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ABSTRACT

This thesis deals with 1-motives with torsion and their [-adic realisations. The cat-
egory M of 1-motives with torsion is abelian, and it is Z[1/p]-linear when the base
field is of positive characteristic p. We relate the homological dimension d(M) of the
abelian category M of 1-motives with torsion over a perfect field &, to the cohomolog-
ical dimension cd(I") of the absolute Galois group I" of &, and prove d(M) = cd(I")+1.

We compare the Hom-group and 1-Ext group between two 1-motives with torsion,
with the corresponding Hom-group and 1-Ext group of their [-adic realisations. In
particular, we generalise Falting’s theorem on homomorphisms of abelian varieties
over finite fields (Tate Theorem in this case) and number fields to 1-motives with
torsion. We show the 1-Ext group between 1-motives with torsion injects to the 1-
Ext group of [-adic realisations. Over finite fields, we give a very explicit description

to the maps 7 for Ext’ groups for all i > 0.



ACKNOWLEDGEMENTS

First and foremost, my sincerest gratitude goes to my supervisor Professor Luca
Barbieri-Viale for his supports and encouragement during this work. I am truly
grateful to Professor Tony Scholl for answering me lots of questions. I thank Professor
Bruno Chiarellotto who has given me lots of help like my supervisor. I would also
thank Doctor Alessandra Bertapelle who gave me lots of comments on this thesis.

I would like to thank my friends Qiang Feng, Martino Garonzi, Chern-Yang Lee,
Shouming Liu, Huajun Lu, Marco Perone, Neeraja Sahasrabudhe, Mingmin Shen,
Qingxue Wang, Shanwen Wang.

I thank the Istituto Nazionale di Alta Matematica Francesco Severi for offering
me a grant, without which I can never focus on my research without worrying about
food and rent.

I thank the Department of Pure Mathematics and Applied Mathematics of Univer-
sity of Padova, and my colleagues in the our local Algebraic Geometry and Number
Theory group.

Special thank goes to my wife Yujia Qiu, who has always encouraged me whenever
I feel depressed and has done very nice proofreadings for the several versions of this

thesis.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . e e i
CHAPTER
Conventions . . . . . . . . . . . . e e e 1
Introduction . . . . . ... e 1
I. I-motives . . . . . . . . e e 5
1.1 Deligne’s I-motive . . . . . . . . ..o 5
1.2 1-motives with torsion over field &k . . . . . . ... ... oL 8
1.3 l-adicrealization . . . . . . . .. Lo 14
1.4 Extensions . . . . . . . . . . . e e e 15
II. Some cohomology theories . . . . . . .. .. ... ... ... .. 22
2.1 Comparison between extension groups of 1-motives and extension groups of
their l-adic realisations . . . . . . . . . .. L Lo 22
2.2 Galois cohomology . . . . . . . ... 25
2.3 Continuous cochain cohomology . . . . . .. ... ... ... ... ... 29
24 Thefivelemma . . . . .. ... L 35
2.5 Some spectral sequences . . . . ... 36
2.6 Yoneda extensions in abelian subcategories . . . . . ... ..o 0L 39
2.7 The noetherianity of M . . . . . . ... o o 45

ITI. Higher Yoneda extensions in the abelian category of 1-motives with torsion 48

3.1 Proof of theorem III.1 in characteristic zerocase . . . . . . . . . .. .. ... 48
3.2 Proof of theorem III.1 in positive characteristiccase . . . . . . .. ... ... 60
3.3 Torsioness of Yoneda extension groups . . . . .. ... ... ... ... .. 66
3.4 Overspecial fields . . . . . . ... . o 69
IV. Extensions of 1-motives and their [-adic realisations . . . . . . ... ... .. 79
41 Thecase M =L[lJand M'=L'[1] . ... .. ... .. ... ... 80
42 Thecase M =L[lJand M'=G" . . . . .. ... . ... ... 87
43 Thecase M =Gand M/ =L'[1] . . . . ... ... . . ... 90
44 Thecase M =Gand M' =G . . . . . . . . . . . ... 92
4.5 Proof of IV.2andIV.3 . . . . . . . . 94
4.6 The image of T; over a finite field . . . . . . . ... . ... ... ... .... 95

ii



Conventions

A field is always perfect, and p denotes its characteristic. [ is a prime number.
An algebraic variety over a field k is a reduced separated scheme which is of finite
type over k. An algebraic curve is an algebraic variety of dimension 1.

My, PMSE and ‘M, denote the category of Deligne’s 1-motives over k, the cat-
egory of effective 1-motives with torsion over k, and the category of 1-motives with
torsion over k respectively. M denotes the abelian category of 1-motives with torsion
over k, which is just M, in character zero case and ' M; ® Z[1/p| in positive charac-
teristic case. Let G be a profinite group, we denote the abelian category of discrete
G-modules and the abelian category of finitely generated discrete G-modules by Cq
and Cé respectively. In the case G being the absolute Galois group of the field &k, we
use the notation Cj instead of Cé. We denote by R the abelian category of finitely
generated Z;-modules with continuous Galois action.

Throughout this thesis, by k-group schemes we always mean commutative ones.
Given any two k-group schemes X and Y, we use the notation Exti_fppf(X ,Y) to
denote the i-th Yoneda extension group of X by Y in the abelian category of fppf-
sheaves over k, and we write Homy(X,Y") as the group of homomorphisms in the
category of k-group schemes, which is the same as Homy_g,p¢ (X, Y). If both X and
Y are algebraic, we write the i-th Yoneda extension group of X by Y in the abelian
category of commutative algebraic group schemes over k as Ext}(X,Y). If both X
and Y are étale locally constant defined by finitely generated abelian groups, we
denote the i-th Yoneda extension group of X by Y in Cj by Exték (X,Y).

Throughout this thesis, we fix a universe, and suppose the objects and the mor-

phisms of the categories we consider form sets which belong to this universe.



Introduction

The Tao produces One;

One produces Two;

Two produces Three;

Three produces Everything.
—Tao Te Ching, by Laozi

It’s well-known that cohomology theories are linearisations of geometric objects.
In algebraic geometry, motives were introduced by Grothendieck as a universal co-
homology theory which lies below the “good” cohomology theories. In other words,
they are the best linearisations of algebraic varieties in the sense that all good lin-
earisations (Weil cohomology theories) can be obtained from them, like “one comes
from Tao” as said in Tao Te Ching.! More intuitively, they are the bricks of which
algebraic varieties are made in some sense, like topological spaces are made up of
cells up to weakly homotopy equivalence.

Grothendieck had constructed a category of pure motives, but a good category of
mixed motives is still missing today. The first step towards mixed motives was made
by Deligne, in the paper [6, sec. 10] he defined 1-motives (which are called Deligne’s
1-motives in this thesis in order to distinguish these from the 1-motives with torsion).
The 1-motives should be the motives of level < 1 in the missing category of mixed
motives. A Deligne’s 1-motive M = [L — G| over a field k consists of an étale locally
constant sheaf L defined by a finitely generated free abelian group, a semi-abelian
variety G, and a morphism u : L — G of groups schemes over k. Given any algebraic
curve C' over k satisfying certain properties as in 1.5, we can define the 1-motive

associated to C, which is an analogue of the Jacobian variety associated to a smooth

1In our case, it should be “The Tao produces One, One produces Everything”. The Two are usually interpreted
as Yin and Yang, it would be great if we could relate something in mathematics to Yin-Yang.



proper algebraic curve over k.

A morphism between two Deligne’s 1-motives is defined to be a morphism of the
complexes underlying the 1-motives. Then Deligne’s 1-motives form a category M.
Abelian categories are very handy for doing homology theory. But the category M,
is far from being abelian. In order to make an abelian category out of M, one
has to add the “torsion 1-motives” first. In their proof of Deligne’s conjecture on
1-motives in characteristic zero case (a modified version) in [4], L. Barbieri-Viale, A.
Rosenschon and M. Saito defined 1-motives with torsion, and constructed an abelian
category of 1-motives with torsion. We denote this category by M which is the base
on which are going to work in this thesis. Given any semi-abelian variety G over a
field k, let n be a positive integer which is coprime to the characteristic of k, then

the multiplication map G % G gives a short exact sequence
0—,G = Mo, ¢ 0

of commutative group schemes over k. Let n be [”, passing to the [-adic Tate modules

for some prime number [ different from char(k), we then get a short exact sequence
0—-1,G—-1TG— rG—=0

of Z;-modules with continuous Galois action. Now, if we regard G as an object of

the abelian category M, the multiplication map gives a short exact sequence
0 a6 Lan o,

which is more coherent with the short exact sequence of [-adic realisations. This
justifies why 1-motives are motives in some sense. And also such coherence is very
useful in practise, and has been used very often in this thesis.

In [35], Serre described the properties of the category of commutative quasi-
algebraic groups by introducing pro-algebraic groups. Later, Oort determined that
the homological dimension of the abelian category G of commutative algebraic group
schemes over an algebraically closed field of positive characteristic is two in his book
[27]. When the field is not algebraically closed, Milne related the homological dimen-
sion of G over a perfect field k to the cohomological dimension of the Galois group

of k. Following the ideas from the above work, in the third chapter we are going



to prove that the homological dimension d(M) of the abelian category M over a
perfect field k equals d 4+ 1, where d is the cohomological dimension of the absolute
Galois group of k. In particular, d(M) = 2 over a finite field, d(M) = 3 over a
totally imaginary number field, and d(M) = d+ 1 = oo over a number field which is
not totally imaginary. For number fields which are not totally imaginary, although
d(M) = oo in general, we have A M ® Z[1/2]) =2+ 1 = 3.

Let A and B be two abelian varieties over a finitely generated field k, a theorem

of Faltings (in the finite field case Tate theorem) gives an isomorphism
T - Homk(A, B) & Zl — HomR<ﬂA,ﬂB),

where R denotes the category of finitely generated Z;-modules with continuous Galois
action. Since 1-motives are generalisations of abelian varieties, it is natural to ask
if we can generalise Faltings’ theorem to the case of 1-motives for even higher Ext’

(1 > 0), i.e. to understand the maps
T; : Extt(M, M") @ Zy — Homg (T,M, T, M")

for two 1-motives M, M’ in a suitable category “?” and ¢ > 0. The Hom case has
been dealt with by Fengsheng in [9] for semi-abelian varieties over number fields,
by Jannsen in [15] for Deligne’s 1-motives over number fields, and by Jossen in [16]
for his 1-motives with torsion. Jossen has also dealt with Ext' for 1-motives over
number fields, and shown that T} is injective. In the last chapter of this thesis, we will
investigate the homomorphisms 7; with respect to the category M, and show that T;
is an isomorphism for ¢ = 0 and injective for ¢ = 1 over finite fields and number fields.
In particular, over finite fields, we will give full description for the homomorphism

T, for all i > 0. In particular, we will describe the kernels and cokernels of 7T;.



CHAPTER I

1-motives

In this chapter, we will give an introduction to the theory of 1-motives with
torsion, which serves as the base on which this thesis is built. Proofs will usually be
sketched, or even omitted. The main reference for this chapter is [2, App. C]. In

each section we will also give specific further references.

1.1 Deligne’s 1-motive

In this section, we will introduce 1-motive, which was defined by Deligne in [6,
10.1]. Historically, this was the first step towards the theory of mixed motives. And
the construction is very concrete.

Let S be a scheme.

Definition I.1. An abelian scheme over S is a smooth proper group scheme 7 :
A — S, such that all its geometric fibres are connected. A torus T over S is a
commutative S-group scheme such that locally on S, it is isomorphic to a product
of finitely many copies of the multiplicative group Gy, s. A semi-abelian scheme
over S is a smooth separated commutative group scheme 7 : G — S with connected

fibres, such that each fibre is an extension of an abelian variety by a torus.

And like abelian varieties being commutative group varieties, abelian schemes are

commutative group schemes (see [25, chap. 6]).

Remark 1.2. Let S be Speck for some field k. Then the above definition of abelian
schemes coincides with the usual definition of abelian varieties. In this case, being

a semi-abelian scheme is the same as being an extension of an abelian scheme by a



torus in the category of group schemes over S, since S consists of only one point in

this case.

Definition I.3. A 1-motive M over S is a two-term complex, concentrated in degree

—1 and 0, of S-commutative group schemes
M=[X 3 qGl,

where X is an étale locally constant sheaf defined by some finitely generated free
Z-module on S, GG is an extension of an abelian S-scheme A by an S-torus T, and
u is a morphism of S-group schemes. We also write M = (X, A, T, G, u) in order to
emphasize the roles of A and T

Remark 1.4. The above definition implies that G is a semi-abelian scheme over S.
However, not every semi-abelian scheme is an extension of an abelian scheme by
a torus. For example, let £, be the Tate curve over Q, with invariant ¢ for some
q € Q, with v,(¢) = 1, where v, denotes the canonical p-adic valuation, then the
Néron model of Fj is a semi-abelian scheme over SpecZ,, and it has its generic fibre
the elliptic curve E, and closed fibre the multiplicative group over F,, hence cannot
be an extension of an abelian scheme by a torus. However, if the base is a field, it’s
enough to require G to be a semi-abelian scheme as we have seen before.

Given 1-motives M; = [X; & G| and M, = [Xy 23 (3], a morphism from M, to
M, is defined to be a morphism of complexes of commutative groups schemes, i.e. a
commutative diagram of the form:

X14>X2

ull luz

G1 % GQ.
Then 1-motives over S form a category, and we denote it by M;. Given M =
(X 5G] = (X,A,T,G,u) € M, we have two canonical extensions of 1-motives,

namely:

0—-G—=[X35G —X[1]—=0
0—-T—-G—=A—=0

where T' (resp. G, resp. A, resp. X[1]) is regarded as the 1-motive [0 — T (resp.
[0 — @], resp. [0 — A], resp. [X — 0]).



These two sequences give a natural increasing filtration W, on M, which is called

the weight filtration, defined as follows:

(

0, ifi<-3

T, ifi=—2
Wi(M) =

G, ifi=—1

M, ifi>0.

The associated graded pieces are:

T, ifi =—-2

A, ifi=-—1
gri’ (M) =

X[1], ifi=0

0, otherwise.

The definition of 1-motives looks somehow artificial. However, the following ex-
ample will show how close 1-motives over a field k£ are related to certain algebraic
curves over k, as abelian varieties over k are related to smooth projective algebraic

curves over k.

Example 1.5 (cf. [29] 2.1). Suppose S is the spectrum of a field k. Let C be
a geometrically reduced algebraic curve over k. Let C' be a compactification of C
such that the complement of C' in C' consists of regular points. Assume that every
singular point as a prime divisor is a normal crossing divisor, i.e. it’s the zero locus
of coordinate function étale locally, and also assume that the residue fields at C' — C
are separable over k. Then the generalised Jacobian J = J(C') of C is a semi-abelian
variety. Let Y be the étale sheaf generated by the divisors D with support in C — C,
whose restrictions to each geometric component of C' have degree zero. Then the
canonical map D — Cl(0z(D)) gives a morphism w : Y — J. This is called the

1-motive associated to the curve C.

Example 1.6. In the definition of 1-motive, if taking X to be constant, i.e. X = Z"
for some non-negative integer r, and S = Speck for some field k, then giving such a

1-motive M is equivalent to specifying r k-rational points on G.



Example 1.7. Let S = Spec(k), where k is a finite extension of Q, with a discrete

valuation v, let M be the 1-motive [Z — G,,] with u(1) = ¢, where ¢ is in k* with

b

v(q) > 1. Then regarded as a complex in Dy, (fppf), M is isomorphic to the sheaf

represented by the Tate curve E, over k with ¢-invariant ¢(E) = ¢. Here D}, (fppf)
is the derived category of bounded complexes of fppf-sheaves over the small rigid site

Spec(k), see [29] for details.

1.2 1-motives with torsion over field k&

The torsion group schemes play a very important role in the study of group
schemes. For example, the integral [-adic realisation of an abelian variety is given by
the inverse limit of its [-power torsion subgroup schemes. When we embed abelian
varieties into the category of 1-motives, unfortunately the n-torsion subgroup doesn’t
fit into the later resulting from the definition of 1-motives. In order to fix this
problem, there are several constructions of 1-motives with torsion. In their proof
of Deligne’s conjecture on 1-motives in characteristic zero case (a modified version)
in [4], L. Barbieri-Viale, A. Rosenschon and M. Saito define 1-motives with torsion,
and construct an abelian category of 1-motives with torsion. Later, L. Barbieri-Viale
and B. Kahn extend the construction to any characteristic in [2]. In [16], Jossen’s
category of 1-motives with torsion admits Cartier duality as the category of Deligne’s
I-motives does, however it is not abelian. In [30], H. Russell constructs a category
of 1-motives with torsion, which extends Laumon’s 1-motives with unipotent parts
and admits Cartier duality. In [3], L. Barbieri-Viale and A. Bertapelle construct
an abelian category of Laumon’s 1-motives with torsion. For our purpose here (we
are going to deal with Yoneda extensions), we use the first one, and follow the
construction in [2]| closely. Note one should not confuse the category of effective
1-motives with torsion with the category of 1-motives with torsion, the first will be
defined first and is not abelian.

From now on, our base scheme S will always be Speck, where k is a perfect field.

We will omit the base provided no ambiguity arises.

Definition I.8. An effective 1-motive with torsion over k is a complex of group
schemes M = [L — G, where L is finitely generated and locally constant for the étale

topology, and G is a semi-abelian scheme over k. From now on, we will call effective



1-motives with torsion simply 1-motives, the motives defined before as Deligne’s

1-motives.

The L appeared in the above definition can be written as an extension
(1.1) 0— Liocy > L — Ly — 0

where Ly, is a finite étale group scheme and Ly, is free. And the semi-abelian scheme

(G can be written as an extension
(1.2) 0=-T—-G—>A—=0

where A is an abelian scheme and T is a torus.

Definition I1.9. Given two I-motives with torsion M = [L = G] and M’ = [L N
G'], an effective map from M to M’ is a commutative square

L

G 25 @

in the category of group schemes. We denote such a map by

(f,g): M — M.

The natural composition of squares makes 1-motives with torsion into a cate-
gory, the category of 1-motives with torsion, denoted by *MST. We will denote by
Homeg (M, M) the abelian group of effective morphisms.

Since 1-motives with torsion are supposed to be generalizations of Deligne’s 1-
motives in order to have torsion, we would like to cut out the torsion part of a
1-motive with torsion and to see how Deligne’s 1-motives fit into the category of

1-motives with torsion. Given a 1-motive M = [L — G|, we have (in the category of
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commutative group schemes) a commutative diagram

0 0

u

0 —— Ker(u) ﬂLtor — Ltor E— U(Ltor) — 0

l

(1.3) 0 —  Ker(u) —— L[ —— G

with exact rows and columns. We then get three effective 1-motives

Mfr = [Lfr — G/U,(Ltorﬂ
Mior := [Lior N Ker(u) — 0]
Mg := [L/(Lior N Ker(u)) — GI.

From the above diagram, there are also three canonical effective maps M — Mj,

Mtor — M and Mtf — Mfr.

Definition I.10. A l-motive M = [L — G] is free if L is free, ie. if M = M.
It is torsion, if L is torsion and G = 0, i.e. if M = M,. It is torsion-free, if

Ker(u) N Loy = 0, 1.e. if M = M.

Denote by tMET E A0 and EASTH the full subcategories of tMSE given by
free, torsion and torsion-free 1-motives respectively. Then the category t/\/lﬁﬂiﬁr is
nothing else but the category M of Deligne’s 1-motives and we will henceforth use
this notation for simplicity. It’s obviously that the category ‘M is equivalent
to the category of finite étale group schemes. From diagram 1.3 we can see that, if
M is torsion-free, the morphism Ly, — u(Lo) i an isomorphism, hence L is the

pull-back of L, along the isogeny G — G/u(Lyoy)-

Proposition I.11. The categories tMS® and M, have all finite limits and colimits.

In particular, they admit kernel and cokernel. And given two 1-motives M = [L =

G], M' =L’ LN G'] and an effective morphism ¢ = (f,g) : M — M’ in *MST (resp.
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M. ), the kernel of ¢ is given by Ker(p) = [Ker’(f) = Ker®(g)] (resp. Ker(p) =
[Ker’(f) = Ker®(g)]), and the cokernel of o is given by Coker(p) = [Coker(f) G
Coker(g)] (resp. Coker(p) = [Coker(f) i Coker(g)]s), where Ker’(g) is the reduced
connected component of the kernel of g in the category of commutative group schemes,
Ker’(f) is the pullback of Ker’(g) along u : Ker(f) = G, and @' is the map induced
by u’.

Proof. See [2, prop. C.1.3]. O

Although *MST and M have all finite limits and colimits, they turn out to be
not abelian. In order to get an abelian category out of ‘M, we are going to
define quasi-isomorphism in ‘M$T, and then take localization with respect to quasi-

isomorphisms.

Definition 1.12. Given M = [L %% G] and M’ = [L' % G'] in 'M<T, an effective
morphism of 1-motives M — M’ is a quasi-isomorphism (q.i. for short) of 1-motives

if it yields a pullback diagram

0 > F > L s L/ —— 0
1 |l
0 > F > G » G —— 0,

where F' is a finite étale group.

Remark 1.13. In general, quasi-isomorphisms are not isomorphisms. For example,
for G a non-trivial semi-abelian variety over a field k of positive characteristic and

n a positive integer coprime to the characteristic of k, we have that

G —— 0

Lo

G [n]G’ G
is a quasi-isomorphism, but not an isomorphism.

Remark 1.14. In fact quasi-isomorphisms between 1-motives M and M’ are the same
as quasi-isomorphisms of the corresponding complexes of group schemes. This can
be verified by using snake lemma and the fact that the cokernel of any morphism

between two semi-abelian varieties is connected.
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Proposition 1.15. Quasi-isomorphisms are simplifiable on the left and on the right.

And the class of quasi-isomorphisms admits a calculus of right fractions in the sense

of (the dual of) [11].
Proof. See [2, prop. C.2.3., C.2.4.]. ]

Thank to .15, we can formally inverting quasi-isomorphisms.

Definition I.16. The category ‘M, of 1-motives with torsion is the localization of

EMST with respect to the multiplicative class {q.i.} of quasi-isomorphisms.

The category ‘M is (almost in positive characteristic case) what we want. It has

the same objects as *MST does, and the morphisms in ‘M, are given by the formula
Hom (M, M") = ling Homeg (M, M),
q.i

where the limit is taken over the filtering set of all quasi-isomorphisms M — M.

