 3.2.1. Still in Algk/R, let M ∈ModR. In Lemma 2.3.1 we saw that

hMnR ∼= Derk(· ,M),

where Derk(E,M) has an abelian group structure for all E ∈ Algk/R. So M nR is an abelian
object, taking Derk(· ,M) : Algk/R→ Ab as abelian functor. The maps are given by

(MnR)× (MnR)
µ−→ MnR

((m,r),(m′,r)) ↦−→ (m+m′,r)
,

R ε−→ MnR

r ↦−→ (0,r)
,

MnR ι−→ MnR

(m,r) ↦−→ (−m,r).

Moreover, let P v→ R ∈ (Algk/R)ab, and set M = ker v. We denote by µP, εP, ιP the multiplica-
tion, unit and inverse maps in P. Then M can be seen as an R-module via εP and we can define
a map in the category Algk/R given by

ϕ : MnR −→ P

(m,r) ↦−→ m+ εP(r).

To see that it is well defined, note that for any n,m ∈M, we have

n = µP (id× εP v)(n) = µP(n,0), m = µP (εP v× id)(m) = µP(0,m)

so nm = µP((n,0)(0,m)) = 0, which means that M has zero multiplication. Thus, the map is
well defined. If (r,m) ∈ ker ϕ , then m = εP(−r). Since εP is a map in Algk/R, idR = vεP, and
we get

0 = v(m) = v(εP(−r)) =−r.

So ϕ is injective. On the other hand, v surjective, so im(εP v) = im εP. Note that M⊆ ker(εP v),
so there is a surjective map

P/M im(εP v) = im εP

and therefore P∼= im εP+M, which makes the map ϕ surjective. This shows that actually, any
abelian object in Algk/R is of the form M nR for some R-module M. Moreover, there is an
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equivalence of categories

· nR : ModR −→ (Algk/R)ab

M ↦−→ MnR

ker v ←−❘ P( v→ R).

In particular, (Algk/R)ab is an abelian category. The pair of adjoints from Corollary 2.3.2 can
be now seen as

Algk/R (Algk/R)ab,
L

T

where T is the natural faithful functor, and L is sometimes called abelianization functor. Recall
that we defined the cotangent complex LR/k to be the simplicial R-module L(P⋆), where P⋆ is a
simplicial cofibrant k-algebra resolution of R.

For now on, we assume that C is closed under finite limits, that SC, SCab are both model
categories, and that the abelianization functor Ab : C −→ Cab is left adjoint to the natural faith-
ful functor Cab −→ C. For any object X ∈ C, we denote by C/X the category over X .

An object P of C we now be called projective if for any effective epimorphism p : X −→Y ,
the induced map

HomC(P, p) : HomC(P,X)−→ HomC(P,Y )

is surjective. We assume that C has enough projective objects, meaning that for ever X ∈ C
there is an effective epimorphism P −→ X with P ∈ C projective. In particular, this holds for
the category of universal algebras defined by a set of operations and relations. The initial object
in CS is denoted by φ . Analogously to what we did for Algk/R we have:

Definition. Let X ∈ C. A simplicial resolution of X is an acyclic fibration P −→ cX . A
simplicial object Q ∈ SC is cofibrant if the map φ −→ Q is a cofibration.

Proposition 3.2.2. For any X ∈ C there is always a unique cofibrant simplicial resolution of X
up to homotopy equivalence, which depend functorially on X up to homotopy.

Proof. See Quillen [12], IV, Proposition 3.

Let X ∈ C, and let M be an abelian object in C/X . Then, for any P cofibrant simplicial reso-
lution of X , HomC/X(P,M) is a cosimplicial abelian group, whose cohomotopy is independent
of the choice of P by the last proposition.

Definition. The cohomology groups of X with values in M are

Dq(X ,M) = π
q(HomC/X(P,M)).

Moreover, we can define LAb(X) = Ab(P) as a simplicial object in (C/X)ab. Viewing it
as a chain complex (via the Dold-Kan correspondence), we see that it is independent of the
choice of P up to homotopy equivalence, so it is an object in the derived category of (C/X)ab.
Moreover, we can rewrite the cohomology groups of X with values in M as

Dq(X ,M) = π
q(Hom(C/X)ab

(LAb(X),M)).

Hence, we can think of LAb(X) as the analogous to the complex chains of a space X . Finally,
we get the following definition for homology.
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Definition. The q th homology object of X is

Dq(X) = πq(LAb(X)).

Remark. This is is just a generalization of the homology of a k-algebra R with values in the
R-module R:

Dn(R/k,R) = πn(LR/k⊗R R) = πn(LR/k), n > 0.

The computations we did for homology and cohomology of commutative rings can be also
extended. For example, there is a universal coefficient spectral sequence

E pq
2 = Extp

(C/X)ab
(Dq(X),M) =⇒ Dp+q(X ,M),

and for degree 0 we also have

D0(X ,M) = HomC/X(X ,M).

Example 3.2.3. This extended cohomology can again be seen as a cotriple cohomology. For
any category A, recall that a pair of adjoint functors

F :A C : U

defines a cotriple ⊥= FU : C −→ C. We also get an augmented simplicial object ⊥⋆X −→ X ,
which is in fact a simplicial object in C/X . For any M ∈ Cab we consider the representable
functor hM = HomC/X(· ,M) : C/X −→ Ab and define the cotriple cohomology groups

Hn(X ;hM) = π
n(hM⊥⋆X), n > 0.

Quillen showed 3 that if ⊥Y −→ Y is an effective epimorphism for all Y ∈ C and F(B) is
projective for all B ∈ A, then

Dq(X ,M)∼= Hq(X ;hM), q > 0.

Remark. The cohomology groups X with values in M are a special case of the more general
cohomology constructed using Grothendieck topologies. Broadly speaking, we can define a
Grothendieck topology on C as follows: for any object Y ∈ C, the set the covering of Y to
be the family consisting of a single map U −→ Y which is an effective epimorphism (the
existence of such a map is provided by the enough projectives condition on C). Effective
epimorphisms are stable under composition and base change, so this defines a pretopology
on C. The associated topology on C induces a Grothendieck topology on C/X . Now, the
representable functor hM : C/M −→ Ab is a sheaf of abelian groups for the induced topology
on C/X and we obtain sheaf cohomology groups

Hq(C/X ,hM).

Quillen showed 3 that this cohomology also the cohomology of X with values in M, i.e.,

Dq(X ,M)∼= Hq(C/X ,hM), q > 0.

3Quillen [12] II. 5. Theorem 5.
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