And any morphism of 1-motives M — M’ can be represented by a diagram

M M’
N
M.

The composition is given by the following commutative diagram

M M/ M//
N e N
M M’
N
M,

where the existence of M is guaranteed by the condition of calculus of right fractions
in 1.15.
Now we introduce the notion of strict morphism, which is useful for investigating

the morphisms between 1-motives explicitly.

Definition 1.17. Let (f,g) : M — M’ be an effective morphism of 1-motives. It is

strict, if we have
Ker(f,g) = [Ker(f) — Ker(g)],

i.e. if Ker(g) is a semi-abelian variety.
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Proposition 1.18. Any effective morphism ¢ € Homeg (M, M') can be factored as

M—F M

N

where ¢ s a strict morphism and M — M isa composition of a quasi-isomorphism
with a p-power isogeny. Note the p-power isogeny can only happen when the base

field is of postive characteristic.

Proof. See [2, C.4.3] . O

This proposition reveals that strict morphisms give the essential part of morphisms
between 1-motives in characteristic 0 case. But in characteristic p case, the same
thing only happens if we kill the p-power isogenies, i.e. tensoring with Z[1/p]. In
[2, C.5.], with the help of strict morphisms, Barbieri-Viale and Kahn give explicit

description of the morphisms in ‘M explicitly, and show the following proposition.

Proposition 1.19. The category *M; is abelian, if char(k) = 0. If char(k) =p > 0,
the category "My[1/p] = "My ®z Z[1/p] is abelian. Given an effective morphism
©: M — M, the kernel of v in My is just its kernel in *MSE, and the cokernel of
@ 1s given by the cokernel of the strict morphism appearing in the factorization of ¢

as i the last proposition, up to quasi-isomorphism.

Proof. See [2, C.5.2, C.5.3.]. O

From now on, we will simply denote by M the category ‘M if char(k) = 0; the
category "M [1/p] if char(k) = p > 0. Then we can formulate the Yoneda extensions
in the abelian category M.

Proposition 1.20. A short exact sequence of 1-motives in M
0—>M —>M-—>M" —0

can be represented up to isomorphisms by a strict effective epimorphism (f,g) : M —

M" with kernel M’, i.e. by an exact sequence of complexes.
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Example 1.21. Let M be a 1-motive, there are two canonical short exact sequences

in M fitting into the following diagram

> M > My —— 0
I
> M

> My —— 0

0 —— M,

0 —— M,

where the effective morphism M — M;; is a strict epimorphism with kernel M., and

Mis — My, is a quasi-isomorphism.
1.3 [-adic realization

The Tate modules of tori and abelian varieties carries a lot of information in both
geometric and arithmetic aspects. In this section, we are going to define the analogue
of Tate modules for 1-motives, namely the [-adic realizations of 1-motives.

Similar to the definition of Tate modules of abelian varieties and tori, our definition
of l-adic realizations of 1-motives involves multiplication morphisms. First let us
understand the kernel and cokernel of the multiplication morphism n : M — M,

where M = [L = (] is a 1-motive and n is invertible in k. By 1.11, we can define
WM = Ker(M = M) = [Ker(u) N ,L — 0].
Thus ,M = 0 for all n with (n,char(k)) = 1 if and only if M, = 0. By 1.19,
M/n := Coker(M — M)
is always a torsion 1-motive. And if L = 0, then we have an extension in M
0—-G35G— ,G[1] =0,

with ,G := ker(G = G). In the general case, we apply snake lemma to the canonical
exact sequence

0—-G—>M-—L[1—0

of effective 1-motives, which is also exact in M. Then we get the following long

exact sequence in ‘M1 /p]
0— M — ,L[1] - ,G[l] - M/n — L/n[1] — 0.

Now let n = 1", where v € N and [ # char(k).
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Definition I.22. The [-adic realisation of a 1-motive M is

E(M) = LcI}Ln//Lv

in the category of [-adic sheaves, where L, is a finite étale group scheme such that

M/1" = [L, — 0] for each v.

Since every term in the above long exact sequence is finite, the inverse limit functor

is exact. And ;L is stable for v big enough, so “lim” ;L = 0. Hence we get a short
H

v
exact sequence

0=->T(G)-T(M)—>L®Z —0

where T;(G) is the Tate module of the semi-abelian variety G.

Given a short exact sequence
0—=>M —>M-—>M"—0
in M, apply snake lemma to it, we get a long exact sequence
0— oM — oM — oM — M'/I"— M/I" = M"/I" — 0.

These terms are finite for each v. By the similar argument as in the above case, we

have a short exact sequence
0— Ty(M') — T(M) = T,(M") — 0.

So we have:

Proposition 1.23. The functor'l; is exact on M, and extends canonically to MKZ,;.
1.4 Extensions

In this section, we are going to give some easy descriptions to the homomorphisms
and the Yoneda 1-extensions in the abelian category M, in terms of the homomor-
phisms and the Yoneda extensions in other categories which are easier to understand,
namely the abelian category of commutative algebraic k-group schemes, the category
of k-group schemes, and the category of finitely generated Galois modules. We will

denote by Homy(—, —) the group of homomorphisms in the category of commutative
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k-group schemes, by Ext}(—, —) the i-th Yoneda extension group in the abelian cat-
egory of commutative algebraic k-group schemes (note for ¢ = 0, this doesn’t conflict
with the previous notation), and by Exték(—, —) the i-th Yoneda extension group
in the category of finitely generated Galois modules. Further investigations will be
given in Chapter III and Chapter IV.

Note that in the following context, we are going to use the fact that there are no

nontrivial quasi-isomorphisms to a 1-motive without semi-abelian part.

Proposition 1.24. Let M = [L — G|, M = [L' - G'] € M, and let T (resp. T')
and A (resp. A’) be the torus and abelian variety corresponding to G (resp. G') given
by Chevalley decomposition. Then the following holds:

(a)

Hom o, (£(1], (1)) — 4 1O (B 1) = Home, (L, 1) if char(l) = 0 |

Homy(L, L) ® Z[1/p] = Home, (L, L") ® Z[1/p],  otherwise

(b) Homa(L[1],G") = 0;
()
Homy (A, A’) x Homy (T, T"), if char(k) =0

HOHIM (G7 Gl) - )
Homy (A, A") @ Z[1/p] x Homy (T, T") @ Z[1/p],  otherwise

(d)
Hom(,G, Li,,), if char(k) =0

tor

HOHIM(G, Ll[l]) =
Homy (.G, Li,,) ® Z[1/p], otherwise

tor

/

where n is a positive integer such that nL; ,

= 0. In particular, the group Hom (G, L'[1])
s a finite group.
Hence the group Homp (M, M') is finitely generated as a module over Z (resp.

Z[1/p]), if char(k) =0 (resp. char(k) =p >0).

Proof. 1t is enough to show the characteristic zero case. Since there are no nontrivial

quasi-isomorphisms to L[1], we have

Hom(L[1], L'[1]) = Homg(L[1], L'[1]) = Homy (L, L)
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and

Hom u(L[1], ") = Homeg (L[], G') = 0,

this proves (a) and (b). Any quasi-isomorphism to G has the form (0, f) : [F —
G] — G, where F is an étale subgroup scheme of G and f : G — G is an isogeny
with kernel F. Any morphism (f,g) : [F — G] — G’ must have g mapping the
subgroup F of G into 0. Hence (f,g) actually factor through G, and it follows that

Homp (G, G') = Homes (G, G') = Homy (G, G').

Given o € Homg(G,G') let & be the composition T — G 5 G — A Since
Homy (T, A’) = 0, we have @ = 0. Hence T' — G’ factors through 77 and G — A’
factors through A. This gives a map

Hom (G, G') — Homy (A, A") x Homy(T,T"),

which is obviously injective by snake lemma, hence (c) follows. For (d), by the above

description of quasi-isomorphism to GG, we have

tor

Homp (G, L'[1]) = limHomeg([F — G], L'[1]) = limHomy (F, Li,,).
— —

q.i. q.i.

If nlL!

tor

G] — @G, thus we have (d).

= 0, then the limit is bounded by the quasi-isomorphism (0,nq) : [,G —

The last statement is an easy consequence of (a), (b), (c¢), (d) and a devissage for

Hom with respect to 0 + G - M — L[] - 0and 0 - G' - M' — L'[1] - 0. O

The above proposition is about groups of homomorphisms in both characteritic 0
case and positive characteristic case. The next two propositions concern 1-extensions,
but only for characteristic zero case (the corresponding positive characteristic state-

ment will be given in charpter I1I).

Proposition 1.25. Notations as before, and suppose the characteristic of the base
field is zero. Then we have the following canonical isomorphisms.

(a) Extg, (L, L) — Exth, (L[1], L'[1]);

(b) Homy(L, G) = Extl (L[1], G");

(c) Exti(G,G') —> Exth (G, ).
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Proof. First of all, any element of Extg, (L, L') gives an element of Exty,(L[1], L'[1]),
this gives the map in (a). The existence of the map in (b) is given by associating a

map « : L — G’ to the diagram:

0——L——=1L
L oo

G=—=G——0.

By Chevalley’s structure theorem of commutative algebraic groups, any extension of
a semi-abelian variety by another semi-abelian variety in the category of commutative
algebraic k-group is still a semi-abelian variety, so we also have the map in (c).

By Proposition 1.20, any short exact sequence of 1-motives can be represented
up to isomorphism by a short exact sequence of complexes in which each term is a
1-motive.

Then (a) is just an immediate consequence of the fact that there are no nontrivial
quasi-isomorphisms from or to a 1-motive with zero semi-abelian part.

For (b), an extension of L[1] by G’ in M is given by an exact sequence of of

complexes of the form

0 s s L s L s 0
0 G — s 0 s 0,

where M’ = [F' — ('] is quasi-isomorphic to G'. We can mod out F’, i.e. take
push-out along M’ — G’, and get a quasi-isomorphic sequence which is an element
of Homy(L,G"), hence the map in (b) is surjective. It’s also injective, since the

existence of a section of the sequence
0-G —[L>G]—= L[] -0

means exactly that v is zero.

For (c), we see that an extension of G by G’ in M can be represented by a diagram

0 s Y s L s F s 0

I

0 NYel s G s G )
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with M’ = [F" — ('] is quasi-isomorphic to G', and M = [F — (] is quasi-

isomorphic to G. We can mod out F’, and get a quasi-isomorphic exact sequence

0 >y 0 y L')F' —— F > 0

0 e > G/ F G > 0.
We can further mod out L”/F' = F, and get

0 0 » 0 > 0 0

0 G > G"/L" > G 0.

Hence the map in (c) is surjective. Its injectivity is obtained by similar argument as

in the proof to (b). O

Proposition 1.26. Notations as before, and suppose that the characteristic of the

base field is zero. Then we have a canonical isomorphism
P : ligExték (oG, L") — Ext}, (G, L'[1]).

In particular, when NL' = 0 for some positive integer N, i.e. L' is torsion, the map

® becomes
H' (k, Home, (xG, L)) 2 lim Ext}, (.G, ') = Ext} (G, L'1]),

and these groups are zero when k is algebraically closed.
Proof. First, we construct a map @, : Extg, (,G, L) — Ext(G, L'[1]) for all positive
integers n. Let L” € Exték (oG, L") and consider the following diagram

0 > L/ > L » G —— 0

e R

0 > 0 G — G — 0
where the map L” — G is given by the composition of L” — ,G — G. Since

[»G — G] is canonically quasi-isomorphic to G, this provides an extension of G by
L'[1] in M. For n variable {Ext, (,G, L')}, is a direct system. The maps ®,’s are

compatible with respect to pull-back, and hence give a well-defined map

© : lim Exte, (,G, L') — Ext}, (G, L'[1]).
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This map is surjective since any extension of G by L’[1] can be represented by a
diagram 1.5 for some n (as multiplications by positive integers are cofinal in the
direct system of isogenies). So we are left to show the injectivity.

Before going to the injectivity, let us first give another description to the map
®. From the short exact sequence 0 — G % G — ,G[1] — 0, we get a long exact

sequence
0 — Homuy (G, L'[1]) ® Z/nZ — Exth,(,G[1], L'[1]) = ,Ext}, (G, L'[1]) — 0.

Taking dierect limit, we get a short exact sequence

0 — lim Hom v (G, L'[1)®Z/nZ — lim Ext}y, (,G[1], L'1]) — lim ,Ext}, (G, L'[1]) — 0.

The group Hom (G, L'[1]) is finite by .24 (d), so we get

lim Hom (G, L'[1]) ® Z/nZ = 0.

The map ® being surjective implies that the group Ext} (G, L/[1]) is torsion, so we
have

Ext) (G, L'[1]) = lim ,Ext) (G, L'[1]).
By 1.25 (a), we have
Ext),(.G[1], L'[1]) = Ext(l;,c (G, L").
Combining all the above, we get an isomorphism
lim Extg, (oG, L') = Ext}y, (G, L'[1]).

This isomorphism is nothing but the map .
Now we consider the case that L’ is killed by N. According to I1.28, there is a
spectral sequence

H'(T,Ext} (oG, L)) = Exte? (,G, L)
for each positive integers n. This gives an exact sequence of low degree terms

(1.6) 0 — H'(k,Home, (,G, L") —= Exte, (.G, L') = Exte (.G, L)'
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Taking the direct limit over n, we get an exact sequence
(1.7) 0 — lim H'(k, Home, (,G, L)) — lim Exte, (,G, L') — lim Exte, (.G, L')".

Note that as an abelian group ExtéE (oG, L") is just an extension group of abelian

groups, and it’s a standard homological computation of Z-modules to shows that
(1.8) lim Ext;(,G, L") = 0.

By the isomorphism lim H'(k,Home, (,G,L")) = lim H'(k,Homg, (-nG, L") and
the fact that the maps Home, (vG,L') — Home, (.G, L’) are isomorphisms, we

have

o

(1.9) H' (k, Home, (vG, L')) — lim H' (k, Home, (,G, L')).
Combining 1.7, 1.8 and 1.9, we get the isomorphism
H*(k, Home, (vG, L)) = ligExték(nG, L.
When £ is algebraic closed, we have
li Ext, (,G, L') = H'(k, Home, (vG, L)) = 0,

hence so is Exty, (G, L'[1]). O



CHAPTER II

Some cohomology theories

In this chapter, we are going to formulate some homological results related to
I-motives. A large part of this chapter is taking from the literature, and the main

references are [26], [33] and [38].

2.1 Comparison between extension groups of l-motives and extension
groups of their [-adic realisations

Let R denote the abelian category of finitely generated Z;-modules with continu-
ous I['-action, where I" denotes the absolute Galois group of the base field k. Recall
that in 1.23, the [-adic realisation functor 7; is exact on M, and hence sends any
Yoneda n-extension

0— M — M- M, — M~—0
in M to a Yoneda n-extension
0—T,M —T,M---T)M, = T,M — 0

in R.

Suppose given two commutative diagrams with exact rows

£ 0 M M, N 0
|

&g 0 M’ M, N 0

F 0 N M, M 0
1

F 0 N M, M 0,

22
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i.e. given

E-F=(EB) -F~& (BF)=€-F,

applying the functor T;, we get two commutative diagrams with exact rows

TE 0 M’ T M, TN 0

L

T,E 0 T, M’ T, M, T,N 0

nF 0 TN T M, M 0

|

T,F 0 T,N T, M, .M 0.

Hence we have
TE - T F = (LE'P) - TiF ~TE - (BTF) = TiE' - TLF,

i.e. the functor 7T} keeps the relation £ - F ~ &' - F'. Since the equivalent relation
used to define the Yoneda extension groups is generated by the relations of the form
E-F ~E& - F, we get amap Ext} (M, M) — Exty(T;M, T;M’). Actually, this is
not only a map, but also a homomorphism of abelian groups. Here we only check
that it keeps the group operation, and the rest can be shown in the same way. Given
any two n-extensions £ and & of M by M’ in M, recall that the addition [£] + [£']
in the Yoneda n-extension group Ext’ (M, M’) is defined by the rule

It is obvious that we have
TV (EBENNy) = Vo (TE @ Tlé”)ATlM,

hence the functor 7; indeed gives a group homomorphism from Ext}{, (M, M') to
Exty (T;M, T;M'). Moreover, the group Exty (T;M,T;M’) has a natural Z;-module

structure, so we get a homomorphism
(2.1) T, : Ext (M, M") @ Z; — Extyx (T,M, T,M")

of Z;-modules. Here our notation 7; should be (7}),, however we will abuse the

notation 7; for any n, whenever the index n is clear from the context.
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Let M be a 1-motive in M, given a short exact sequence
0N 3NN =0
in M, we then get a canonical long exact sequence
Extiy, (M, N') = Ext’ (M, N) — Extiy, (M, N") 2 Exti# (M, N') —,

where ¢ is the connection morphism. Since the ring 7Z; is flat over Z, we get another

long exact sequence
Extiy, (M, N)®Z;, — Extiy, (M, N)®Z, — Extiy, (M, N")®Z > Exti} (M, N)®Z; — .
We also have a short exact sequence for the [-adic realisations

0= TN — TN = T,N" =0,
hence get another canonical long exact sequence
Extl (TiM, TiN') — Extl (T,M, T;N) — Extly (T}M, T;N") — Extd ' (TiM, TiN') — .

These two sequences fit into the following diagram
(2.2)
—— Ext\ (M, N) @ Z; — Extiy (M, N") @ Z; —— Ext'}(M, N") @ Z, ——

| J |

—— Ext (T} M, T;N) —— Extls (T,M, T;N") —>— Ext Y (T,M, T,N") — .

This diagram is actually commutative. To prove the commutativity, it suffices to

check the commutativity of the two squares. Given any i-extension
EO0O—->N—->P---P,—M—Q0,

we consider the push-out diagram

& 0 N P, P, M 0
vE 0 N" P P, M 0

By applying the functor 7}, we get a commutative diagram with exact rows

o

T, (vE) 0 T,N" T,P, TPy — - —— TyM —— 0.
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This diagram has to be a push-out diagram, hence we have T;(v€) = (Tiv)(T;€).
This shows the commutativity of the first square. For the second square, just notice
that the connection map is given by splicing a given i-extension of M by N with
the short exact sequence 0 — N’ % N 5 N” — 0, then the commutativity follows
from applying the functor 7; in a similar way.

Later in the fourth chapter, we are going to use the commutativity of the diagram

2.2 repeatedly.
2.2 Galois cohomology

The definition of 1-motives with torsion involves discrete sheaves over the base
field k£ with respect to the étale topology. In the characteristic zero case, such sheaves
are just finitely generated Galois modules. In the positive characteristic case, since
we invert the multiplication-by-p map, the finite étale p-group schemes regarded as
1-motives become isomorphic to zero, hence we only need to consider the discrete
sheaves without p-torsion. Such sheaves are again just finitely generated Galois
modules. Hence Galois cohomology is quite useful in the study of 1-motives.

In this section, we are going to give a quick introduction to the cohomology of
profinite groups, and list some results which are needed for our investigation of 1-
motives, but proofs will be omitted mostly. The main reference for this section is

33).

Definition II.1. Let G be a profinite group, a G-module M is said to be discrete if

one has M = UMY, where U runs over all open subgroups of G.

The discrete G-modules can also be defined as abelian groups with discrete topol-
ogy, on which G acts continuously. The discrete G-modules form an abelian category

Cg, in which there are enough injective objects.

Definition I1.2. Let M be a discrete G-module, the ¢g-th cohomology group H?(G, M)
of G with coefficient in M is defined to be RYF(M). Here R?F' denotes the ¢g-th right
derived functor of the functor M + F(M) = MY, with M being the maximal sub-
group of M fixed by G.

From this definition, we get the usual formal results for cohomology groups, see

[13, chap. II thm. 1.1A.]. In particular, we have the very useful long exact sequences
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associated to short exact sequences of discrete G-modules. This definition is not very
helpful for computation. There is another definition for the cohomology groups of G
via cochain.

Let C°(G, M) be M, and C"(G, M) be the abelian group of all continuous maps
from G™ to M (the topology on M is the discrete one) for n > 0. We define the
differential map d : C"(G, M) — C"*(G, M) by the formula

(df)(g1, - s gnt1) =91 - f(g2,-+  Gns1)
+ Z(—l)if(gl, C 5 Gi0id1, s Gntl)
=1
+ (=" flgr, - 5 gn)-

It’s a formal check to see that d o d = 0, hence we get a complex C*(G, M). Then
the cohomology groups H?(G, M) can be computed as the cohomology groups of the

following complex
(2.3) C*(G,M): 0— CUG, M) = CHG, M) = -+ — C™(G, M) = -~ .

By using the cochain complex, we are able to do some useful computation. The

following results are taken from Serre’s book [33].

Proposition I1.3. Let (G;) be a projective system of profinite groups, and let (M;)
be an inductive system of discrete G;-modules (the homomorphisms M; — M; have
to be compatible with the morphisms G; — G;). Let G be I&nz G;, M be hﬂl M;.
Then we have H1(G, M) = limg, HY(G;, M;) for each ¢ > 0.

Proof. The canonical homomorphism @C'(Gi,Mi) — C*(G, M) is an isomor-
phism, whence the result follows by passing to homology. O]

Corollary 11.4. Let M be a discrete G-module, then we have
HY(G, M) = lim H*(G/U, M)
for each ¢ > 0, where U runs over all open normal subgroups of G.

Proof. Since we have G = I'&HG JU and M = th U, then the result follows from
IL.3. O
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Corollary I1.5. Let M be a discrete G-module, then we have

HY(G,M) = liquq(G, N)
for each ¢ > 0, where N runs over the set of finitely generated sub-G-modules of M.
Proof. The result follows from I1.3 with the help of the expression M = hﬂ N. O

Corollary I11.6. The groups H1(G, M) are torsion for q > 0.

Proof. The case G being a finite group is a classical result, see [34, chap. VII prop.
6]. The general case follows from this and I1.4. O

Example I1.7. The cohomology groups in degree zero, one and two can be described
very explicitly via the cochain complex C*(G, M) as follows:

(1) H(G, M) = M€;

(2) H(G, M) is the group of classes of continuous crossed-homomorphisms from G
to M, and in particular it is the group Hom(G, M) in the category of topological
groups when M is a constant module;

(3) H?(G, M) is the group of classes of continuous factor systems from G to M.

Let G and G’ be two profinite groups, and let f : G — G’ be a morphism. Take
M € Cq and M' € Cq/, suppose that we have a morphism h : M’ — M which is
compatible with f, i.e. h is a G-morphism with M’ regarded as a G-module via
f. Such a pair (f, h) defines a homomorphism HY(G', M') — HI(G, M) for each
g > 0. In particular, when G’ is a closed subgroup H of GG, and M’ = M is a discrete

G-module, we obtain the restriction homomorphisms
Res: HI(G,M) — HY(H,M), ¢>0.
When H is a closed normal subgroup, we obtain the inflation homomorphisms
Inf : HY(G/H, M*") — HY(G, M), q¢>0.

When H is an open subgroup of G with finite index n, we have the corestriction
homomorphisms

Cor: HY(H,M) — HYG,M), q¢q>0.

Similar as in the case that G is finite, we have Cor o Res = n.
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Proposition I1.8. Let H be a closed normal subgroup of G and let M be a discrete

G-module. Then we have an exact sequence

0— HY(G/H,M™) 2 gY(G, M) 2 HY(H, M).
Proof. This is actually just part of the five term exact sequence of the Hochschild-

Serre spectral sequence, which will be given in 2.5. O

Definition I1.9. Let [ be a prime number, and G a profinite group. The [-cohomological
dimension (resp. strict l-cohomological dimension) of G, denoted by cd;(G) (resp.
scd;(@)), is the smallest integer n such that the I-primary component of HY(G, M) is
null for every discrete torsion (resp. not necessary torsion) G-module M and every
q > n. If there is no such integer, then we define cd;(G) (resp. scd;(G)) to be +o0.
The cohomological dimension (resp. strict cohomological dimension) of G is defined

to be cd(G) := sup; cd;(G) (resp. scd(G) := sup,; scd;(G)).

Proposition I1.10. Let G be a profinite group, n be an integer, and | be a prime
number. The following are equivalent:

(a) cdi(G) < n.

(b) HY(G, M) =0 for all ¢ > n and every discrete G-module which is an l-primary
torsion group.

(c) H"™Y(G, M) = 0 when M is a simple discrete G-module killed by .

Proof. See [33, chap. I prop. 11]. ]
Proposition II.11. scd;(G) is equal to either cdi(G) or cd;(G) + 1.

Proof. See [33, chap I prop 13]. O

Let k be a field, and T' be its absolute Galois group which is a profinite group.
Let M be a discrete I-module. We will write H9(k, M) instead of H?(I', M) as in

most text books.

Example I1.12. Let k£ be a finite field, then the absolute Galois group of k is
isomorphic to Z. For any prime I, we have cd;(Z) = 1, for reference see [34, XIII

~

prop 2]. It follows that we also have c¢d(Z) = 1. Consider the short exact sequence

0-Z—->Q—-Q/Z—0
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of constant Z—modules, we get the cohomological long exact sequence
H'(k,Q) — H'(k,Q/Z) — H*(k,Z) — H*(k, Q).

Since we have H'(k, Q) = HomctS(Z,Q) = 0, and the fact H?*(k,Q) = 0 can be
deduced by [34, XIIT prop 2] with the help of I1.4. Hence we get

H?(k,Z) = H'(k,Q/Z) = Homs(Z,Q/Z) = Q/Z,

A ~

whence scd(Z) = scd;(Z) = 2 by 11.11.

Example I1.13. Let p be a prime number, k be a p-adic field (i.e. a finite field
extension of Q,), and I" be the absolute Galois group of k. Then we have scd;(I") =
cd;(T") = 2 for all prime number [, see [33, chap. II, 5.3].

Example I1.14. Let k£ be an algebraic number field, and I' be its absolute Galois
group. If [ # 2, or k is totally imaginary, we have cd;(I') < 2. Otherwise, we have
cd;(T") = oo. Although cds(I") could be oo, we can still control the group H4(k, M)

very well for any discrete torsion I'-module M and g > 2. Actually, we have

H(k, M) = [ [ H(ko, M)

for ¢ > 2, where v varies over all the real archimedean places of k. This group is in
fact a 2-torsion group, since the absolute Galois group of k, is just the cyclic group

of order two for any real archimedean place v.
2.3 Continuous cochain cohomology

The [-adic realisations of 1-motives lie in the category R of finitely generated Z;-
modules with continuous Galois action. In order to study the [-adic realisations of 1-
motives, it is necessary to study the category R. The continuous cochain cohomology
is a useful tool. In this section, we are going to formulate the continuous cochain
cohomology, and collect some propositions on continuous cochain cohomology groups.
The final aim is to give some applications in our context.

Let G be a profinite group, and let M be a topological G-module (i.e. a topolog-
ical abelian group with continuous G-action). We construct the continuous cochain

complex C2 (G, M) of G with coefficients in M in the same way as in 2.3, except that

cts

we write C% (G, M) instead of C"(G, M) to indicate that we are using the topology

cts

of M itself.
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Definition I1.15. The ¢-th continuous cochain cohomology group of G is defined
to be the ¢g-th cohomology group of the complex C2 (G, M), which we denote by
Hgts(G7 M)

Remark 11.16. If the topology on M is the discrete one, then the continuous cochain
cohomology groups coincide with the ones defined in I1.2. However, for arbitrary

topological G-module M, the groups HY(G, M) may not be defined.

Since the continuous cochain cohomology is not defined via the standard derived
functor method, given any short exact sequence of topological G-modules, we don’t
get the cohomological long exact sequence automatically. However, we have the

following proposition from [26].

Proposition I1.17. Let
0 M =M M =0

be a short exact sequence of topological G-modules such that the topology of M’ is
induced from that of M and such that B has a continuous section (not necessary a

homomorphism). Then there exist canonical boundary homomorphisms

6 HY

cts

(G, M") — HI (G, M)

cts

and we obtain a long exact sequence

(G, M") 2 HEY G M) = -

cts

_>Hq

cts

(G,M') — H

cts

(G,M) — H}

cts

Proof. See [26, chap. 11, 2.7.2]. O

Remark 11.18. We can apply this proposition in the particular case when M’ is an
open submodule of M and M"” = M/M’ is the quotient module with the quotient
topology, which is discrete. For our purpose, we are going to consider the short exact
sequence

0= TM 5 TiM — TM/1" — 0

coming from applying the [-adic realisation functor to the short exact sequence
0—=MS M- M/I"—0

associated to a torsion-free 1-motive M.
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We are particularly interested in the [-adic realisations of 1-motives, which are
the inverse limits of finite étale group schemes. The following proposition (taken
from [26]) relates the continuous cochain cohomology groups of compact topological
G-modules, whose underlying topology is profinite, to the Galois cohomology groups

of finite G-modules.

Proposition I1.19. Let M be a compact topological G-module which has a presen-
tation

M:@Mn

neN

as a countable inverse limit of finite G-modules. Then there exists a natural exact

sequence

0= lim ' H'YG, My) = Hy (G, M) — lim H'(G, M,) — 0

for each i > 0, where Mn L denotes the first right derived functor of lgnn
Proof. See [26, chap. 11, 2.7.2]. O

Corollary I1.20. If H (G, M,,) is finite for each i < N and each n, then we have

forallt < N + 1.

Proof. For i < N +1, since the groups H"1(G, M,,) are all finite for all n, the inverse
system satisfies the Mittag-Leffler condition. So we get lim VHAYG,M,) = 0,

whence the result follows from I1.19. O]

At last, we give an application of continuous cochain cohomology to some exten-

sion groups in the category R.

Proposition I1.21. Let M, N € R, and suppose that M 1is free as a Z;-module.
Then we have

Exty (M, N) = H}

cts

(', Homgy, (M, N)).

Proof. First suppose that the continuous I'-actions on M and N are given by the

continuous homomorphisms

pu T — Auty, (M)
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and
pn T — Autg, (N)
respectively. Recall that the continuous I'-module structure on Homg, (M, N) is given
by
f7(m) = (o (o) fpar(o))(m)
for any o € I', f € Homy, (M, N), and m € M.
Given any element in Extz, (M, N), which is represented by an short exact se-

quence
(2.4) O=N—=>E—-M=0

in R, let pg : I' = Auty, (E) be the continuous homomorphism giving the continuous
I-module structure. Since M is free as a Z;-module, the short exact sequence 2.4
splits as a sequence of Z;-modules, i.e. £ = N @& M as a Z;-module via some section
s: M — E. Then under this expression, for any element o € I, pp(0) can be written

as a matrix
pN(‘7> fo
0 pu (o)

Y

where f, : M — N is a homomorphism of Z;-modules. Given any two elements

o, 7 € I', we have pg(o7) = pg(o)pe(7), ie.

on(@) o\ [ex(n) on(oT)  for

0 pulo) 0 pum(r) 0 pu(0T)

So we get
for = pn(0) fr + foru(7),

which is equivalent to the equality

forpm((07)7) = (pn(0) fr + fopra (7)) par((07) )
= pn(0) frpm((07) ™) + foprr(T) par((a7) ™)
= pn(0) frpar (T par (0™ + foprr(o™!)
= (fromr(T7))7 + fopr(o™?)

for any ¢ and 7 in I'. This equality says nothing but that the collection

Ss = {fopu(c7")| 0 €T}
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gives a 1-cocycle, i.e. it represents an element of HY,

(', Homg, (M, N)).
Now we prove the cohomological class associated to this extension is independent
of the choice of the splitting. Given another section s’, the difference t := s — s’ gives

an element of Homy, (M, N). Suppose that pg(o) can be written as a matrix

pN(O-> 9o
0 pu(0)

under the splitting given by the section s, where g, : M — N is a homomorphism
of Z;-modules, then the collection Sy = {g,pr(071)| o € T'} gives another 1-cocycle.

We have two equalities

fo(m)
go(m)

pe(0)(s(m)) = s(pu(o)(m))
pe(0)(s'(m)) = s'(pu(a)(m))

for any m € M. The difference between them gives

fo(m) = go(m) = pu(o)(t(m)) = t(py(o)(m))

ie. fo — g, = pn(0)t —tpp (o). This is equivalent to

fopri(07™) = goprr(0™Y) = py(o)tpu(o™") —t
=17 —t.

This shows the difference between the two 1-cocycles is a coboundary, hence we get

a well-defined map

¢ : Extyp(M,N) — H}

cts

(I', Homgy, (M, N)).

On the other hand, given any 1-cocycle, we can construct an extension of M by N
easily, from what we have seen above. And it’s easy to see the map ¢ is bijective.
So we are left to show that ¢ is a homomorphism of abelian groups. It’s easy to
see that ¢ map the trivial extension to zero. Then it suffices to show that ¢ keeps the
group operations. Before continuing the proof, we digress to describe the functorial

behavior of the map .
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Claim. Given morphisms a : N — N" and b : M" — M with M’ free as a Z;-module,
let 0 = N = E = M — 0 represents an element of Ext, (M, N). Suppose that this
extension corresponds to a 1-cocycle (f,pa(07!))ser for some section s of v, then:

(1). The canonical push-out morphism
u, : Exty, (M, N) — Extyp (M, N')

maps the extension class [F] to the extension class corresponding to the 1-cocycle

(afoprr(o™"))oer.
(2). The canonical pullback morphism

v* : Exty (M, N) = Exty(M', N)

maps the extension class [E] to the extension class corresponding to the 1-cocycle
(fUpM(O._l)b)UEF'
We only prove (1), whilst the proof to (2) goes similarly. Consider the push-out

diagram

where s’ := ¢s is a section of v'. Denote the 1-cocycle associated to the section s’
for the extension class [E'] by (f.pa(071))ser, where by definition f is such that

W fl = pp(0)s’ — s'pu(o) for each o € I'. Since uf, = pr(c)s — spu(o), we get

daf, = cufy = clpp(o)s — spu(0))
= pp(0)cs — cspu(o)
= pp(0)s’ — s'pu(o)

=u'fl.

The injectivity of «’ implies f/ = af,, which shows the (1) of the Claim.
Now we go back to the proof of the proposition. Given two extensions of M by N
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by definition we have E + E' = \yn(E @ E')Ay. Let s and s be sections of v
and v’ respectively, and denote the corresponding 1-cocycles by (f,par(07!))ser and
(f prr(07™1))er Tespectively. It’s easy to see that the 1-cocycle corresponding to the

section s @ s’ of v @ v’ for the extension £ @ E’ is just

((fo & So)(prr @ par) (0 "))ger

Then by the claim, we have the extension E + E’ can be represented by the 1-
cocycles ((fo+ f2)par(c™))ser. And this just shows that the map ¢ keeps the group

operations. 0
2.4 The five lemma

We are going to use the five lemma repeatedly, hence it’s worth stating it.

Proposition 11.22 (The five lemma). Let C be a small abelian category. Given a

commutative diagram with exact rows

A B C D—>FE
flJ, f2l f3l f4l f5l
A5 B C’ D’ E

in C. Then we have the following:

(1) If both fy and f, are monomorphisms, and fi is an epimorphism, then f3 is a
monomorphism.

(2) If both fy and fy are epimorphisms, and fs is a monomorphism, then fs is a
epimorphism.

(3) If both fo and fy are isomorphisms, fi is an epimorphism, and f5 is a monomor-

phism, then f3 is an isomorphism.

Proof. See [23, chap. I, thm. 21.1] for the case C being the category of abelian
groups. The general case follows from [23, chap. IV, metathm 1.1 and thm. 2.6] [

Remark 11.23. Let C be an abelian category in which we can do diagram chasing
(eg. the category of modules over a fixed ring), we can make the five lemma slightly
stronger. For (1), the condition concerning f; can be weaken to that for any ¢’ €
im(v) there exists an a € A such that vf;(a) =¥'. For (2), the condition concerning

f5 can be weakened to f5 being injective when restricted to the image of u.
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2.5 Some spectral sequences

Spectral sequences are very useful in computing (co)homology groups. In this
section, we just give the definition of (cohomological) spectral sequences, then list

several (cohomological) spectral sequences needed for our purpose.

Definition I1.24. Let A be an abelian category, m be a positive integer. An F,,-
spectral sequence in A consists of

(1) objects EP1 € A for all p,q € Z and all integer r > m.

(2) morphisms db? : EP? — EPTTHL gquch that: (a) dP9db—m4t 1 = 0, ie. we
have a complex --- — EP~4t7=1 — pFpa — prtra—r+l ... pagsing through EP9;
(b) B = ker(dP?) /im(d?~"9t""1), i.e. EFY, comes from the cohomology at (p,q)
place of the complex in (a); (c) for each fixed pair (p,q) € Z? the morphisms d?? and
dP~"4+7=1 vanish for sufficient large r.

(3) finite decreasingly filtrated objects (E™ € A, F**) for all n € Z, such that EPY =
gr,E™, where E,, = EP for some r large enough such that dP? = @¢="4t~1 = (.
We denote the spectral sequence by EFY = EPT4. If EP9 =0 for p < 0 or ¢ < 0,

then we call such a spectral sequence a first quadrant spectral sequence.

For a first quadrant spectral sequence EPY = EP'4 we have that F""'E™ = (
and FOE™ = E™ for all n > 0. Hence we get an injection £ = F”E” — E™ and
a quotient map E" — E%". For any r > 2, the morphisms E™0 —— Ern—r+l = ()
and 0 = E_"ntr-l d—z—; E>™ are forced to be zero for all n > 0, so we have
inclusions Effl — E™% and quotient maps E®" — ngl. Then we get two chains of

morphisms

0 0
R N S

and
E™ = EX" < - < By E)"

The compositions of these two chains give two morphisms Ey Y 5 E"and E" — Eg i

for each n, and these morphism are called the edge morphisms.

Proposition I1.25 (The five term exact sequence). Given any first quadrant spectral

sequence EY? = EPT1 we have an eract sequence

d d. d
(2.5) 0— B0 255 p 255 g0t o g0 2255 B2
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Proof. Since the spectral sequence given is a first quadrant one, we have

(2.6) EY = Ey°

(2.7) E% = E9' = ker(dY")
2,0 _ 12,0 _ 0,1

(2.8) EZP = EY7 = coker(dy).

We then have a short exact sequence
0—EY - E' - EY =0
from the filtration on E!, an exact sequence
0 — ker(dy') — EY' — E3° — coker(dy') — 0
from the morphism dg’l, and an injection
0— E20 — E?

from the filtration on E2. Under the identifications from 2.6, 2.7 and 2.8, splicing

the above three exact sequences gives the required one. O

The five term exact sequence is very useful for dealing with lower degree coho-
mology groups. And it can be extended further in various cases. The following is

taken from [26, chap. 2.13].

Proposition I1.26. Suppose that we have a first quadrant spectral sequence
By — EPYe.

(1) If EY* =0 for all ¢ > 1 and all p, then we have a long exact sequence

1 edge
N

1,0 edge 0,1
0 fEQ’ FE EQ’

2,0 edge 1,1
EY E? Ey

3,0 edge 2,1
Ey E3 Ey

(2) If EY?T =0 for all p > 1 and all q, then we have short exact sequences
0— BV — pr 2% g0

foralln > 1.
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Proof. Under the condition of (1) (resp. (2)), the differentials d?? vanish for all r > 2
(resp. r > 2). The proofs are similar to the proof of the five term exact sequence. [

Theorem I1.27 (The Hochschild-Serre spectral sequence). Let G be a profinite
group, H be a closed normal subgroup of G, and M be a discrete G-module. Then

there is a first quadrant spectral sequence
EY = H?(G/H,H(H,M)) = H""(G, M).
Proof. See [26, chap 11, 2.4.1]. O

Theorem 11.28. Let G be a profinite group, and M, N be two discrete G-modules.
As in [22, chap. I, sec. 0] set

Hom(M,N) := | ] Hom(M,N)?

Uopen

={f € Hom(M,N)|of = fo for all o in some open subgroup U},
let Ext" (M, N) denote the r-th derived functor of the left exact functor
Cec — Cq, N — Hom(M, N).
Then there is a first quadrant spectral sequence
EDY = HP(G, Ext!(M,N)) = Extp (M, N).

In particular, when M is finitely generated as an abelian group, then for any q > 0
the group underlying the discrete G-module Ext?(M, N) is just the abelian group
Extl (M, N), and we follow Milne’s notation in [22] to write Ext?(M, N) instead of
Exti(M,N).

Proof. See [22, chap. 10.8]. O

Theorem I1.29. Let k be a perfect field, and let A and B be commutative algebraic

group schemes over k. Then there is a first quadrant spectral sequence
EPY = HP(k,Ext].(A, B)) = Ext}"(A, B),
where k* denotes the separable closure of k.

Proof. See [21]. O
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2.6 Yoneda extensions in abelian subcategories

In this section, we are going to compare the Yoneda extension groups in a given
abelian category and its abelian subcategories.

First let us give a description of Yoneda extension groups from the point of view
of derived category. Given any abelian category A, let C'(A) be the category of
complexes in A and C*(A) (x = b, +, —) be the full subcategory of C(A) consisting
of bounded (resp. bounded below, bounded above) complexes. The homotopy cate-
gory K(A) is a triangulated category which has the same objects as C'(A), but has
the morphisms being the morphisms in C'(.4) modulo chain homotopy equivalence.
Similarly, we can also define the category K*(A) (x = b,+, —) in the same manner.
Then the derived category D(A) is defined to be the localisation of K(A) with re-
spect to quasi-isomorphism, and is a triangulated category naturally. Similarly, the
derived category D*(A) (x = b,+,—) can also be defined. We have four natural

functors fitting into the following commutative diagram

"(A)
D°(A)
(A)
and all of these functors are all fully faithful, see [37, chap. III, them. 1.2.3.]. For
details about derived category, see [17], [37] or [38].
The categories K*(A) and D*(A) are additive. Given two objects XY € A,

regarded as objects of D(A) with X and Y in degree zero and 0 in all other degrees,
the group of homomorphism between X and Y can be described as follows:
HOIHD(A) (X, Y)
= lim Homgy(-,Y)= lim Homgy(,Y)= lim Homgy(-,Y)
(Qis/X)° (Qis—/X)° (Qisb/X)°
= h_l’l} Homp () (X,-) = hg Homp () (X, ) = llg Hompg (4 (X, -),
Y\Qis Y\Qist Y\Qisb
where Qis/X denotes the category of quasi-isomorphisms into X in K(.A) and
its opposite category (Qis®/X)° is filtrant, Y\Qis denotes the category of quasi-

isomorphisms with domain Y in K(A) which is filtrant, Qis™ /X, Qis?/X, Y\Qis™
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and Y\Qis" are defined in a similar way. See [37, chap. III, prop. 3.1.3.] for details
of these descriptions.

Now given a Yoneda n-extension
0=Y —=>2Z,1—>Zpo— =2y =X =0
in A, let Z°* be the complex
=2 0=2Y = Z, 1= Zy—=0—=---

where Y lies in degree —n and Z; lies in degree —i for each 7. Then the extension
gives a canonical quasi-isomorphism Z°* — X, the complex Z* itself gives a canonical
element Z* — Y'[n] in Homg4)(Z°, Y [n]), so we get an element of Homp(4) (X, Y[n]).
This gives a map 6" from the set of Yoneda extensions to Homp4)(X, Y [n]). Actu-

ally, we can say more.

Proposition I1.30. The map 0" induces an isomorphism

0" Ext’} (X, Y) = Homp(a) (X, Y[n])

of groups.
Proof. See [37, chap III, prop. 3.2.2.]. ]

The proposition I1.30 reveals that the Yoneda extension group Ext’(X,Y) can
be defined alternatively as the group Homp(4) (X, Y[n]) of morphisms in the derived
category, so in the rest of this thesis we will use these two definitions freely.

Now we go back to the category Cg of discrete G-modules for a profinite group
G. Let Cé be the full subcategory of Cg consisting of all finitely generated discrete
G-modules, this category is obviously a full abelian subcategory of Cq. When G is
the absolute Galois group of a field k, we will use the notation C;, instead of Cé. Let
Dlgé (Ce) be the full additive subcategory of D(Cg) consisting of all objects X such
that H'(X) € CL for all i. Then we have natural functors

D°(CL) & DY (Co) = D°(Ca).

&
Proposition I1.31. The above functor 6° is an equivalence of categories, and hence

the canonical morphism
Extéé (X,Y) — Extg, (X,Y)

1s actually an isomorphism for any X,Y € Cé.
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Proof. Recall that a thick subcategory of an abelian category is a full subcategory
which is closed by kernels, cokernels, and extensions, see [17, chap. 8, def. 8.3.21].
It’s easy to see that Cé is a thick subcategory of Cg. Given any epimorphism f :
X —-Y inCqgwithY € Cé, let y1,--- ,y, be a set of generators for Y, take preimage
x1,+ -+, 2, € X such that f(z;) = y;. Since X is a discrete G-module, there exists
an open subgroup U of G such that XV contains all the z;’s, let X’ be the sub-G/U-
module of XV generated by the z;’s. Then Y” is finitely generated and is naturally
a discrete sub-G-module of X, hence an object of the category C(];. The composition
Ve xLvis obviously an epimorphism, hence by the dual version of [17, chap.
13, them. 13.2.8], the functor §® is an equivalence of categories.

The category D7, (Cg) is a full subcategory of D"(Cg), hence we have
G

Homps, ¢y (X, V(i) = Hompn o) (X, Y[
G

for any X, Y € Cé. On the other hand, the functor §® gives a canonical isomorphism

Home(Cé)(X, YT[i]) = Hoszf (CG)(X, YTi]).
G

So we get a canonical isomorphism Homy,, s (X, Yd]) 5 Hompp ¢, (X, Y[i]) which

is just the morphism appearing in the statement under the identification in I1.30. [

Corollary 11.32. Given XY € Cé, we have a first quadrant spectral sequence
Ey? = H?(G,Ext!(X,Y)) = Ext’[*(X,Y).
G
Proof. Easy consequence of I1.28 and II1.31. [

Theorem I1.33. Let A be an abelian category, B a full abelian subcategory which is
thick. Suppose that B is also closed by subobjects and quotients, see [17, chap. 8, def.
8.3.21] for definitions. Suppose given any two objects X, Y € B and a positive integer
i > 1, the canonical map ;1 : Extiy '(X,Y) — Ext’y'(X,Y) for Yoneda extension
groups is an isomorphism, then the canonical map ; : Extg(X, Y)— Extf4(X, Y) is

injective. In particular, the map s s always injective.

Proof. Before going to the proof, we first make a claim.

Claim. For any short exact sequence 0 -+ A" -+ A — A” — 0 in A, A lies in B if
and only if both A" and A” lie in B.
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The claim is just an easy consequence of the fact that B is thick and closed by
subobjects and quotients.

Now suppose that the map ¢; 1 is an isomorphism. Given any i-extension in B,
which represents the trivial element of the group Ext’y(X,Y), write it as £ - F for

some (i — 1)-extension £ and some 1-extension F.
EO0-Y =YY= =Y, -P=>0 0-P3Y,-X—=0 F

By the claim, it is easy to see that the extension F lies in the category B. We have

the long exact sequence associated to F
— BExt (Y, V) %S Exti (P Y) 2 Ext)y(P, X) — .

Note that the map 0 is just the map splicing with F. Then [€ - ] = 0 implies that
E~a*(&)and - F ~a* (&) - F ~E& - (a.F) for some (i — 1)-extension & of Y; by

Y. From the isomorphism
Exty '(Y;,Y) — Ext’ (Y, Y),

there exists an extension £” of Y; by Y in B which is equivalent to £’. It follows that
E-F|l =1 (aF)] =" (a.F)] =0 in B. This shows the injectivity of ;.
Note the claim implies that the map (; is an isomorphism, hence ¢ is injective.

]

Lemma I1.34. Let G be the profinite group Z, R be the ring Zy[T,T~'] with T
some indeterminate, B be the abelian category of finitely generated Z;-modules with
continuous G-action. Then the abelian category B is equivalent to the abelian cate-
gory R — Mod consisting of all R-modules which are finitely generated over Z;. In
particular, given any X,Y € B, we have a canonical isomorphism

Exti(X,Y) = Ext’, . +(X,Y)

for each positive integer 1.

Proof. For any finitely generated Z;-module X, the topology on Autz, (X) is the I-
adic one which is complete and compact. Hence a continuous homomorphism from Z

to Autz, (X) is uniquely determined by the image of the topological generator of Z,
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or equivalently is uniquely determined by the induced homomorphism from the dense
subgroup Z of Z to Autz, (X). Note that we have an isomorphism Z;[Z] = Z;[T, T~]
sending 1 € Z to T'. It follows that we get an equivalence from the category B to the
category R —Mod/ consisting of all the R-modules which are finitely generated over

7. [l

Lemma I1.35. Let A be a noetherian ring, and M, N two finitely generated A-
modules. Then any element of Ext'y (M, N) can be represented by an i-extension of

M by N which consists of only finitely generated A-modules.

Proof. First the category of A-modules admits enough projectives, so the group
Ext,(M,N) can also be computed via resolution. Since M is finitely generated

and A is notherian, so there exists a projective resolution of M
di di d
—)LH_1—+1>LZ—)—>L1—I—>L0—>M,

in which all L;’s are finitely generated A-modules. Given any o € Ext’ (M, N), i.e.
an element of the group ker(Hompu(d;;1, V))/im(Homu(d;, N)), choose a represen-
tative f € Homu(L;, N), then we have f od;;; = 0. It follows the map f factors
through L; := L, /im(d;41) which is a finitely generated A-module. We also have the

following diagram

E:0

L. . Lo M 0

L,
|7
N.
Then the Yoneda extension class corresponding to « can be represented by the ex-

tension f.&, which consists of finitely generated A-modules. m

Theorem I1.36. Let notations be as in I1.34, then we have canonical isomorphisms

@; Ext’, o (X,Y) = Exth_yoq(X,Y)
for all positive integers i. In particular, the group Ext%_Mo o (X, Y) vanishes for each

1> 2.

Proof. Firstly it’s easy to see that ¢; is an isomorphism. By theorem I1.33, the map
@, is injective. Secondly, the groups Ext’(X,Y") vanish for all i > 2, since the global
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dimension of the ring R is two. So the surjectivity of the maps ¢; is obvious for all
1 > 2. If py is an isomorphism, then ¢;’s are all injective by using theorem I1.33
repeatedly. So we are left to show the surjectivity of the map ¢-.

Given any element o € Exth(X,Y) regarded as a class of Yoneda extensions,

choose a representative
0—->Y—>L1—>Li—X—>0

with L, Ly finitely generated R-modules.
Since Y is finitely generated as a Z;-module, the annihilator ideal ann(Y’) of Y

must contain an element f which doesn’t lie in Z;. Let L{ be the set
{z € Ly|f"x = Ofor somer € N},

it’s easy to see that L{ is a R-submodule of Ly, hence a finitely generated R-module.
And also we have Y C L{. Let {x1, 29, -+, 2} be a set of generators of L{ as a R-
module, and suppose that f"z; = 0 for some positive integer n;. Let n be max;{n;},
then we have f"L{ = 0.

We claim that YN "L, = {0}. Take y € Y N f" Ly, then y can be written as f"x.
y € Y implies that f" 'z = fy = 0, so x lies in L{. It follows that y = f"x = 0.

So we get the following commutative diagram with exact rows

(2.9) fL,

0 Y Ly “ Ly X 0

| |

0—Y —— Li/f"L1 —— Lo/u(f"L;) — X —— 0.

Since L, is a finitely generated R-module, there exists a surjective map R = L; for

some positive integer r. Consider the following diagram

0 —— ker(v) R —— 1, 0

0 —— ker(v) R —— I, 0,

where the three vertical maps are the multiplication maps by f™. By the snake

lemma, we have an exact sequence

0 — ker(s3) — coker(s;) — coker(sy) — coker(ss) — 0.
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f doesn’t lie in Z;, so R/f"R is finitely generated over Z;, hence so is L1/f"L; =
coker(ss). Hence Lo/u(f"Ly) is also finite generated over Z;, and « lies in the image

of Y2. ]
2.7 The noetherianity of M

First recall that in the theory of rings and modules, the chain condition gives two
special kinds of objects, the artinian ones and the noetherian ones, which satisfy
descending chain condition and ascending chain condition respectively. These kinds
of rings and modules are very useful and relatively easy to understand. In the abelian

categories, we can do the similar thing.

Definition II1.37 (cf. [10] chap. II, sec. 4). Let C be an abelian category. An object
M in C is noetherian (resp. artinian) if every ascending (resp. descending) chains
of subobjects of M is stationary. The category C is noetherian (resp. artinian) if all

the objects of C are noetherian (resp. artinian).
Proposition 11.38. The category M 1is not artinian.

Proof. Let L be a torsion-free finitely generated locally constant sheaf for the étale
topology, then L[1] is a 1-motive. Let r be a prime number which is not equal to
char(k), the family

{L[1] 55 L[1]|n € N}

of monomorphisms shows that M is not artinian. This can also be shown by another
example, the family

(G5 GneN}
of monomorphisms, where GG is a nonzero semi-abelian variety. O]
Theorem I1.39. The category M is noetherian.
Proof. Given any 1-motive M = [L — G, we have a canonical short exact sequence

0—G— M— L[1] — 0.

Then by [10, lemme 1], in order to show M is noetherian, it is enough to that both
G and L[1] are noetherian. Note that any subobject of L[1] has to be of the form
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L'[1], where L’ is a subsheaf of L, then the noetherianity of L[1] follows from the
noetherianity of L which is obvious.

Now we are left to show the noetherianity of G. Again by [10, lemme 1], we can
assume that the semi-abelian variety G doesn’t contain any proper subgroup variety.

Any morphism to G can be represented by an effective map of the form

|

such that u(F') goes to zero under g. The morphism (0, g) is a monomorphism if

0
F—
u
G 2

and only if the map wu is injective. If this is the case, then (0, g) factors through the

quasi-isomorphism [F % G'] — G'/F, as in the following diagram

(0,9)

G

[F 3 G

R

q.i. g

G'/F.
Then we can go further, any monomorphism to G can be represented by a morphism
of the form G’ & G with ¢ a morphism of k-group schemes such that ker(g) is a
finite étale subgroup of GG'. Since GG doesn’t contain any proper subgroup variety, g
has to be an isogeny of semi-abelian varieties. It follows that any chain of subobjects

of G can be represented by the diagram:

Go—2 Gy~ Gy 2+
G

with g;’s isogenies to GG. Note that we can choose ;s to be effective maps which
again have to be isogenies. Since ker(go) (note here it is the kernel of the morphism

of group schemes) is finite, so the chain is stationary. O

Remark 11.40. In [27], the author shows that the category G of commutative group
schemes over an algebraically closed field is artinian, then embeds G as a full sub-
category into its pro-category Pro(G) in which there are enough projectives. Then
the groups Ext§(A, B) can be computed as Extfjm(g)(A, B) for any A,B € G by

28, them. 3.5]. Here we have shown M is not artinian, but noetherian. We can
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embed M into its Ind-category (instead of Pro-category) in which there are enough
injectives, and the groups Ext’ (M, M’) can be computed as Ext%nd( (M, M) for
any M, M’ € M by the dual version of [28, them. 3.5].



CHAPTER III

Higher Yoneda extensions in the abelian category of
1l-motives with torsion

Throughout this chapter, M = [L — G| and M’ = [L' — G’] will be two 1-motives
over the base filed k, I' = Gal(k/k) will be the absolute Galois group of k, and p will
be the characteristic of k.

In 1.4, we have discussed the groups Hom (M, M’) and Ext), (M, M) for simple
M and M’ in characteristic zero case. In this chapter we are going to investigate
systematically the Yoneda extension groups in the abelian category M. The main

result we want to prove in this chapter is the following theorem.

Theorem III.1. The homological dimension of the abelian category M 1is
d(M) = cd(T") + 1,

where cd(I") denotes the cohomological dimension of the absolute Galois group T of
the base field k.

We are going to prove III.1 in the first section for the characteristic zero case with
the help of 1.25 and 1.26. In the second section, we are going to give the analogues
of 1.25 and 1.26 in the positive characteristic case, and then finish the proof of ITI.1.

The last two sections are devoted to some applications of III.1.
3.1 Proof of theorem III.1 in characteristic zero case

Throughout this section, the characteristic of £ will be zero. Recall that the
homological dimension of an abelian category C is defined to be the non-negative
integer n such that the functor Exté(—, —) is zero for i > n; if such n doesn’t exist,

then the homological dimension is defined to be infinity, see [27, 1.3-2].

48
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Lemma II1.2. Let G, G’ be two semi-abelian varieties, then the group Ext.ZM(G, G')

15 torsion.

Proof. Take any element in Extf\A(G, G'), then it can be expressed as the product of
some F € Extl (G,[Y — J]) and £ € Extl ([Y — J],G) for a suitable 1-motive
Y — J].

From the canonical short exact sequence 0 — J < [Y — J] LN Y[1] — 0, we have

an exact sequence:
— Extl (G, J) 25 Exth (G, [Y — J]) 2 Extl (G, Y[1]) — .

By 1.26, the group Ext},(G, Y[1]) is torsion, so there exists a positive integer r such
that B,(r-F) = r-B,(F) = 0. It follows that r-F = . (F’) for some F' € Ext}(G, J).

Then we have
r-(E-F)=E& (a(F)) ~ (a*(&) - F =&-F,

where £ 1= o*(€) € Ext)(J,G"). By 1.25 (c), both & and F’ can be represented by

the short exact sequences in the category of commutative group schemes as follows:

g0 G’ J1 J 0 O J Jo G 0 F.

NowletuswriteGandJasO—>T—>G—>A—>OandO—>T1i>Ji>B—>O
respectively. By Poincaré’s complete reducibility theorem, the group Ext,li(A, B) is
torsion, the torsioness of the group Ext (7T, 7)) follows from the torsioness of the
extension group of their character groups, and Ext,lc(T , B) is torsion by Chevalley’s
theorem on the structure of algebraic groups over k, hence we have both Ext,lc(G , B)
and Ext, (T, J) are torsion (note that these results still hold if we replace G' and J
by any semi-abelian varieties). Applying the functor Homy (G, —) to the short exact

sequence 0 — T) &5 J A B 0, we get an exact sequence
Extl(G,T1) &5 ExtL(G, J) 2 ExtL(G, B).

Hence there exists a positive integer s such that A\.(s-F') = s- A\ (F') = 0, and it
follows that s - ' = p, (F") for some F” € Ext,.(G,T}). So we have

(sr)- (E-F)~s-(E-F) =& pF") ~p’ (&) - F'=&"- F,
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where £ = p*(E'). So we get:

g 0——G J! Ty 0 0—T ! G——0 F.

Now Ext, (7}, G") is torsion by the same reason as Ext,(7,.J) is torsion, hence
E" - F" represents a torsion element, so does € - F. Therefore, the group Ext},(G,G")

is torsion. OJ

Let T' = Gal(k/k) be the absolute Galois group of the base field k, and let C;, = C{.
be the abelian category of finitely generated abelian groups on which I acts discretely
as in 2.6.

We have seen in 1.24 (a) and 1.25 (a) that Home, (L, L") = Homa(L[1], L'[1]) and
Exte (L, L') = Exty,(L[1], L'[1]). In fact, this is true for any Ext’ by the following

lemma.

Lemma I11.3. For each positive integer i, there is a canonical morphism
U, : Ext{, (L, L") — Ext'y(L[1], L'[1])
sending the Yoneda i-extension
0O—-L —L —--—L; —>L—0
in C;, to the Yoneda i-extension
0—= L[] = L[] = - = LJ1] = L[1] = 0
in M with each L; regarded as a group scheme over k. And they are all isomorphisms.

Proof. The i =1 case is just 1.25 (a), so we only need to prove the lemma for ¢ > 1.
Surjectivity:

We prove the surjectivity of ¥, by using induction on i. Suppose the morphism
U, is surjective. Given any element of Ext’f' (L[1], L'[1]), we can express it as the
product of some € € Exth,([Y — J], L'[1]) and F € Ext’(L[1],[Y — J]) for some
Y — J] € M, such that we can find a short exact sequence of complexes as a

representative of £ as follows:

& 0




o1

Let & be the short exact sequence 0 — L'[1] — Yi[1] — Y[1] — 0 coming from &
by forgetting the semiabelian part, and let a be the canonical map [Y — J| — Y[1].
Then it’s easy to see that & = o*(£’), whence

E-F=a"(&) - Fr & (a,(F)).

By induction, ., (F) € Ext’,(L[1],Y[1]) can be represented by some element F’ of
Ext¢ (L,Y). And &' comes from an element of Extf, (Y, L'), hence £ - F ~ &'+ F
can be represented by some element of Extg:l(L, L.
Injectivity:

For any element in the kernel of W;,;, we express it as the product & - F of
&£ € Extg, (Y, L') and F € Extg (L,Y) for some Y € Cj,. We pick representatives for
& and F as follows:

E 0 L Ly Y 0 O Y L, L 0 F.

By [23, chap. VII lemma 4.1.], there exists a morphism v : [X — J| — Y[1] in M,
and F' € Ext/y,(L,[X — J]), such that F = ~,(F’) and v*(£) = 0. We can assume
7 to be an effective map, after replacing [X — J] by another 1-motive [X — j] from
which there is an quasi-isomorphism s to [X — J], since s being an isomorphism in
M induces an isomorphism between Ext’, (L, [X — J]) and Ext’, (L, [ X — J]).

It is easy to see that & := v*(&) is represented by the extension

E: 00— L —Lixy X— X ——0
0 0 J=———J——0.

And & = 0 means the map [L; xy X — J| — [X — J] admits a section s. After
replacing [X — J] by some suitable (i.e. “big” enough) 1-motive which admits a
quasi-isomorphism to [X — J], we can assume the section s is an effective map, i.e.
the sequence £ : 0 — L' — Li xy X — X — 0 splits. Let 8 be the canonical
map [X — J] — X][1], then we have & = 5*(£”). Hence we get £ - F ~ &' - F' =
pE") - F ~ & - B (F) = &" - F", where F” denotes the extension [.(F') €
Ext’\,(L[1], X[1]). We have already proven the surjectivity of the morphisms ¥,’s,
so F” can be represented by an i-extension F" in the category C,. Hence we have
E-Fr~& - F"and & F" € Extg (L, L'). The fact that £ splits implies that
€ -F]=1[&"-F"] =0 in C, hence ®,; is injective. O
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Corollary II1.4. The groups Ext’(L[1], L'[1]) are all torsion fori > 1.

Proof. By I11.3, it is enough to prove that the groups Exték (L, L) are torsion for all

1 > 1. We are going to use the spectral sequence 11.32
i _ qri j i+j
(3.1) Ey’ = H'(k,Ext! (L, L)) = Exte (L, L.

Since the homological dimension of the category of abelian groups is equal to the
global dimension of the ring Z which is one, we have that Ey’ = H(k, Ext}(L, L)) =
0 for all 7 > 1. So we must have the morphisms d%/ = 0 for 7 > 2, and the following
holds:

, - ”
E%} = Ey' = kerds

i0 _ i0 _ 1,0 . i—2,1
EY’ = Ey = Ey° /imd,

for i > 0. In particular EL0 = E,” and E%° = Ey° = E°. We also have the following

exact sequences:
0= EY - E — E-Y =0
0— BV = gt & EFY0 B 40
for all ¢ > 1. Combining all the above, we get exact sequences
0— E - F — B! &, BG5BT 0
for all 4 > 1. Taking into account Fy’/ = H(k, Ext,(L, L')) and B = Exté:j(l), L,
we can rewrite the above exact sequences as

3.2) 0— H'(k,Homy(L,L"))/imdy ** — Ext’ (L, L") — H ' (k,ExtL(L, L)) —
2 Cp. Z

for all ¢ > 1. In particular for ¢ = 1, the morphism dg_Z’l = 0, this is just the exact
sequence of lower degree associated to our spectral sequence. According to I1.6, the
group H'(k,Homgz(L,L’)) is torsion, so is the first term of the above short exact
sqeuence. And Ext} (L, L')) is torsion, hence so is the third term of the above exact

sequence. It follows that the middle term is also torsion. O
Lemma II1.5. There is a canonical epimorphism

®; : lim Extg, (.G, L') — Extly, (G, L'[1]),

for each i > 0. In particular, the groups Ext'y,(G, L'[1]) are all torsion for i > 0.
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Proof. For the case i = 1, see 1.26. The case ¢ = 0 follows from 1.24 (d).

In general, the reason for the existence of the morphism ®; is the same reason as
for the existence of ®; given in 1.26, though the notation there is just ® instead of @,
here. We need to show that ®; is surjective for . We prove this by using induction on
1. Suppose that for any semiabelian variety G and discrete sheaf L which is defined
by a finitely generated abelian group, the morphism ®; is surjective. Any element of
Ext'{ (G, L'[1]) can be represented by the product € - F for some 1-motive [Y — J],
and £ € Exty,([Y — J],L'[1]), F € Ext\,(G,[Y — J]). Replacing [Y — J] by
another 1-motive which is quasi-isomorphic to [Y — J|, we can assume that & is

represented by the short exact sequence of complexes

0 L X Y 0

R

00— 0——n J=—=J ——0.

Let & be the short exact sequence 0 — L' — X — Y — 0 coming from & by
forgetting the semi-abelian part. Let o be the canonical map [Y — J] — Y[1], then
we have & = a*(&’). It follows that

E-F=a'() Fn& alF)=€ F,

where F' denotes «,(F). By induction, the class represented by F’ comes from the
group Exté]c (oG, Y) for some positive integer n, thus we can choose its representative
F' e Exték (o,G,Y). Hence the class represented by £ - F can also be represented
by & - F”, which represents an element in the group Exté?(nG, L’). This shows the
morphism &, is surjective, hence ®;’s are all surjective for all ¢ > 0.

Since the groups Extf;k (oG, L") are torsion for all # > 0 and n € N, so are the
groups Ext’, (G, L'[1]) for all i > 0. O

Lemma I11.6. The group Exty,(L[1],G") is torsion.

Proof. Take any element in Ext},(L[1], G"), and we can write it as the product £ - F
for £ € Extly,([X — J],G') and F € Exty(L[1],[X — J]) for some l-motive
(X — J].

Applying the functor Hom(L[1], —) to the canonical short exact sequence

0= J3 X = J 5 x[1] -0,
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we get a long exact sequence
Exty(L[1], J) — Ext),(L[1],[X — J]) = Ext),(L[1], X[1]).

By I11.4, Ext},(L[1], X[1]) is a torsion group, hence there exists a positive integer n
such that 5,(nF) = nB.(F) = 0. Then nF lies in the image of a, i.e. nF = . (F')
for some F' € Extj,(L[1], J). Now we get

nE-F=E nF)=E a,(F)~a" (&) - F =& F,

where £ denotes a*(€). By .25 (¢), £ can be represented by a short exact sequence

of semiabelian varieties

0—-G —=J —J—=N0.

By 1.25 (b), F’ can be represented by a short exact sequence of complexes as follows:

1]

Consider the short exact sequence 0 — T} = J — B — 0 associated to J, where T}

00— —0

J

0—— —0.

—

is the torus part of J and B is the maximal abelian quotient of J. Then we have a

long exact sequence

u

Exth(B,G') L Exth(J, G') S Exth(Ty, G').

The group Ext, (T}, G’) being torsion implies that there exists a positive integer n’
such that n'u*(£') = 0. Hence n'E’ equals v*(E") for some £” € Ext,(B,G"). So we

have

Wil (€ - F) mnl (€ F) = 0" (€") - '~ €" - vu(F) = " F,

where F” denotes v, (F’). So we can express £” and £” into the following forms

g0 T i T 0 O%T{Hi i*ﬂ) F"
0 G’ Jo B 0 0——B=—=B—0—0

for some semiabelian variety J5.
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Consider the short exact sequence 0 — T5 A G A — 0 associated to G , where
T, is the torus part of G’ and A is the maximal abelian quotient of G’. Then we

have a long exact sequence
ExtL(B,Ty) 25 ExtL(B, G') £ Extl(B, A).

The group Ext;(B, A) being torsion implies that there exists a positive integer n”
such that n” (") = 0. Hence n”E” lies in the image of \,, i.e. n"E" = A\, (") for
some " € Ext,(B,Ty). So we get

n//(g// . f//) — )\*(5///> . f// — )\*(g/// . .,F//>.

It follows that to prove & - F is torsion, it’s enough to prove £” - F” is torsion. And

we can express £” and F” as follows:

E" 0 0 0 0 0 0——

1] |

0 T J3 B 0 00—

for some semiabelian variety J3.

Applying the functor Homy_gpe(L, —) to the short exact sequence
0—=1, — J3— B —0,
we get a long exact sequence
0 — Homy_sppf (L, To) — Homy_ope(L, J5) — Homy_ g (L, B) 2 Excth_g (L, To).
Claim. The group Ext,_g (L, Ty) is torsion.

Proof of the Claim: Decompose the group L as 0 — Ly — L — Ly — 0, where Ly is

the torsion part of L and Ly is the quotient. From this, we get a long exact sequence
Exty_gpr(Les, To) — Exty_go¢(L, To) — Exty_goe(Le, To).

The third term is obviously torsion, so we can assume L to be torsion-free. Take a
finite Galois extension K /k such that L (resp. T5) becomes isomorphic to Z" (resp.
G?,) for some r € N (resp. s € N) over K. By the local-global spectral sequence for
Exts

Ey? = H} ¢(Speck, Ext! (L, Ty)) = Ext % ¢(L, T),
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we have an exact sequence
0 — Hy ¢(Speck, Hom(L, Ty)) — Exty_g (L, To) — Hy (Speck, Ext' (L, T3)).
The fppf-sheaf Ext!(L, Ty)) is zero by [5, lem. 1.1.6.], so we have
Hflppf(Speck:, Hom(L,Ty)) = Ext,lc_fppf(L, T5).
Let X (T3) denotes the groups of characters of the torus Ty, then we have

Hom(L, Ty)) = Hom(L, Hom(X (Ts), G,,))
= HOWL(L Kz X(T2)7 Gm}v

whence the fppf-sheaf Hom(L, T5)) is represented by the torus Hom(L®z X (1), Gp,).
Fppf-torsors under smooth group schemes are the same as the étale-torsors, it follows

that

Hflppf(speck, Hom(L,T)) = H},(Speck, Hom(L,T5))
= H'(k,Hom(L,Ty)).

The Hochschild-Serre spectral sequence gives an exact sequence
0 — H'(Gal(K /), Hom(L, T3)) — H" (k, Hom(L, T5)) — H' (K, Hom(L, o)) S*/¥).

The torus Hom(L,Ty) becomes isomorphic to G’ and H'(K,G,,) equals zero by
Hilbert’s 90, then the torsioness of the group Exty_g, ¢(L,T2) = H'(k, Hom(L, T3))
follows from the torsiness of the group H'(Gal(K/k), Hom(L,Ty)) which is a stan-

dard result of group cohomology of finite groups. O]

Now we go back to the proof of II1.6. By 1.25 (b), we have Ext),(L[1], B) =
Homy (L, B), and we assume that F” corresponds to f € Homy(L, B). By the claim,
there exists m € N such that §(mf) = md(f) = 0. Then the homomorphism m f
can be lifted to f € Homy(L, J3).

Let ¢ be the canonical embedding B — [L LN B], and " be the following short

exact sequence of complexes

" 0——0——L=—xL——0

K

0 15 J3 B 0.
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Then we have that £&” = *(€"). Since mf corresponds to mF”, so we get that
m(E" - F') =&V (mF") = (&™) - (mF") ~ ™ - (1u(mF")).
Note that ¢ is part of the extension
mF":0— B4 [L25 Bl L[] — o,

whence the extension ¢, (mF"”) is trivial. It follows that &” - F” is torsion, so is

E-F. O
Theorem I11.7. The groups Ext’ (M, M') are all torsion fori > 2.

Proof. Combining I11.2, I11.4, II1.5 and I11.6, it’s easy to see that the group Ext? (M, M’)
is torsion by diagram chasing. Hence the groups Ext’ (M, M’) are torsion for all
1> 2. 0

Remark 1I1.8. The result in theorem III.7 is not true for ¢ = 1 in general. For
example, if taking the base field k to be the field of rational numbers QQ, M to be an
elliptic curve E with a non-torsion rational point, M’ to be the multiplicative group
G, then we have Extl, (E, G,,) = Ext}(E, G,) = E(Q) = E(Q) is not a torsion

group, where E is the elliptic curve dual to F, which is canonical isomorphic to F.

Proof of IIl.1 in characteristic zero case: Let d be the cohomological dimen-
sion of the absolute Galois group of the base field k. To prove the theorem, we are
going to prove the following first.

(1) Extyi(L[1], L'[1]) = 0 for i > 2;

(1)Ext% ' (L[1], L'[1]) = 0 provided that L is torsion free and L’ is torsion;

(2) There exists a finite Galois module M which is killed by some prime number [,

such that
Ext (Z/1Z[1], M[1]) = Ext*(Z,/1Z, M)
= H(k,Exty,((Z/1Z, M))
7 0;

(3) Bxti*(G, L'1]) = 0;
(4) Exty (L[1],G") = 0 for i > 2;
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(5) Ext%*(G,G") = 0.

For (1) and (2), we are going to use the spectral sequence 3.1 again. Recall that

the exact sequence 3.2,
0 — H™(k, Homgz(L, L)) /imdy "~ *! — Ext@"(L, L') — H*"'(k, Exty(L, L)) — .

Since the Galois module Exty, (L, L) is torsion and the cohomological dimension of the
absolute Galois group of k is d, both H%"*(k, Homz(L, L)) and H*"~!(k, Exty,(L, L))
are zero for i > 2, hence the group Ext4}"(L[1], L'[1]) = Extg:i(L, L') is zero. This
proves (1).

To prove (1'), just notice that both H4*'(k, Homg(L, L") and H?(k, Exty (L, L")))
are zero in this case, hence we have Ext%}'(L[1], L'[1]) = 0 by considering the exact
sequence above.

For (2), since the cohomological dimension of the absolute Galois group of k is d,
by I1.10 (¢) we can find a simple Galois module M killed by some prime number [
(which is finte) such that H¢(k, M) # 0. The short exact sequence

02257 Z)IZ—0
of discrete G-modules gives a short exact sequence
0 — Hom(Z, M) — Ext'(Z/IZ, M) — Ext'(Z, M) — 0

of discrete G-modules. Here to avoid confusion, we remind that the notation Ext’(—, —)
denotes a discrete G-module, for its definition see the end of I11.28. Since Hom(Z, M)
is canonically isomorphic to M as discrete G-modules, and Ext'(Z, M) is zero, so we
have Ext'(Z/IZ, M) = M. By proposition 11.26 (1) and the spectral sequence 11.32,

we have exact sequence

—H™ " (k,Hom(Z/1Z, M)) — Extg" (Z/I1Z, M) — H*(k,Ext'(Z/IZ, M))
—H2(k, Hom(Z /17, M)) — .

The group Hom(Z/I1Z, M) being torsion implies

H (k, Hom(Z /17, M)) = H***(k,Hom(Z/I1Z, M)) = 0,
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hence we have
Extg™(Z/1Z, M) = H*(k, Ext"(Z/IZ, M)) = H*(k, M) # 0.
Applying the functor Hom(—, L'[1]) to the short exact sequence
0—-G5G— ,G[1] =0
in M, we get a long exact sequence
— Ext4?(,G[1], L'[1]) — Ext4*(G, L'[1]) & Ext4*(G, L'[1]) — Ext%t3(.G[1], L'[1]).

We know from (1) that both Ext4:?(,G[1], L'[1]) and Ext%;*(,G[1], L'[1]) are zero,
hence the multiplication-by-n map is an isomorphism on Extjl\jQ(G, L'[1]). Let n vary
in N, then we know the group Ext4*(G, L'[1]) is actually a Q-vector space. But we
already know that Extjl\j’[Q(G, L'[1]) is a torsion group by II1.7, which cannot be a
nontrivial Q-vector space, so it has to be the zero group. This proves (3).

For the proof to (4), it suffices to prove it for the cases L being torsion and being
torsion free separately. If L is torsion, i.e. there exists a positive integer m such that

m - L = 0. Applying the functor Hom(L[1], —) to the short exact sequence

m

0-G =G — ,G[]—=0
in M, we get a long exact sequence
— Ext@ (L[1],G") & Extii (L[1], G") — Extt (L[1], »G'[1]) — .

The fact m - L = 0 implies that the multiplication-by-m map on Ext4{*(L[1],G") is
just the zero map. And by (1), we have that Ext4(*(L[1], ,G'[1]) = 0 for i > 2.
Hence the group Ext4}'(L[1],G") is zero for i > 2. Now we come to the torsion free

case. In this case, similarly as above, we have the long exact sequence
Ext® (L[], ,G'[1]) — Ext(L[1], G") = Extii(L[1],G") — Ext4(L[1], ,G'[1])

for each positive integer n. Both Ext4{" '(L[1], ,G'[1]) and Ext%i(L[1], ,G'[1]) are
zero for i > 2 by (1) and (1), hence the multiplication-by-n map on Ext4(*(L[1], G")
must be an isomorphism. It follows that Ext%{*(L[1], G’) is actually a Q-vector space.

Since it is also a torsion group, it is forced to be the trivial group. This proves (4).
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Applying the functor Hom(—, G’) to the short exact sequence
0-G5G— ,G[1] =0
in M, we get a long exact sequence
Ext4?(,G[1],G") — Exty*(G, G & Ext (G, G") — Exti*(,G[1],&).

By (4), both the leftmost side and the rightmost side are zero, hence the multiplication-
by-n map is an isomorphism for all positive integers n. Then we know Extﬁ%G ,G")
is a Q-vector space and also a torsion abelian group, hence it has to be zero. So (5)

is proven.

At last, combining (1), (3), (4) and (5), it’s a standard conclusion of diagram
chasing that the group Ext}{?(M, M’) is zero. Hence, the homological dimension of
the category M is at most d+ 1. And (2) tells us that the homological dimension of
M is at least d + 1, so it is d + 1 indeed. ]

3.2 Proof of theorem III.1 in positive characteristic case

Throughout this section, we assume the characteristic of k is positive and denote
it by p.

First let’s describe homomorphisms in the category M. Recall that the category
M is defined to be the category *M;[1/p], i.e. the localisation of * M with respect to
the multiplicative system {M LN} |M € *tM;,i > 0}. Note that this multiplicative
system is both right and left, hence it admits calculus of both right and left fractions.
Given any two 1-motives M, M’ € M, any homomorphism between M and M’ can be

represented either by the diagram (corresponding to right multiplicative structure)

(3.3) M
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in MST or by the diagram (corresponding to left multiplicative structure)

(3.4) M

-

M M’

N4

M

in tMST. And the diagram 3.3 can be also rewritten as

(3.5) M

;\M M’
NS

since the multiplication-by-p’ map commutes with any map.

Now we turn to the analogues of 1.25 and 1.26 in positive characteristic case.

Proposition II1.9. Notations as in 1.25, we have the followings canonical isomor-
phisms:

(a) Extg (L, L) @ Z[1/p] — Exth(L[1], L'[1]);

(b) Homy (L, G') ® Z[1/p] — Extl(L[1],&);

(c) Exti(G,G') @ Z[1/p] — Extl (G, ).

Here the morphism in (a) is given by sending [E] ® p' € Exték(L, L'Y®Z[1/p] to the
extension class represented by p'E, and p'E can be taken as either the pushout of £
along the multiplication map by p' on L' in the category M, or the pullback of &
along the multiplication map by p' on L in the same category (note that p* is also a
morphism in M for negative i according to 3.3 and 3.4). The morphisms in (b) and

(c) are similar to the morphism in (a).

Proof. The injectivity in (a), (b) and(c) is just an immediate consequence of the
following. Any short exact sequence 0 - A — B — C' — 0 in the left side become
zero in the right side means that it admits an section in M. By 3.3, this amouts to

giving a commutative diagram of the form
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Note that the map u can be chosen as an effective map in all the three cases. And
such a diagram means exactly that the extension becomes zero after tensoring with
7.

Now we turn to the proof of the surjectivity in (a), (b) and (c). Recall in 1.20,
any short exact sequence of 1-motives can be represented up to isomorphism by a
short exact sequence of complexes in which each term is an effective 1-motive.

By the same argument as in the proof of (a) of 1.25, given any element © in

Exty,(L[1], L'[1]), it can be represented up to isomorphism by an short exact sequence
E: 0L =Y —L—0

in Cj, with L/[1] (resp. L[1]) isomorphic to L'[1] (resp. L[1]) in M. By the diagram
3.4, the isomorphism from L/[1] to L'[1] can be expressed as

2

pla: L1 S L[1) & L'[1]

for some nonnegative integer i. By the diagram 3.3, the isomorphism from L[1] to

L[1] can be expressed as
By L[] & L) S Ly

for some nonnegative integer j. Note that both o and [ are forced to be isomorphisms

in M. So we get the following diagram:

L/

L/

Then © can also be represented by a.*(€) € Extg, (L, L') up to isomorphism, and
it actually lies in Extg (L, L') ® p~~7. This shows the surjectivity in (a).
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By the same argument as in the proof of (b) of 1.25, any element © of Ext},(L[1], G")
can be represented up to isomorphism by a short exact sequence of complexes

E:0——0—L—-L—-0

|

0— G —G ——0——0.

<;

with L[1] (resp. G’) isomorphic to L[1] (resp. G') in M. To have such a short exact
sequence amounts to have the homomorphism f. By 3.4 and 3.3, the isomorphisms
from G’ to G’ and from L[1] to L[1] can be expressed as
pa: G S G il
and
Bp~ L] & L1 S L[]
respectively, for some i and j nonnegative integers, a € Homy(G',G’) and § €

Homy (L, L). Then © can also be represented by the short exact sequence

af(€): 0——0——L=—=L——0
| o] ]
0— G —=G ——0——0.

up to isomorphisms in M. Hence © corresponds to aof 3 ® p~*~7, and this shows the
surjectivity of (b).
The surjectivity follows the same strategy as in the proof of the surjectivity in (a)

and (b), with help of the proof of (c) in 1.25. O

Proposition II1.10. Let notations be as in 1.26. Then we have a canonical isomor-
phism
© : lim Exte, (,G, L') © Z[1/p] — Extjy, (G, L'[1]),

hence Extl (G, L'[1]) is a torsion group.

Proof. The injectivity is obvious, so we are left to show the surjectivity. Given an
element © in Ext},(G, L'[1]), it can be represented up to isomorphism by a short

exact sequence of complexes

0
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with L/[1] (resp. [F — G]) isomorphic to L/[1] (resp. G) in M. By 3.4, the
isomorphism from L/[1] to L'[1] can be expressed as p~‘ov : L' = L & I for some

nonnegative integer i, and o € Homk(i’ ,L"). By 3.3, the isomorphism from G to

[F — G] can be expressed as 877p~ : G & G A [ — G] for some nonnegative

integer j, and 3 the canonical quasi-isomorphism from [F — G] to G. Since the
multiplication-by-n isogenies are cofinal, we can assume [F — G] to be [,G — G].

So we get the following commutative diagram:

G
[
G
[s
0 L[] X - G —[,G = G]—0
L'[1]
L'[1]

We denote the extension 0 — L' — X — ,G — 0 by &, then © can also
be represented by a,.& € Exték (oG, L") up to isomorphisms. It follows O lies in
Exték (G, L") @ p?~*. This shows the surjectivity of ®. O

Lemma II11.11. Notations as in I11.3, then for each positive integer i, there is a
canonical isomorphism V; : Exty (L, L') @ Z[1/p] — Ext!y(L[1], L'[1]), sending [£] ®

p' to the extension class [p'E], with € an i-extension
0L —=L—--—L—>L—0

in Cy. Note for negative integer i, p'E makes sense as before, since p' is a homomor-

phism in M.

Proof. The i = 1 case is just I111.9 (a). So we are left to prove it for the case i > 1.
For the surjectivity, we only need to make a small modification to the proof of the

surjectivity in I11.3. The upper left term of £ is not necessary L' anymore, but some

L’ which is isomorphic to L’ in M. Hence by II1.9 (a), £ comes from an element

of Exty (Y, L') ® Z[1/p]. At the same time, by induction F’ can be represented by
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an element of Ext{, (L,Y) ® Z[1/p]. Hence the extension class represented by € - F
comes from an element of Ext¢ (L, L') @ Z[1/p).

And the proof for injectivity is also a slight modification to the proof of the
injectivity in II1.3. The homomorphism « in II1.3 should be changed to

X = J] & [X = J) & [X =TS Y[

by 3.3, with s an quasi-isomorphism and ¢ some nonnegative integer. Then the
extension class represented by (ap~s™1)*(€) = (s71)*(p~*a*E) being zero in M
implies that the class represented by & := a*€ is zero in M. The extension £ can

be expressed as a short exact sequence of complexes

& - 0— L — L xy X—X——0
0 0 J—nJ——0.

And the extension £ being trivial implies that the extension £ admits a section on

the right side, and such a section must be of the form

X = J] & (X = J] &2 S (L xy X = J]

for some nonnegative integer j, and some quasi-isomorphism to [)~( — j] We can
replace [f( — j] by “?” | i.e. making this quasi-isomorphism to be identity. Then

we have that X[1] & X[1] = Ly xy X[1] is an section to the extension

& 0— L'[1] = Ly xy X[1] = X[1] - 0
in M. Tt follows that p’ kills the extension 0 — L' — L1 Xy X — X — 0 in Cj.
Then the injectivity follows as in the proof of II1.3. O]
Corollary II1.12. The groups Ext'y,(L[1], L'[1]) are all torsion fori > 0.
Proof. This is an consequence of I11.4 and III.11. O

Lemma II1.13. Both the group Ext},(G,G") and the group Ext3,(L[1],G") are tor-

S10M.

Proof. These follow from the proof of II1.2 and III1.6 with the help of II1.9 and
I11.10. O
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Lemma I11.14. There is a canonical epimorphism
' : lim Extg, (,G, L') ® Z[1/p] — Ext)y (G, L'[1]),

for each i > 0. In particular, the groups Ext' (G, L'[1]) are all torsion fori > 0.

Proof. This can be proven by in exactly the same strategy as in II1.5 with the help
of IT11.9 (a) and IIL.10. O

Now we are ready to prove the positive characteristic version of III.7 and the

positive characteristic case of our main theorem III.1.
Theorem II1.15. The groups Ext'y(M, M') are all torsion for i > 2.
Proof. The proof is the same as in II1.7. O

Proof of theorem III.1 in positive characteristic case: This follows from the

proof 3.1 with the help of I11.15. O]
3.3 Torsioness of Yoneda extension groups

By II1.6 and III.15, the group Ext},(M, M’) is torsion, hence so are the groups
Ext'y,(M, M") for i > 1.

The group of homomorphisms between two lattices is not necessarily torsion, for
example if both of them have constant torsion-free part. The group of homomor-
phisms between two abelian varieties is a finitely generated free abelian group unless
it’s zero. The group of homomorphism between tori G,, and G,, is isomorphic to Z.
Hence by 1.24, the group Hom (M, M') could be far from being torsion.

Now we are going to discuss the torsioness of the group Ext),(M, M’). We first
study its torsioness for both M and M’ being concentrated only in one degree. By
1.26 and I11.10, we know that Ext) (G, L'[1]) is a torsion group. By .25 (a), IIL.9
(a) and II1.4, we know the group Ext},(L[1], L'[1]) is torsion. We need to investigate

the two cases left.

Proposition I11.16. Let T (resp. T') and A (resp. A’) be the torus and abelian
variety corresponding to G (resp. G') given by Chevalley decomposition as algebraic
groups over k. Then the following hold.

(1) The groups Exty(T,T"), Ext,(A, A") and Ext, (T, A") are torsion.



67

(2) Let A be the dual abelian variety of A, and K be a finite Galois field extension of k
such that T" becomes isomorphic to Gl over K for some positive integer r. Then the
group Extj(A, T") is isomorphic to H°(Gal(K/k), M), where the Gal(K /k)-module
M is the abelian group A(K)T with action not only on the group A(K) but also on

the components induced from the structure of the torus T".

Proof.
(1) By the spectral sequence 11.29, we have the assocaited exact sequence of lower

degree
0 — H'(k,Homy(T;, T})) — Exty (T, T") — H°(k, Ext;(T;, T})).

The first term being a Galois cohomology group is obviously torsion. The third term
is zero, since any torus over k is isomorphic to a direct sum of a finite number of
copies of GG, and the group Ext,%(@m, Gp) = Exték (Z,7.) equals zero, where the Z
inside the bracket stands for the character group of (3,,. Hence the group Exty (T, T")
is torsion.

The group Exty (A, A") being torsion is a simple conclusion of the Poincaré com-
plete reducibility theorem of abelian varieties. More explicitly, any extension of A
by A’ is isogenous to the product A x A’

Given any extension 0 — A" — J — T — 0, consider the decomposition of J

given by Chavelley theorem as shown in the column of the diagram:

0

0.
Then the morphism vs has to be an isogeny, otherwise there will be an nontrivial
abelian subvariety of A’ which lies in the torus 7 which is impossible. Then it is

an easy exercise involving the universal property of pushout to conclude that the
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extension (vs).(.J) splits. It follows that n - J also splits for n = deg(vu). Hence the
group Exty (T, A’) is torsion.
(2) By the spectral sequence 11.29, we have the associated exact sequence of lower

degree

0 — H'(k,Homy(A;, T})) — Exty (A, T') — H°(k, Ext;(A;, T})) — H*(k, Homy(A4;, T})).
Since there is no nontrivial morphism from a complete variety to an affine variety, the
Galois module Homy(Ag, T}) is zero. So we get Exty (A, T") = HO(k, Exty(Az, T})).

By [32, Chap. VII, 16], the Galois module Ext,lf(A,;,T,—;) is isomorphic to A(]_C)T

as an abelian group. Since T} = G7,, we also have that H°(k, Ext;(Ag,T})) =
H°(Gal(K /k), M) where M := H°(K,Extg(Az, Ty)) is isomorphic to A(K)" as an
abelian group. O]

Y

The above proposition tells us that the non-torsion elements of Ext) (G, G’) =
Ext, (G, G") (or Exty(G,G") ® Z[1/p] in positive characteristic case) can only come
from Ext;.(A, T"), which is essentially related to the rational points of the dual abelian

variety of A. So we have the following theorem.

Theorem I11.17. Notation as in II1.16, then the group Ext),(G,G") is torsion if
the group H°(Gal(K/k), M) is torsion, where the Galois module M is isomorphic to
A(K)" as an abelian group.

Proof. This is an easy corollary of the proposition III.16. O

Let Lo be the torsion part of L and Ly = L/ L. It is obvious that the group

Ext(Lior[1], G") 22 Homy,(Lior, G') is torsion. We have an exact sequence
0 — Homy (L, G') — Homy (L, G") — Homy (Lo, G'),

hence to understand the torsioness of the group Exth(L[1],G") = Hom,(L,G"), it
suffices to study the torsioness of the group Homyg (L, G').

Let K’ be a finite Galois extension of the base field k such that (L) g is isomor-
phic to Z" with r € N. Then we have

Homy, (L, G') = H(Gal(K'/k), Homg: (Z", G%r))
= H°(Gal(K'/k), Homg:(Z, G7:))")
=~ HY(Gal(K'/k),G'(K')").
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Here the Gal(K'/k)-module structure on G'(K’)" is induced from Ly and G', i.e. for
o€ Gal(K'/k), (P,---,P) € G'(K')", the action is given by

o (P, P)= (07" Prye o7 P)plo),

where p : Gal(K’/k) — GL,(Z) is the group homomorphism corresponding to the
Gal(K'/k)-module structure of L. So we get the following theorem.

Theorem I11.18. The group Ext),(L[1], G") is torsion if the group H°(Gal(K'/k), G'(K')")
is torsion. In particular, if Ly is constant and the group G'(k) is torsion, then

Ext),(L[1], G") is torsion.

We can assume K D K'. If not, we can always enlarge the field K up to a finite

extension. Now combining all of the above, we have the following theorem.

Theorem I11.19. If both H°(Gal(K/k), M) (as in III.16) and H°(Gal(K /k),G'(K)")
(as in II1.18) are torsion, then the group Ext), (M, M') is torsion.

Proof. This is just an easy conclusion of diagram chasing. O

Remark 111.20. We can see from the discussion that the torsioness of the first Yoneda
extension group is closely related to the arithmetic structure of the group varieties of
A and @'. Tt could be nontorsion, for example if letting k = Q, M = ZN], M' = FE
for some elliptic curve E over Q such that E(Q) is not a torsion group, then the
group Ext) (M, M') 2 E(Q) is not torsion. Another example to this is M = E and
M = G,,.

3.4 Over special fields

In this section, we will make further study on the Yoneda extension groups for
finite fields and number fields.

First let’s consider the finite fields case. Finite fields are simple in two aspects.
Firstly, the varieties defined over finite fields have only finitely many rational points.
According to II1.20, this give us torsioness property for the bifunctor Ext}w(—, —).
Secondly, the cohomological dimension of the absolute Galois group of a finite field

1s one.
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Theorem III.21. Let k be F,, the finite field with ¢ = p” elements, where p is some
prime number. Then we have that the homological dimension of the category M is 2,

and the groups Exté\,l(M, M) are all torsion for any two 1-motives M, M’ and i > 0.

Proof. The absolute Galois group is isomorphic to the profinite group 7 with a
topological generator the Frobenius automorphism of k. According to [33, Chap.
I, 3.2], the cohomological dimension of Z is one, hence by III.1 the homological
dimension of the abelian category M is just 2. Since our base field is finite, both the
varieties A and G’ as in I11.19, have only finitely many K-rational points. It follows
that Ext),(M, M’) is torsion by II1.19. And we know that Ext},(M, M) is torsion
by III.15. O

In fact, we can go further than I11.21 for Yoneda 1-extension. In [20], Milne proved
that the group Ext, (A, A’) is finite for abelian varieties A, A" over finite field k. We
are going to mimic his strategy to prove that the group Ext}\/t(M , M") is finite for
any two l-motives over a finite field. The key point is the the duality pairing in |20,
lem. 2, lem. 3]. And the key ingredient is the finiteness of the groups Ext} (G,,, A’)
and lim | Ext¢, (,G,Z) for abelian variety A and semiabelian variety G.

We are going to use some of Milne’s notations in [20]. To avoid confusion, let’s first
list those notations. Let k be a finite field of characteristic p, and [ be a prime number
(1 is not necessarily different from p), write Exty(Z1, Z3) (vesp. Exty (21, Z3)) for the
group of equivalence classes of r-fold Yoneda extensions of Z; by Z; in the category
of algebraic group schemes over k (resp. of finite group schemes over k killed by [").
If G is a semiabelian variety over k, we write A(I*°) the [-divisible group lim v G of
A, and T;G the pro-l-group lglv ["G, which is essentially the Tate module of A when
[ is not equal to p. Also, if Z; or Zs is an ind-algebraic (resp. pro-algebraic) group
schemes, then Ext; (71, Z3) denotes the group formed in the category of ind-algebraic
(resp. pro-algebraic) group schemes over k. Given any abelian group Z, we use the

following notations:
nZ =ker(Z % 7), Z(l) = lim 1 Z, N7 :=lim 1. Z.
Finally, if G and H are [-divisible groups over k, we write

Ext, (T)G,H) := hﬂ Exty, ,(Gy, H,).
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Note here Exty (T;G, H) is really just a notation, since there is no suitable category
in which one formulates the extensions group of a pro-algebraic group scheme by a
ind-algebraic group scheme. Also note that r could be zero in the above notations,
and we mean Hom by Ext’.

Now we begin with the following theorem.

Theorem I11.22. Let k be as in II1.21, and A be an abelian variety over k. Then
the group
Exty, (G, A) ® Z[1/p]

15 dual to the group
Exty (A, Gm) © Z[1/p] = A(k) ® Z[1/p],
where A is the dual abelian variety of A. In particular Ext,(G,,, A) is a finite group.

Proof. We already know that the group Ext.(G,,, A) is torsion by II11.16 (1), so we
have that
Eixty(Gim, A) © Z[1/p] = [ J Exti(Gom, A)(0),
!

where [ varies over all prime numbers except p. First we prove that the group
Exty (G, A)(1) is finite. The torsion [-group Exty(G,,, A)(I) can be written as T @
(Qu/7Z;)t, where (Q;/Z;)! is the I-divisible subgroup of Ext,(G,,, A)(I) (note that t is
not necessary a finite number). Applying the functor Homy(—, A) to the short exact

sequence 0 — um — G, — G,, — 0 gives us another short exact sequence
0 — Homy(G,,, A) @ Z/1"Z — Homy(pyn, A) = mExti(G,,, A) — 0.
From the fact that Homy(G,,, A) = 0, we get
wExty (G, A) = Homy, (g, A) = Homyg (pe, 0 A)

is finite for each positive integer v, hence the group 7' is finite. We also have the

expression

(3.6) Exty (G, A) (1) = ling Homy (v, 1vA) = Homy (Zy(1), A(I)).

Then the group Ext;,(G,,, A)(1) is finite if and only if its I-divisible subgroup is zero.
Applying the functor Homg(—, ;v A) to the short exact sequence

0— Zi(1) 5 Zy(1) = o — 0
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gives us Homy(Z;(1), v A) = Homy (v, v A). It follows that
T Excty (G, A) = lim 10 Exty (G, A)
= @Homk(ulu, wA)
= I'&HHomk(Zl(l), wA)

= Homy(Z(1),T;(A))
=0.

This shows that Exty(G,,, A)(l) is finite.
Applying the functor Homy(7;A, —) to the short exact sequence

0— Zi(1) 5 Zy(1) = o — 0,
we get the following short exact sequence
0 = Extp (A, Zi(1)) ® Z/I'"Z — Exty(TiA, ) = wExt(T1A, Zy(1)) — 0.
Taking inverse limit gives an exact sequence

(3.7) 00— Exty(T1A, Zy(1)) — @Exti(ﬂA, ) — TiExt: (T, A, Zy(1)) — 0.

The non-degenerate pairing in [20, lemma 3.] gives a non-degenerate pairing

lim Excty (T A, puv) x Homy(Zy(1), A1) — Qi/Z.

By 3.6, the finiteness of the group Exty(G,,, A)(I) implies that Homyg(Z;(1), A(1°°))
is finite. Then the non-degeneracy of the above pairing implies that the group
lim Exty(TiA, ) is finite. From the short exact sequence 3.7, it follows that
TiExt; (T A, Zy(1)) is zero and

Exty, (DA, Zi(1)) = lim Exty (LA, ju»)

is dual to
Exty (G, A)(1) = Homy(Z(1), A(I>)).
Also note that for [ # char(k), we have

Exty(TiA, Zy(1)) = Extg,r(TiA, Zy(1)),



73

and

Ext}, (A, Zi(1)) = Exty (A, Gn) © Zy = A(k) © Z,

the later isomorphism comes from the Weil-Barsotti formula, see [27, chap. III, sec.
18]. Hence we can conclude that Exti(G,,, A)(I) is dual to the group A(k) ® Z; for
[ # char(k). Let [ varies over all prime numbers which are different from p = char(k),
we get that the group Extt(G,,, A)®Z[1/p] is dual to the group A(k)®Z[1/p], which
is obviously a finite group. Since we already know Ext,(G,,, A)(I) is finite for all
prime number [, in particular for p, then the finiteness of the group Ext,(G,,, A)

follows. O

Theorem II1.23. Let k be as in II1.21, and G be a semiabelian variety over k. Then
the group
limg Ext, (.G, 2) @ Z[1/3)

18 dual to the group
Homy,(Z, G) ® Z[1/p] = G(k) @ Z[1/p],
where p denotes the characteristic of k as usual. In particular
lim Bxte, (G, Z) @ Z[1/p]

s a finite group.

Proof. Let T' denote the torsion group lim Exte (oG, Z) @ Z[1/p], then we have
T = UT(l) with T(l) = lim Extg, (#G,Z) and | varying over all prime number
except p. In order to have a duality between T and G(k), it suffices to give a duality
between T'(I) and G(k)(l) = G(k) ® Z; for each prime number [ # p.

Applying the functor Home, (;+G, —) to the short exact sequence

0225725 72/1'7 0

gives

EXték (l” G, Z) = HOI’HCk (lv G, Z/le) = Homk(lu G, Z/ZUZ)

Taking the direct limit, we get that

(38) T(l) = hﬂ Homk(lvG, Z/ZUZ) = Homk(TlG’, Ql/Zl)



74

Similar as in I11.22, we have a non-degenerate pairing

(3.9) @Ext}c(zl, Q) x Homy(T1G, Q7)) — Qi/Z.

Applying the functor Home, (—, »G) to the exact sequence
05725725 72/1"7 0

gives an exact sequence

(3.10) 0 — Home, (Z, vG) — Exte, (Z/1"Z, vG) — Exte, (Z, nG) — 0.

Applying the functor Homg(—, ;»G) to the exact sequence
02 —7Z —Z/I’Z —0

gives an exact sequence

(3.11) 0 — Homy(Z;, »G) — Exty(Z/I°Z, nG) — Exty(Zy, »G) — 0.

Since we have
Homck (Z, lvG) = HOIIlk(Zl, Z'UG)

and
EXték (ZJI°Z, G = Exty(Z/I°Z, G,

the exact sequences 3.10 and 3.11 give that
Exte (Z, 0G) = Exty(Zy, 0G).
Applying the functor Homy_g,¢(Z, —) to the short exact sequence
0— pG—G a0

gives an exact sequence
(3.12)
Homy_ ot (Z, G) —+ Homy_gopi(Z, G) — Exctl_g 1(Z, 1nG) — Extl_g +(Z, G).

We have
Ethlcffppf(Za G) = Hflppf(speCk7 G)
& Hélt(Speck:, G)
>~ 'k, G)
= 0.



(0]

Here the second isomorphim comes from the fact that the fppf-torsors over a smooth
group scheme are the same as the étale-torsors over that group scheme, and the
triviality of H'(k, G) is given by Lang’s theorem (see [31, them. 20.3]). We also have
that

Homy(Z,G) = G(k)
and

Ext,i_fppf(z, wG) =2 Extg (Z, nG),

then the exact sequence 3.12 implies that
Exty(Zy, »G) = Ext} (Z, pG) = Exty_¢(Z, vG) = G(k) @ Z/1"Z.
Taking inverse limit, we get

(3.13) @Exték (Zy, nG) =2 G(k) R 7.

Combining 3.8 and 3.13, the required duality follows from the non-degenerate pairing

3.9. [l

Theorem 111.24. Let k, M, M’ be as in II1.21, then the group Ext),(M,M’) is
finite.

Proof. By diagram chasing, it’s enough to check that the groups Ext},(L[1], L'[1]),
Ext),(L[1], G"), Ext},(G, L'[1]) and Ext},(G,G’) are all finite.
Before going to the proof of the finiteness of the four groups, we first make a

claim.

Claim. Let M be a Galois module over the field k, and k’/k be a finite Galois
extension. Suppose that H°(k’, M) is finite generated and H'(k’, M) is finite, then
we claim H'(k, M) is finite.

Consider the exact sequence of lower degree terms of Hochschild-Serre spectral

sequence
0 — H'(Gal(K'/k), MO0y — H'(k, M) — H'(k', M)S*/5),

The finiteness of the first term is a classical result of group cohomology of finite

groups, then the finiteness of the middle term follows. This shows the claim.
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By the spectral sequence 11.32, we get an exact sequence
0 — H'(k,Hom(L, L)) — Ext, (L, L") — H°(k,Ext'(L, L")).

The term on the right side is obviously finite. The finiteness of the term on the
left side is a consequence of the claim. Hence the middle term is finite. Then the
finiteness of Ext} (L[1], L'[1]) follows from IIL.9 (a).

By I11.9 (b), to show that Ext} (L[1],G") is finite, it suffices to show Homy (L, G")
is finite. This is an easy consequence of the finiteness of the group of rational points
of a group scheme defined over a finite field.

By I11.10, to show Ext}, (G, L'[1]) is finite, it suffices to show that lim | Exty (.G, L')®
Z[1/p] is finite. Let L{,, be the torsion subgroup of L' and Li be L'/L{ . Then we

have an exact sequence
— lim Exty (G, Lio,)®Z[1/p] — lim Ext; (,G, L)®Z[1/p] — lim Ext (,G, L, )OZ[1/p).

The term on the left hand side equals H'(k, Hom(yG, Li,,)) ® Z[1/p] for some

tor

/
tor

positive integer N with N - L = 0 by the argument in 1.26, hence it is finite. So

we can assume L' is torsion-free. Consider the exact sequence

0 — H'(k,Homy(,G, L)) — Ext;(,G, L") — H°(k,Ext}(,G, L))
— H?*(k, Homy(,G, L')).

Then Homg(,G, L)) = 0 implies that Ext,(,G, L) = H°(k,Ext;(,G,L")). Take
a finite extension k'/k such that L), = Z" for some integer . We have that
Ext;(,G, L)) = Ext}, (,G, L") * /%) and

lim Eixt} (.G, ') © Z[1/p) = lim Exth (,G, L)%/ & 2[1 )
— (lim Extl (oG, L') @ Z[1/p)) S10/4).
By II1.23, the group lim Exty, (oG, L')®Z[1/p) is finite, hence so is lim Ext,(,G, L').
By II1.9 (c), in order to show that Ext},(G, G’) is finite, it is enough to show that
Ext, (G, Q') is finite. Moreover, it is enough to show that the groups Ext, (T, T"),

Ext, (T, A"), Ext, (A, T") and Ext, (A, A’) are all finite. The finiteness of Exty (T, T")

follows from the corresponding result for their character groups. The finiteness of
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Ext, (A, T") is a consequence of the Weil-Barsotti formula with the help of the claim.
The finiteness of Exty.(A, A’) is given in [20, theorem 3]. The finiteness of Exty (7T, A’)
follows from II1.22 with the help of the claim. O]

Before going to the number field case, let’s first look at the p-adic field case. Let
k be a p-adic field, i.e. a finite field extension of Q,. By [33, Chap. II, Prop. 15],
the absolute Galois group Gal(k/k) has cohomological dimension 2 (actually even
the strict cohomological dimension is 2, but we don’t need it here). Hence by III.1,
the homological dimension of the abelian category of 1-motives over k is 3. Now we
turn to the case of k£ being a number field. Number fields are almost as good as
p-adic fields. The absolute Galois group of £ has [-cohomological dimension 2 for all
prime number [ # 2, but might have infinite 2-cohomological dimension depending
on whether it is totally imaginary or not. Hence the cohomological dimension of
Gal(k/k) might be infinite. So we cannot use theorem II1.1 directly to determine
the homological dimension of the category M. However, if we formally make the
multiplication by 2 map invertible, i.e. kill the 2-torsion parts of the Hom groups,
we can have that the homological dimension of the abelian category M ®z Z[1/2] is
equal to 3, by using a modified version of III.1. Here the category M ®z Z[1/2] has
the same objects as M, but with

Hom g, zj1/2)(—, —) = Homp(—, —) ®z Z[1/2].

Theorem II1.25. Let k be a number field.
(a) If k is totally imaginary, then the category M has cohomological dimension 3.
(b) The category M ®z Z[1/2] over k has homological dimension 3.

Proof. In case (a), the cohomological dimension of the absolute Galois group of k is
3, so (a) is just an easy conclusion of theorem III.1.

In case (b), since the multiplication by 2 map is an isomorphism in the abelian
category M ®z Z[1/2], the groups Ext’ (M, M’) have no 2-torsion part for any
two 1-motives M, M’ and i > 0. At the same time, we still have that the groups
Exté\,@ZZ[l/Q](M, M) are all torsion for ¢ > 2 by the same proof as for III.15, but
without 2-torsion parts. Recall that the definition of p-cohomological dimension of a
profinite group G in [33, Chap. I, 3.1], the p-cohomological dimension of G equals n

if for every discrete torsion G-module A and every ¢ > n, the p-primary component
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of H1(G, A) is null. Then it’s easy to see that the proof of theorem III.1 also works
here. O



CHAPTER IV

Extensions of 1-motives and their [-adic realisations

Throughout this chapter, M = [L — G| and M’ = [L’ — G’] will be two 1-
motives over the base field k£, and k will be either a number field or a finite field with
I' = Gal(k/k) its absolute Galois group. We write R the abelian category of finitely
generated Z;-module with continuous Galois action, with [ some prime number which
is different from the characteristic of the base field.

In section 1.3, we have defined the [-adic realisations of 1-motives, which lie in
the category R. Realisations are linearizations of geometric objects, they are easy to
study and carry important information from the geometry. For example, there is a

well-known theorem by Faltings (resp. by Tate in the finite field case), for reference

see [8] (resp. [36]).

Theorem IV.1 (Faltings’ Theorem). Let A, B be two abelian varieties defined over
a field which is finitely generated over its prime subfield, let | be a prime number
which is different from the characteristic of the base field. Then the canonical homo-
morphism

HOIIlk<A, B) (24 Zl — HOIHR(T}A, T}B)
s an isomorphism.

We would like to know if the above result holds for 1-motives. Furthermore, what
happens if we replace the Hom functor by the Ext’ for some positive integer i? In

this chapter, we are going to investigate the homomorphisms
Ty : Ext’y (M, M") ® Z; — Extl (T;M, T;M')

for i = 0,1. The main results are the following two theorems.

79
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Theorem IV.2. The canonical homomorphism
T, : Hompa (M, M) ® Z; — Homp (T;M, T;M")

s an isomorphism.

Theorem IV.3. The canonical homomorphism
Ty : Exth (M, M") ® Z; — Extp(T;M, T;M')
18 1njective.

We will first deal with four special cases in 4.1, 4.2, 4.3, and 4.4 respectively, then
give the full proof of IV.2 and IV.3 in 4.5.

The last section is devoted to the case over finite fields, and the main result is
theorem IV.23, in which we give an explicit description of the maps 7} for all Yoneda
extension groups (actually just i = 0, 1,2, since the Extéw’s and the Ext%’s vanish

for i > 2).
4.1 The case M = L[1] and M’ = L'[1]

We begin with a lemma describing the structure of finite étale commutative group

schemes over k.

Lemma IV .4. Suppose X is a finite étale commutative group scheme over k. Then
X can be written as X = ©X(q), where q varies over all the prime numbers and

X(q) is a g-group scheme. In particular, X (q) is the q-subgroup scheme of X.

Proof. Since X is just a finite abelian group equipped with a Galois action, we
can write X as @X(q) as an abelian group, with X (q) the g-subgroup of X. Any
automorphism of X as an abelian group must send X (¢) onto X(g), hence X can be

written as X (¢q) as a finite group scheme. O

Lemma IV.5. Let X,Y be two finitely generated locally constant sheaves for the
étale topology over k, and X 1is finite. Then we have

Ext}(X,Y) = @) Ext(X(q),Y)
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and

Exty, (Y, X) = @D Exty (Y, X(q)),

hence we also have

Exti (X,Y) ® Z; = Exti(X(1),Y)

and
Exti (Y, X) ® Z; = Ext}. (Y, X (1))
for all i > 0.
Proof. Since the bifunctor Ext}(—, —) commutes with direct sum, this is an imme-
diate consequence of lemma IV .4. O

Proposition IV.6. The canonical map
Homk(L, L/) X Zl — HOHIR(L & Zl; L X ZZ)

s an isomorphism in the following cases:
(a)Both L and L' are torsion,
b)

(b)L is torsion-free, and L' is torsion;
(c)Both L and L' are torsion-free;
(

d)L' is torsion-free.

Proof. For (a), consider the following commutative diagram

Homy (L, L) ® Z; ——— Homy (L(1), L' (1))

J |

Homg (L ® Zy, L' ® Z;) — Homg (L(1), L'(1)).

We have

Home (L(1), L'(1)) = (Homg, (L(1), L'())"
= (Homg(L(1), L'(1)))"
= Homy(L(1), L'(1)),

then (a) follows from the above commutative diagram.
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For (b), let N be a positive integer such that N - L = 0, then L being torsion-free
gives a short exact sequence 0 — L ARG L/NL — 0. So we get the following

commutative diagram with exact rows:

0 —— Homy(L/NL, L") ® Z; ——— Homy(L, L") ® Z; ——— 0

| |

0—— Homg(L/NL ® Z;, L' ® Z;) — Homg (L ® Z;, L' ® Z;) —— 0.

Then the vertical map on the left hand side is an isomorphism by (a), hence so is
the vertical map on the right hand side.
For (c), firstly it’s easy to see that

Homy, (L, L') ® Z; = Homy (L, L')" @ 7,

and

Homg(L ® 7y, L' ® Z;) = (Homy, (L ® Z;, L' ® Z))".

From the homological long exact sequence associated to the short exact sequence
0-ME5 M- M®ZJI"Z — 0, where M denotes the Galois module Homy(L, L),

we get a short exact sequence
0= M QZ/N"Z — (M QZ/"Z) — n(H (k,M)) =0

for each positive integer n. Since M ®Z/I"Z is finite for each positive integer n, the
inverse system { MY ®Z /1" Z} ,en satisfies the Mittag-Leffler condition automatically.

Hence passing to the projective limit, we get the following short exact sequence
0= M ®Z — (MeZ) — lim m(HY(k, M)) — 0.
!

Let k'/k be a finite Galois extension such that L and L’ become constant over k',

consider the inflation-restriction exact sequence
0 — HY(Gal(K' /k), M) — H'(k, M) — H(K', M)S1*'/k)

Since M is a finitely generated free constant Galois module over &, we have H(k’, M)
is zero. It follows that H'(k, M) = H'(Gal(k'/k), M) is a finite group. Hence we
have lim, g« (H'(k, M)) = 0, and Homy(L, L') ® Z; = (Homgz(L,L') & Z)". So it is
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left to show (Homgz(L, L') @ Z;)' = (Homg, (L ®Z;, L' @ Z;))". Let {xy, -,z } and

{y1,* -+ ,yn} be bases of L and L’ as abelian groups respectively. Then we have

Homgz, (L ® Z;, L' ® Z;) = @Zlfija
4,J

with 1 <7 <mand 1 < j <n, and f;; is the homomorphism such that f;;(x;) =
diry; (here ¢;; denotes the Kronecker symbol). So we have a canonical isomorphism
Homy(L, L')®Z; — Homy, (L®Z,;, L' ®Z;) of Z;-modules. Both sides of the map have
natural Galois module structure inherited from L and L', by taking the I'-invariants
we get the isomorphism Homy (L, L) ® Z; — Homg (L ® Z;, L' ® 7).

For (d), consider the short exact sequence 0 — Lo — L — Ly — 0, where Ly,
is the torsion subgroup of L and Ly = L/Ly,. It’s obvious that both Homy,( Ly, L)
and Homg (Lo ® Zy, L' ® Z;) are zero. Then (d) is an easy consequence of (¢) with

the help of the following commutative diagram

Homy (L, L') @ Zy“—— Homg (L, L) ® Z; ——— Homy (Lo, L') ® 7,

y J |

HOIHR(Ltf X Zl, L X Zl)c—> HOIIlR(L X Zl, L X Zl) E— HomR(Ltor X Zl, L & Zl)
[

Proposition IV.7. Consider the canonical map
Exty (L, L) ® Z; — Exty (L @ Zy, L' @ 7).

We have the following.

(a) If both L and L' are torsion, then the above map is an isomorphism.

(b) If L is torsion free, and L' is torsion, then the above map is an isomorphism.
(¢) If both L and L' are torsion-free, then the above map is injective.
(

d) If L is torsion, and L’ is torsion-free, then the above map is an isomorphism.

Proof. By lemma IV.5, we have
Exty (L, L") ® Z; = Exty (L(1), L' (1))

and

Exty (L ® Zy, I ® 7)) = Exty (L(1), L'(1)).



84

Then (a) follows from the fact Exty (L(1), L'(l)) = Exty (L(1), L'(1)).

For (b), we can assume L' to be an [-group scheme without loss of generality. Let
r be some positive integer such that (" - L/ = 0. The fact L being torsion-free gives
a short exact sequence 0 — L LN N ZJI"Z — 0, so we get a commutative

diagram with exact rows

Homy (L, L') ® Z/I"Z———— BExt.(L ® Z/I"Z, L') —— Ext,.(L, L")

| J |

Homg (L ® Zy, I') @ Z)I"Z—— Exty (L ® Zy, L') —— Exty (L ® Z;, L').

By proposition IV.6 (b), the vertical map on the left hand side is an isomorphism,
and by (a) the vertical map in the middle is an isomorphism, so is the vertical one
on the right hand side.

Now we come to the proof of (c). Since L is torsion-free, any extension of L by L'
in the category of group schemes is just the abstract group L x L' with a Gal(k/k)-
action which gives the corresponding Galois action of L and L’ via restriction and
quotient respectively. And this kind of action is classified by the Galois cohomology
group H'(k,Homy(L, L')). We also have Exty (L ® Z;, L' ® Z;) is isomorphic to the

continuous cochain cohomology

1
Hcts

(F, HOHI’R(L X Zl: L/ X Zl)) = Hl

cts

(F, Homk(L, L/) & Zl)

by proposition I11.21. The functor 7; sends a cocycle (f,)ser € H'(k, Homg(L, L))
(T, Homy(L, L) ® Z;). Let k'/k be a

finite Galois extension of fields such that both L and L’ are constant over k', then

to the continuous cocycle (f, ® 1)ger € HL,
we get a commutative diagram with two rows coming from the inflation-restriction

exact sequence

0—— HY (H,S)®Z —— H'(k,S)®Z ——— H'(K, ) @

J | |

0—— HY(H,S®Z) —— HL (T, S ® 7)) — HL (Gal(k/K'), S ® Z;)¥,

cts cts

where S denotes the Galois module Hompg (L, L') = Homy(L, L') and H denotes the
Galois group Gal(k’/k). We need to show the vertical map in the middle is injective.
Since we have H'(k’, S) = Homgz(Gal(k/k'),S) = 0, it’s enough to show the vertical

map on the left side is injective by the five lemma. It’s a standard result that
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H'(H,S) is finite, and H'(H, S®Z,;) can be shown to be finite by the similar reason
in the context of Z;-modules instead of Z-modules. Take some positive integer r such
that [” kills both H'(H, S)®Z; and H'(H, S®Z,), consider the short exact sequence

08558~ S®Z/I"Z — 0, then we get a commutative diagram with exact rows:

SGalK /) @ 7y —— (S @ Z/I"Z) K /%) @ 7, —— H' (Gal(k' k), S) @ Zy —— 0

J J |

(S ® Z,)CAW /D s (S © 7, ® Z/I'T)SF R 5 (L (Gal(K'/k), S ® Z;) — 0.

cts

The vertical map on the left hand side is an isomorphism by proposition IV.6 (c),
the vertical map in the middle is obviously an isomorphism, hence so is the vertical
map on the right hand side by the five lemma. This finish the proof of (c).

For (d), without loss of generality we can assume that {" - L = 0 for some positive

integer n. L' being torsion-free gives rise to a short exact sequence
0L 5 10— IeZ/IMT — 0.
So we get a commutative diagram with exact rows

Homy (L, L') ® Zy —— Homy (L, L' ® Z/I"7) ® Z; — BExt, (L, L') ® Z,

J | |

Homg (L ® Zy, L' ® 7)) — Homg (L ® Zy, I ® 7, /I"Z) —» ExtL (L ® Z;, L' ® 7).

The vertical map on the left hand side (resp. in the middle) is an isomorphism by
proposition IV.6 (d) (resp. (a)), hence the vertical map on the right hand side is an

isomorphism too. O
Theorem IV.8. Theorem IV.2 and theorem IV.3 are true for M = L[1], M’ = L'[1].

Proof. First we remark that there is no need to distinguish the positive characteristic

case from characteristic zero case, since we have
Hom(L[1], L'[1]) ® Z; = Homy(L, L") ® Z[1/p] ® Z; = Homy (L, L") ® Z,
and
Extiy,(L[1], L'[1)) ® Z; = Ext, (L, L') ® Z[1/p] ® Z; = Exty (L, L") @ Z,

in the positive characteristic case.
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subgroup of L (resp. L'), and Ly (resp. Li;) be L/Liy (resp. L'/Li,). The short

tor

We are going to use the five lemma repeatedly. Let Lo, (resp. L} ) be the torsion

exact sequence 0 — Ly, — L — Ly — 0 gives the following commutative diagram

with exact rows:

0 —— Hom(Le[1], L, [1]) ® Zy — Homug(L[1], L', [1]) ® Z

l(l)

0 —— Homg (T; Ly [1], T, L4

tor

2)

(
[1]) ——— Homg (T,L{1], T L, [1])

—— Hompy(Lior[1], Li, [1]) ® Zy — Exth (Lt [1], LL[1]) @ Z

tor tor

l(i’») l(4)

——— Homg (T} Lio:[1], T, L, [1]) —— Bxty (T Li[1], Ti L, [1])

tor

——— Ext),(L[1], L}, [1]) ® Z; —— Exty(Lioe[1], Ll [1]) ® Z

tor tor

J(i’)) J(G)

s Bxth (DL, TiLiy 1)) — Exth (Ti L 1], TiLi [1]).

tor

The homomorphism (1) and (3) are isomorphisms by proposition IV.6, the homo-
morphism (4) and (6) are also isomorphisms by proposition IV.7, hence by the five
lemma (2) is an isomorphism and (5) is monomorphism. The short exact sequence

0— L!

tor — L' — Li; — 0 gives the following commutative diagram with exact rows:

tor

2) J{(7)

0 —— Homg (T;L[1], T, !

tor

(
[1]) —— Home (T,L[1], T L'[1])

—— Hom(L[1], L;[1]) ® Zy — Exty, (L[1], L, [1]) ® Z

tor

l(S) J{(5)

—— Homg (L[], TiLi;[1]) —— Extr (TiL[1], T i, [1])

L Ext (L1, I'[1]) © Z — Extl (L[1], L, [1]) ® Z,

l(!?) l(lO)

——— Exty (T L[], T L'[1])) ——— Exty (T,L[1], Ty L [1]).
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The homomorphism (8) is an isomorphism by proposition IV.6, we already know
that the homomorphism (5) is a monomorphism, and the homomorphism (10) is
a monomorphism given by the five lemma with the help of proposition IV.6 (d),
proposition IV.7 (c¢) and proposition IV.7 (d). It follows that the homomorphism (7)

is an isomorphism and the homomorphism (9) is an monomorphism. ]
4.2 The case M = L[1] and M' =&

Theorem IV.9. Theorem IV.2 is true for M = L[1], M’ = G".

Proof. We have Hom ((L[1],G") = 0 by proposition 1.24 (b), so need to show that
Homg(Z ® Z,, T)G) = 0. Firstly, let’s consider the case where L equals Z. We have
Homg (Z ® Z;, T;G) = (T,G)", and (T;G)" equals zero due to the fact that k is either
a number field or a finite field. The general case can be deduced from this case after

a finite Galois field extension of k such that L becomes constant. O
Lemma IV.10. The canonical map
T; : Exth(Z'[1], G") ® Z; — Extyx(Z], T;G")
15 injective, here r is some positive integer.
Proof. Without loss of generality, we can assume r = 1. We have
Extiy(Z[1],G") ® Z; = G'(k) ® Zi

by proposition 1.25 (b) in characteristic zero case and by proposition II1.9 (b) in
(k, T;G") by the same

reason as in the proof of (c) of proposition IV.7. Now we turn to give an explicit

positive characteristic case. We also have Exty (Z;, T;G") = HL,

description of the map 7; under these two identifications. Given a point P € G'(k),
the Tate module of the 1-motive [Z — G'] corresponding to P is

{(Po, Yn)nen}

Tpi= T2 = Gl = Zpm 1

where P, € G'(k*),y, € Z satistying

"P, =y, P
[Py — P, =2z,P

Yn+1 = Yn + lnzn
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for some z, € Z. And Tp fits into the following short exact sequence
0—-TG —Tp —7Z;—0.

This short exact sequence splits in the category of Z;-modules, and a splitting can
be chosen by a section s : Z; — Tp, (1)nen — (@n, 1)nen, where Q,, € G'(k*) are
chosen such that I"Q,, = P, [Q,+1 = @, for all n € N. Under such a splitting, for
any o € I' and (Y, )nen € Z;, we have

o 3<(yn)nEN) =0 (yan yn)neN
= (yn(a “Qn — Qn>7 0) + (yn)HEN(Qm 1)neN-

It follows that the cocycle corresponding to the extension Tp can be represented by
((0 - Qn — Qn)n)oer- In other words, the map 7; sends a point P € G'(k) to the
1-cocycle ((0- Qn — Qn)n)oer- Write G'(k) as F; @ Fiy @ S, where F (resp. Fy, resp.
S) is the [ subgroup (resp. [-prime subgroup, resp. free subgroup) of G'(k). To
show the map T; is injective, it suffices to show that any point P € F; & S satisfying
T1(P) = 0 has to be zero. If P is not zero, then T;(P) = 0 implies that

((U ’ Qn - Qn)n)UEF = ((U : Rn - Rn)n)oer

for some (R,)nen € TiG'. Hence we get a set of points {Q,, — R,|n € N} satisfying
- (Qn—R,) =Qn— Ry, (Quni1 — Rys1) = Qn — R, and I"(Q,, — R,) = P. Let
[7°°(P) denotes the subgroup of G'(k) generated by {@, — R,|n € N} U {P}, then
[=°°(P) is a non-trivial [-divisible subgroup of G’(k). But the group G'(k) is finitely
generated by Mordell-Weil theorem in the number field case, and it is finite in the
finite field case. We get a contradiction, it follows that P has to be zero. O

Corollary IV.11. Suppose L s torsion-free, then the canonical map
T; : Exth (L[1],G") ® Z; — Exty (L ® Z;, T;G")

18 1njective.

Proof. Firstly, we have

Exth(L[1], G") ® Z; = Homy (L, G") @ Z
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and

Exty (L ® 7y, TiG") = H'(k, Homg, (L @ Z;, T;G"))

Let k' /k be a finite Galois extension such that L becomes constant over k', H be the
Galois group Gal(k'/k), S be the module Homy, (L ® Z;,T)G") € R. Then we have

the following commutative diagram

Homk(L, G/) X Zl Homk/(L, G/)H X Zl

| |

(Gal(k/k), S) —— HL (Gal(k/K"), S)

Res cts

Hl

cts

where the map Res denotes the restriction map for continuous cochain cohomology.
The vertical map on the right hand side is injective by lemma IV.10, hence so is the

vertical map on the left hand side. This finishes the proof. m

Now we come to the main result of this section.
Theorem IV.12. Theorem IV.3 is true for M = L[1], M’ = G'.

Proof. Firstly, we have Ext),(L[1],G") ® Z; = Homy(L,G") ® Z;. Let Ly, be the
torsion subgroup of L, and Ly be the quotient L/Li., so we get a short exact
sequence 0 — Ly, [1] — L[1] — Ly[l] — 0 in M. This exact sequence gives us a

commutative diagram with exact rows

0 Homk(Ltf, G/) X Zl E— Homk(L, G,) &® Zl

(Ul (2{

Homg (Lior ® Zy, TiG') — BExty (Ly @ Zy, T,G') —— Exty, (L ® Z;, T;G")

Homk(Ltor, G/) (%9 Zl

o]

Exty, (Lo @ Zy, T,G").

It’s obvious that Hompg (Lo ® Zy, T)G") equals zero, and the map (1) is injective by
IV.11. Hence to show the injectivity of the map (2), it suffices to show the injectivity
of the map (3). Let r be some positive integer such that rL, = 0, and consider

r

the short exact sequence 0 — G’ — G’ — ,.G'[1] — 0. Then we have the following
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commutative diagram with exact rows

Hom (Lo [1], G') ® Zy — Homy(Leoe[1], +G'[1]) ® Zy — Extl,(Lioe[1], G") @ Zy

J | J

Homg (Lior ® Zy, TiG') —— Homg (Lo ® Zy, G’ @ Zy) — Exty, (Lior @ Zy, TG").

Both Hom (Lo [1], G') and Homg (Lo ® Zy, T;G") are zero, and the vertical map in
the middle is an isomorphism by IV.6 (a), hence so is the map (4). And the map (4)
is nothing else but the map (3). O

4.3 The case M =G and M’ = L'[1]

Theorem IV.13. Theorem IV.2 is true for M = G, M' = L'[1].

Proof. Let L., be the torsion subgroup of L', and Lj; be the quotient L'/L} .. Then

tor tor-

we have the following commutative diagram with exact rows

0 —— Homp, (G, L, [1]) ® Z; —— Homm (G, L'[1]) ® Z; —— Hompm (G, Lig[1]) ® Z,

tor

| | |

0—— HomR(TlG, Léor & Zl) E— HOIHR(EG, L & Zl) E— HOIHR(EG, Lgf & Zl)

Since both Hom (G, Li;[1]) ® Z; and Homg (T;G, Li; ® Z;) are zero, it’s enough to
prove the theorem for the case L’ being torsion. Moreover L' can be assumed to be
an [-group. Let r be a positive integer such that [" kills /. The short exact sequence

0065 G6= .G [1] — 0 gives a commutative diagram with exact rows:

0—— HomM(er[l], L/[l]) ® Zl e HOIIlM(G, L/[l]) ® Zl L) HOHIM(G, L/[l]) 0%y Zl

l(l) l@) J

0 ——— Homg (G, L' ® Z;) —— Homg ()G, L' ® Z;) —— Homg (1,G, L' @ Z;).

The two multiplication-by-I" maps on the right hand side are zero, and (1) is an

isomorphism by proposition IV.6 (a), hence (2) is an isomorphism. O
Theorem IV.14. Theorem 1V.3 is true for M = G, M' = L'[1].

Proof. By proposition 1.26 and proposition II1.10, we have an isomorphism

@ limg Ext) (G, L") = @Ext,ﬁ(nG, L) ® Z; — Extly (G, L'[1]) ® Z.
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Note that here we abuse the notation ®, which should be & ® 1 according to propo-
sitions 1.26 and II1.10. Since the group Ext), (G, L'[1]) ® Z; is torsion, its image
under the map 7; lies in the torsion subgroup of Exty (T;G, L’ ® Z;), which can be
expressed as Exty (T,G, L' ® Z))(l) = lim rExty, (TiG, L' ® Z;). The short exact

sequence 0 — T;G I, TG — +G[1] = 0 in R gives a short exact sequence
0 — Homg (TG, L' ©Z)) @ Z/I'Z — Exth(# G, L' ®Z) — »ExtL (TG, L' ®Z) — 0.

Passing to the direct limit, we get a short exact sequence fitting into the following

commutative diagram with exact rows

[

(1{ JTZ

0—— B ——lim Exty (G, L' ® 7)) — Exty (TG, L' @ Z;)(1) —— 0,

lim Exti (G, L) ——=— Ext}y (G, L'[1]) ® Z ——0

where B denotes the group Homg (T)G, L' ®Z;) @ Q;/Z,;. The group Homg (T,G, L' ®
Z,) ia actually a finite group due to the fact Homg (T;G, Z;) = 0, hence the group B is
zero. So T being injective is equivalent to the map (1) being injective. For the cases
L being torsion and being torsion free, we have Exty (-G, L) & Exty (G, L' ® Z;)
by proposition IV.7 (a) and (d), hence the map (1) is actually an isomorphism in

both cases.

!/

In the general case, let Li .

be the torsion subgroup of L’ and Lj; be the quotient

L'/L;,., then we have a commutative diagram with exact rows

—— Homp (G, Li[1]) ® Zy — Ext), (G, Li[1]) ® Z — Extl (G, L'[1]) ® Z

tor

J (Q)l (3)l

—— Homg (T,G, Ll; ® 7)) — Exti(T,G, L., ® 7)) — Exty (T)G, L' ® Z;)

tor

S Bxtl (G, L) ® Z —— Ext3, (G, L, [1]) ® Z

tor

) J

—— Bxti (T1G, Ly @ 7)) —— Ext (TG, L, @ 7).

tor

Both groups Hom (G, Li;[1]) and Homg (T;G, Li; ® Z;) are zero, and we have proven

both map (2) and map (4) are isomorphism, hence the map (3) is injective. O
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4.4 The case M =G and M' =G’

Let T (resp. T") be the torus part of the semiabelian variety G (resp. G’), and A
(resp A’) be the corresponding abelian quotient. So we get two short exact sequences
of k-group schemes 0 =T -G —+ A —0and 0 -7 — G — A" — 0. In order to
prove theorems IV.2 and IV.3 for the case M = G, M’ = G', we first deal with some

special cases.

Lemma IV.15. Theorem IV.2 is true for the following cases.
(a)G' = A';

b)G=T,G'"=T';

(c)G=AG =T".

Proof. First we have Ext} (G, G") ® Z; = Ext, (G, G") ® Z; by proposition 1.25 (c) in
characteristic zero case and by proposition II1.9 (¢) in positive characteristic case.
The short exact sequence 0 - T — G — A — 0 gives us a commutative diagram

with exact rows

0 —— Homy (A, A’) ® Z; —— Homy (G, A") ® Z; —— Homy (T, A") ® Z,

] | |

0 —— Homg (T}A, T)A’) —— Homg (T)G, T)A’) —— Homg (T, T, T, A").

The group Homyg (7', A") is obviously trivial. By using Cartier duality, we have
Homg (TiGyn, TIA") 2 Homg (T1A, Z ® Z,) = (LA = [, A" =,

where A’ denotes the dual abelian variety of A’ and (—)¥ denotes the dual continuous
Galois module. Hence it’s easy to see that the group Homg (7,7, T;A) is also trivial.
The map (1) is an isomorphism by theorem IV.1, then case (a) follows.

Case (b) actually follows from proposition IV.6 (d) with the help of the fact that
tori are dual to lattices under Cartier duality. More explicitly, this follows from the

following results
Homy, (T, T") = Hom (X (17"), X (T)),

T,T = Homp (X (T) ® Zy, Z,(1)),

and

Homg (T;T, TiT") = Homg (X (T") ® Zy, X (T) @ Z).
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Here X(T') denotes the group of characters of the torus 7.

By using Cartier duality, we have

~

Homg (A, T;Gy,) = (Homg, (A, T,G,,))" = (TLA)" = 0.
Then case (c) follows since we have Homg(A,T") = 0 = Homg (T, A, T,T"). O
Theorem IV.16. Theorem V.3 is true for M = G, M' = G'.

Proof. Consider the short exact sequence 0 — G’ LNy »G"— 0 in M, then we

have the following commutative diagram with exact rows

0 —— Exty, (G, G") ® 2,/ 17— Ext)(G, nG'[1]) ® Zj — 1nExt}, (G, G")

(DJ (2)J J

0 —— Exth (TG, T,G") @ Z;/1"Z) —— Bxtyx (T,G, nG') ——— nExt} (T,G, T,G").

The map (2) is injective by theorem IV.13, so is the map (1) by the five lemma.

Passing to the projective limit, we get an injection

lim Ext)(G,G) @ Z;/1"Z; — @Ext%z(TlG, T,G") ® Z;/1"Z,.
It follows that the canonical morphism Ext),(G,G") ® Z; — Extyp(TiG, T,G") is
injective. O
Theorem IV.17. Theorem IV.2 is true for M = G, M' = G'.

Proof. The short exact sequence 0 — T — G — A — 0 gives a commutative diagram

with exact rows

00— HOIDM(A, T/) & Zl e HOII]M(G, T/) ® Zl E— HOIHM(T, T/) & Zl

J (Dl (2)1

0 —— Homg (T} A, T)T") —— Homg (T,G, T)T") —— Homg (1,1, T,T")

—— Extl (A, T") ® Z) —— Ext )y (G, T") @ 7

o J

——— BExtyL (T1A, T;T') —— Exty (TG, T,T").

Both groups Homa(A,T") and Homg(T;A, T)T") are zero, the map (2) is an iso-
morphism by lemma IV.15 (b), and the map (3) is injective by theorem IV.16,
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hence the map (1) is an isomorphism by the five lemma. The short exact sequence

0—>T — G — A" — 0 gives another commutative diagram with exact rows

0 —— Homu (G, T") ® Zy —— Homy (G, G") ® Z; —— Homp (G, A’) ® Z

(Ul (4)l (5)J

0 —— Homg (T,G, T)T") —— Homy (T,G, T,G') —— Homgz (T,G, T; A")

—— Ext)y (G, T") ® Z —— Ext ), (G, G") @ Z

o |

——— BExty ()G, TiT') —— Ext (,G, T,G").
The map (5) are an isomorphisms by lemma IV.15 (a), the map (6) is injective by

theorem IV.16, hence the map (4) is an isomorphism by the five lemma. O

4.5 Proof of IV.2 and IV.3

After a long preparation, now we come to the final proofs of theorem IV.2 and

theorem IV.3.

Proof of IV.2 and IV.3: The canonical exact sequence 0 — G’ — M’ — L'[1] — 0

in M gives the following commutative diagram with exact rows

0 —— Hom(L[1},G") ® Z; —— Hom(L[1], M") ® Z; — Homa(L[1], L'[1]) ® Z

(UJ (Q)l (3%

0 —— Homg (T, L[1], T,G") —— Homg (T, L[1], ;M) —— Homg (T, L[1], T, L'[1])

—— Bxtly (L[1],G") ® Z —— Ext,(L[1], M") ® Z; — Ext,(L[1], L'[1]) ® Z

(4)J (5)J( (G)J(

——— Bxtyn (T,L[1], ,G") —— Exty (T} L[1], T;M') ——— Exty (T, L[1], T, L'[1]).

The map (1) and the map (3) are isomorphisms by theorem IV.9 and theorem IV.8,
respectively. And the map (4) and the map (6) are injective by theorem IV.12 and
theorem IV.8, respectively. Hence by the five lemma, we have that the map (2) is

an isomorphism, and the map (5) is injective.



95

The short exact sequence 0 — G' — M’ — L'[1] — 0 in M also gives another

commutative diagram with exact rows

04)HOIHM<G,GI) & Zl %HomM(G, M/) & Zl *)HOII]M(G, L/[l]) &® Zl

(7)J/ (B)l (9)J

0 —— Homg (7,G, T)G") —— Homg (T,G, T;)M') —— Homg (T,G, T, L'[1])

—— Extly (G, G") ® Z) —— Ext} (G, M") ® Z, —— Ext (G, L'[1]) ® Z

(10)J{ (11)J (m)l

——— Bxth (T,G, T}G') ——— Exty (T,G, TTM") —— Exty, (T;G, T, L'[1]).

The map (7) and the map (9) are isomorphisms by theorem IV.17 and theorem IV.13
respectively, and the map (10) and the map (12) are injective by theorem IV.16 and
theorem IV.14, hence the map (8) is an isomorphism by the five lemma, and the map
(11) is injective.

Now consider another short exact sequence 0 - G — M — L[1] — 0 in M, we

get the following commutative diagram with exact rows

0 —— Homy,(L[1], M") ® Zy — Hom (M, M") @ Z; — Homy (G, M') ® Z,

(2)J (13{ (8)l

0 —— Homg (T} L[1], T,M") —— Homg (T;M, T,M") —— Homg (T,G, T;M")

—— Exty (L[1], M") ® Z) —— Ext) (M, M") @ Z; —— Ext} (G, M") ® Z,

(5)l (14{ (11)J

——— Bxty (TiL[1], TM') —— BExty (T,M, TiM'") —— BExty (T,G, T,M").

Then the map (13) being an isomorphism and the injectivity of the map (14) are

just easy consequences of the five lemma. m
4.6 The image of 7T} over a finite field

Through out this section, k& will be a finite field.
Theorem IV.3 tells us that the map T; : Ext), (M, M") ® Z; — Exty (T,M, T;M’)
is injective over both finite fields and number fields. In general the arithmetic over

finite fields is much easier than the arithmetic over number fields. So it’s natural
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to ask what else can be read off beyond theorem IV.3 over finite fields. We have
proven that the group Ext), (M, M') is a finite group over finite fields, but the group
Exty (T;M, T;M’) is not necessary a finite group (actually it may not even be a

torsion group). However we may expect the image of T} to be the torsion subgroup

of Exty, (TyM, TM").

Theorem IV.18. The image of the natural map
Ty : Exth (M, M") ® Z; — Extp(T;M, T;M')

is the torsion subgroup Exty (T;M, TiM")o, of Exty (TiM, T,M").

As usual, before going to the proof of theorem IV.18, we first deal with some

special cases.

Lemma IV.19. Suppose M’ is torsion-free, then the canonical map
Ti : Exth (M, M") @ Z; — Exty (TiM, TiM')ior

s an isomorphism.

Proof. Firstly the group Ext), (M, M) is torsion by theorem II1.21, hence the im-
age of T lies in Exty(T}M,TiM")io. The map T; is injective by theorem IV.3,
so it is left to show that 7; has image Ext%z(TlM ,TIM")or.  Given any element
a € BExtyn(T;M, TiM")r, we need to find a preimage of a. Let r be some posi-
tive integer such that [” - o equals zero. Since M’ is torsion-free, we have a canonical
short exact sequence 0 — M’ 5 M’ — L'[1] = 0in M, where L/ is a finite k-group
scheme such that M’/l" is L![1]. Then we have a commutative diagram with exact

TOWS

Hom (M, LL[1]) ® Z ~“— Extl (M, M') @ Z; —— BExt}, (M, M") ® Z,

| | |

Hompg (T;M, T,L!.[1]) —— Extk (1M, T,M") —— Extk (T, M, T,M").

The fact I"a = 0 implies a = v(f) for some f € Homg(T;M,T;L]). The map T;
on the left hand side is an isomorphism by theorem IV.2; so there exists a § €
Homp (M, L.[1]) ® Z; such that T;(0) equals . It follows that we have o = T} (u(9)).

O
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Lemma IV.20. Let X' be a finite étale k-group scheme, then the following two

canonical maps
Ty : Extlhy (M, X'[1]) ® Z; — Extp(TiM, X' @ 7))

and

Ty : Exth (M, X'[1]) ® Z; — Extx(TiM, X' @ 7))
are both isomorphisms.

Proof. Without loss of generality, we can assume [" - X’ = 0, with r some positive
integer. We have the canonical short exact sequence 0 — X[1] - M — My — 0
associated to M, where X is a finite étale k-group scheme satisfying M., = X[1].
Consider the short exact sequence 0 — M;; LN M — L,[1] — 0, where L, is a finite
étale k-group scheme such that M /I" = L,[1], then we get a commutative diagram

with exact rows

—— Hom (Mg, X'[1]) © Zy —— Hom v (M, X'[1]) ® Z; —— Extl (L.[1], X'[1]) ® Z,

J (I)J (2%

— Homg (T, My, T;X'[1]) —— Homg (T, My, T, X'[1]) — Exth (T,L,[1], T, X'[1])

——— Bxth, (Mg, X'[1]) @ Zy —5— Extl (My, X'[1]) ® Z; —— Ext2,(L.[1], X'[1]) ® Z,

(3)l (4)l (5{

—— Exth (T, My, T,X'[1]) —— Ext (T, My, T,X'[1]) —— Ext% (T, L, [1], T, X"[1])

—— Bxt?, (Mg, X'[1]) ® Zy —5— Ext?  (My, X'[1]) ® Z; —— Ext3,(L.[1], X'[1]) ® Z,

J | |

5 Bxt% (T, My, T,X"[1]) —5— Ext? (1) My, T, X'[1]) —— Ext3, (T, L, [1], T,X'[1]).

Since X' is killed by (", all the multiplication-by-I" maps in the diagram are zero.
So the rows break down into short exact sequences. The maps (1) and (2) are
isomorphisms by theorem IV.2 and proposition IV.7 (a), respectively, so is the
map (3) and hence so is the map (4). The groups Ext3,(L,[1], X'[1]) ® Z; and
Ext3, (T;L.[1], T, X'[1]) are zero by theorem III.21 and corollary II.36, respectively,
so we conclude that the groups Ext} (M, X'[1]) ® Z; and Ext (T; My, T, X'[1]) are
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both zero. Then the map (4) being an isomorphism implies that the map (5) is an
isomorphism.
Now we turn to consider the short exact sequence 0 — X|[1] — M — My — 0,

and we get a commutative diagram with exact rows

*>HOH1M(M, X/[l]) & Zl %HomM(X[l],X’[l]) &® Zl %EXt}M(Mtf,X/[l]) ® Zl

l (G)J (3)J

—— Homg (M, T;X"[1]) — Homg (T} X [1], [, X'[1]) — Bxtk (T, My, T,X'[1])

—— Bxth (M, X'[1]) ® Z; — Ext,(X[1], X'[1]) ® Z; — Ext}, (M, X'[1]) @ Z

(7{ (S)l J

——— BExty (M, T, X'[1]) ——— Exty (T1 X [1], TiX'[1]) —— Ext (Ti My, T, X'[1])

—— Ext3, (M, X'[1]) ® Z — Ext},(X[1], X'[1]) ® Z; — Ext}, (M, X'[1]) ® Z

(9{ (10)J J

—— Exty (T,M, T, X'[1]) ——— BExt% (L X([1], T,X'[1]) —— BExt (T) My, T X'[1)).

The maps (6) and (8) are isomorphisms by theorem IV.2 and proposition IV.7 (a),
respectively. We already know the map (3) is an isomorphism, and the groups
Ext}, (M, X'[1]) ® Z; and Extx(TiMy, T, X'[1]) are zero, hence the map (7) is an
isomorphism by the five lemma. Both the group Ext},(Mi, X'[1]) and the group
Extd, (T; My, T;X'[1]) are zero by the same reasons as in the above diagram. Then
the map (9) is an isomorphism if and only if the map (10) is an isomorphism, and

the latter is given by lemma IV.21. ]

Lemma IV.21. Let X, X' be two finite étale group schemes over k, then the canon-
1cal map

Th : Exth (X[1], X'[1]) ® Zy — Extx (X ® Zy, X' @ Z))
18 an isomorphism.

Proof. Without loss of generality, we can assume both X and X' are killed by " for

some positive integer 7.

Claim. Any element in Ext% (X, X’) can be represented by a 2-extension with all

terms finite étale group schemes.
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Indeed, let
0-X Y13, —>X—>0

be a 2-extension in R. Since Y] is finitely generated over Z;, we have ["Y; N X' =0
for some positive integer m big enough. We have the following commutative diagram

with exact rows and column:

"y,

0 X' Y, - Y, X 0

| |

0— X' — Y /1Y —5 Y, /a(i™Y;) — X —— 0.

Then the 2-extension
0= X =Y /"Y1 5 Yy /a(l™Y)) = X =0

is equivalent to the original one and has all terms finite. This shows the claim.
The surjectivity follows from the claim.
Now we prove the injectivity. A similar argument shows that any element of the

group Ext3,(X[1], X'[1]) can be represented by a 2-extension
0—>X/—>Zlﬁ>Zg—)X—)O

with Zy, Z, finite [-groups. This 2-extension is the splicing of the following two

1-extensions:
& O—>X'—>Zlé>im(ﬁ)—>0 0—im(B) > Z, > X >0 F.

If this 2-extension represents the trivial element of Ext% (X, X’), then by [23, chap.
VII, lem. 4.1] the 1-extension F is the pushout of some I-extension F' € Exty (X, Z;)
along the morphism /3. Since any 1-extension of X by Z; in R also lies in the category
of finite étale group schemes, it follows that the original 2-extension also represents

the trivial element of Ext},(X[1], X’[1]). This shows the injectivity. O

After some preparation, we can go to the proof of theorem IV.18, which is just

an easy consequence of the five lemma.
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Proof of IV.18. Let’s consider the short exact sequence
0— X'[1] = M — M — 0.

We get the following commutative diagram with exact rows
(4.1)
—— Homp (M, M") ® Z; —— Homp (M, M};) ® Z; —— Ext) (M, X'[1]) ® Z;

J (Dl (Q)l

—— Homg (T;M, TiM'") ——— Homg (T; M, TyM!;) ——— Exty (T;M, T, X'[1])

—— Bxth (M, M") @ Z — Ext, (M, M};) ® Z; —*— Ext},(M, X'[1]) ® Z,

(3)l (4{ (5{

——— Exty (T,M, TTM") —— BExty, (T} M, TyM};) ——— Ext® (T;M, T,X'[1]).

Since the group Exty (7;M,T;X'[1]) is torsion, the map v restricted to the free part
of Exty (T;M, TyM") has to be injective. It follows that the map v can be expressed

as v = Uy D Vg, With

Vtor - EXt%z(ﬂM>EM/>tor — EXt712<T‘lM7 EMt/f)tor
v Exty (TiM, T,M ) — Exty (TiM, T, Mg,

where Exty, (T;M, T;M")ior (vesp. Exty (TiM, TyM")g,) denotes the torsion (resp. free)
subgroup of Exty, (T;M, Ty;M’), and Exty, (T;M, T;M};)wor (vesp. Exty (T,M, T, M)t
denotes the torsion (resp. free) subgroup of Exty (T;M, TiM/;). We know the map
(4) maps Ext) (M, M;) ® Z; bijectively to Exty (T M, TiM/;)or, hence the group
im(u) goes to the group coker(vto,) under the map (5). The torsionness of the groups
Ext), (M, M’) and Extg(T;M,T;X'[1]) implies that the map (3) and s have their
images lying in Exty (T;M, T;M")or, where s denotes the map

Exty (T,M, T,X'[1]) — Exty (T}M, T M),
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So we get a new commutative diagram with exact rows out of the above diagram

—— Homp (M, M") ® Z; —— Homp (M, M};) ® Z; —— Ext (M, X'[1]) ® Z;

l (1{ (2{
—— Homg (T;M, TiM'") ——— Homg (T; M, TyM!;) ——— Exty (T;M, T, X'[1])
—— Bxth (M, M") ® Z — Ext}, (M, M};) ® Z ———— im(u)

(3)¢ (4)[ (5)[

—— Bxty, ()M, TyM) yor —2 Excty (Ty M, Ty M) o ——— coker(vior ).

The injectivity of the map (5) implies the map (5)’ is injective, the maps (1), (2) and
(4)" are isomorphisms by IV.2, IV.20 and IV.19 respectively, then the map (3)" is an

isomorphism by the five lemma. m

Next, we are going to give description to the map 7} for Ext? groups.

Theorem 1V.22. Suppose k is a finite field, M’ is torsion-free, and g denotes the
rank of the Zy-module Exty, (T;M, T;M"). Then the canonical map

T; : Exti (M, M") ® Z; — Extx(T;M, T;M")

is an epimorphism and has kernel isomorphic to (Q;/Z;)9.

Proof. Notations as in IV.19. Let r be a positive integer such that [" kills the group

Ext),(M, M')®Z;. We enlarge the same commutative diagram with exact rows used
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in the proof of IV.19

—— Homp (M, L.[1])) ® Z — BExtl (M, M") ® Z; —*— Ext} (M, M") ® Z,

| J |

— s Homg (M, T,L.[1]) —— Bxtk (T, M, T,M') —— Extk (T,M, T,M")

—— Bxtl, (M, LL[1]) ® Z — Bxt%, (M, M") ® Z; =~ Ext2 (M, M") ® Z,

J | |

— s Bxth (T,M, T,LL[1]) —— Ext% (T,M, T;M") —~— Ext% (T, M, T,M)

—— BExt3, (M, L'[1]) ® 7 0
—— Extz (M, T,L,[1]) 0.

We have the multiplication-by-{" map in the first row is zero, and by lemma IV.19
we have

Exty, (T}M, TiM') = (Exth (M, M) @ 7)) ® Z].

Then we get two commutative diagrams with exact rows

Extj, (M, M) ® Zj—— Ext (M, L' [1]) ® Z; — v Ext3 (M, M")

(I)J (2{ (3)J

Exty (T,M, TIM') @ 7)1 Exty (T,M, T,L.[1]) — - Exty (T} M, T;M").

and
0 —— Exth, (M, M) @ Z/I" —— BExt3, (M, L'[1]) ® Z —— 0
<4>l (5{
0 —— Ext% (M, T,M") @ Z)I" — BExty (T;M, T;L.[1]) — 0.
Write
Ext} (M, M) ®Z; = (Q/Z)* ® S
and

Ext% (LM, TM') =7 & (Q)7) & T,

where (Q;/Z;)! and Z{ are the [-divisible subgroup and the torsion-free subgroup of
Exty (TM, T;M"), respectively, (Q;/Z;)* is the [-divisible subgroup of Ext?,(M, M')®
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Zy, and S, T are two finite groups. The map (2) is an isomorphism by lemma IV.20,
and the cokernel of the map (1) is isomorphic to Z] ® Z/I" = (Z/1")9, then the snake

lemma gives a short exact sequence
0— (Z/I")9 — pExti, (M, M') = Extyx(TiM, T;M’) — 0.
Taking the direct limit, we get
0— (Q/Z)* — (Q/Z)* & S — (Q/Z)' & T — 0.

Hence we have s =t + g and S = T under the map 7;. We also know the map (5)
is an isomorphism by I11.20, hence so is the map (4). Then we conclude d = 0, and

this finishes the proof. O

Theorem IV.23. Let
0— X'1] =M — M;—0
be the canonical short exact sequence associated to the 1-motive M', with X'[1] the

torsion part and M{; the torsion-free part. Consider the diagram 4.1

—— Homp (M, M") ® Z; —— Hom (M, M};) ® Z —— Ext (M, X'[1]) ® Z;

J (1)% (2)%

— Homg (T;M, T}M') — Homg (T, M, T,M,) — Ext (T, M, T,X'[1))

—— Bxth (M, M") ® Z — Ext, (M, M};) ® Z; —— Ext},(M, X'[1]) ® Z,
3) (4) (5)&
——— Exty (T,M, TTM") ——— Bxty, (T} M, TyM},) —— Ext® (T}M, T, X'[1])

—— Ext} (M, M) @ Z; —— Ext} (M, M};) ® Z 0
(6)J/ (ﬂl
—— Ext% (1M, ;M) —— Ext% (Ti M, T, MY;) 0,

then the canonical map
Ty = (6) : Exti,(M, M) ® Z; — Exty(T,M, T,M")
18 surjective and its kernel fits into the exact sequence

0 — coker(3) — coker(4) — ker(6) — ker(7) — 0.
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Moreover, we have coker(3) = coker(4) = Z] and ker(7) = (Q/Z;)9, with g being the
rank of the Zy-module Exty, (T, M, Ty M;).

Proof. First, we know the maps (1), (2), and (5) are isomorphisms by theorem IV.2
and lemma IV.20, the maps (3) and (4) are injective by theorem IV.18, and the map
(7) is surjective by theorem IV.22. Then the map (6) is surjective by the five lemma.

Cut the above diagram into the following five small diagrams with exact rows

I: — — = 0 II:0 — . — 0
(UJ% (Q)l% l(2-5) (2~5)l (S)E (3~5)l
— — — 0 0 — — — 0
1I17: 0 — — — 0 IV:0 — — — 0
(3.5{ (4)[ (4.5{ (4.5{ (5)% l(5.5)
0 — — — 0 0 — — — 0
V:o — — — 0
(® S)J (@l (ﬂl
0 — — — 0

In these diamgram, we just use the symbol ”-” to indicate objects which can be read
off from the maps, and the maps (n.5) are the maps coming from cutting the original
diagram along the horizontal arrows between map (n) and map (n+1). From diagram
[, we conclude that the map (2.5) is an isomorphism. From diagram II, we conclude
that the map (3.5) is injective, and get coker(3) = coker(3.5). From diagram IV, we
conclude the maps (4.5) and (5.5) are injective and surjective respectively, and get

ker(5.5) = coker(4.5). From diagram III, we get an short exact sequence
0 — coker(3.5) — coker(4) — coker(4.5) — 0.
From diagram V, we get a short exact sequence
0 — ker(5.5) — ker(6) — ker(7) — 0.
To sum up, we get an exact sequence
0 — coker(3) — coker(4) — ker(6) — ker(7) — 0.

We have coker(4) = Zi by the definition of g, hence we get coker(3) = Z7. We also
have ker(7) = (Q;/Z;)¢ by theorem 1V.22. O
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