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ABSTRACT

This thesis deals with 1-motives with torsion and their l-adic realisations. The cat-

egory M of 1-motives with torsion is abelian, and it is Z[1/p]-linear when the base

field is of positive characteristic p. We relate the homological dimension d(M) of the

abelian categoryM of 1-motives with torsion over a perfect field k, to the cohomolog-

ical dimension cd(Γ) of the absolute Galois group Γ of k, and prove d(M) = cd(Γ)+1.

We compare the Hom-group and 1-Ext group between two 1-motives with torsion,

with the corresponding Hom-group and 1-Ext group of their l-adic realisations. In

particular, we generalise Falting’s theorem on homomorphisms of abelian varieties

over finite fields (Tate Theorem in this case) and number fields to 1-motives with

torsion. We show the 1-Ext group between 1-motives with torsion injects to the 1-

Ext group of l-adic realisations. Over finite fields, we give a very explicit description

to the maps Tl for Exti groups for all i ≥ 0.
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Conventions

A field is always perfect, and p denotes its characteristic. l is a prime number.

An algebraic variety over a field k is a reduced separated scheme which is of finite

type over k. An algebraic curve is an algebraic variety of dimension 1.

M1, tMeff
1 , and tM1 denote the category of Deligne’s 1-motives over k, the cat-

egory of effective 1-motives with torsion over k, and the category of 1-motives with

torsion over k respectively. M denotes the abelian category of 1-motives with torsion

over k, which is just tM1 in character zero case and tM1⊗Z[1/p] in positive charac-

teristic case. Let G be a profinite group, we denote the abelian category of discrete

G-modules and the abelian category of finitely generated discrete G-modules by CG
and CfG respectively. In the case G being the absolute Galois group of the field k, we

use the notation Ck instead of CfG. We denote by R the abelian category of finitely

generated Zl-modules with continuous Galois action.

Throughout this thesis, by k-group schemes we always mean commutative ones.

Given any two k-group schemes X and Y , we use the notation Extik−fppf(X, Y ) to

denote the i-th Yoneda extension group of X by Y in the abelian category of fppf-

sheaves over k, and we write Homk(X, Y ) as the group of homomorphisms in the

category of k-group schemes, which is the same as Homk−fppf(X, Y ). If both X and

Y are algebraic, we write the i-th Yoneda extension group of X by Y in the abelian

category of commutative algebraic group schemes over k as Extik(X, Y ). If both X

and Y are étale locally constant defined by finitely generated abelian groups, we

denote the i-th Yoneda extension group of X by Y in Ck by ExtiCk(X, Y ).

Throughout this thesis, we fix a universe, and suppose the objects and the mor-

phisms of the categories we consider form sets which belong to this universe.
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Introduction

The Tao produces One;

One produces Two;

Two produces Three;

Three produces Everything.

—Tao Te Ching, by Laozi

It’s well-known that cohomology theories are linearisations of geometric objects.

In algebraic geometry, motives were introduced by Grothendieck as a universal co-

homology theory which lies below the “good” cohomology theories. In other words,

they are the best linearisations of algebraic varieties in the sense that all good lin-

earisations (Weil cohomology theories) can be obtained from them, like “one comes

from Tao” as said in Tao Te Ching.1 More intuitively, they are the bricks of which

algebraic varieties are made in some sense, like topological spaces are made up of

cells up to weakly homotopy equivalence.

Grothendieck had constructed a category of pure motives, but a good category of

mixed motives is still missing today. The first step towards mixed motives was made

by Deligne, in the paper [6, sec. 10] he defined 1-motives (which are called Deligne’s

1-motives in this thesis in order to distinguish these from the 1-motives with torsion).

The 1-motives should be the motives of level ≤ 1 in the missing category of mixed

motives. A Deligne’s 1-motive M = [L
u−→ G] over a field k consists of an étale locally

constant sheaf L defined by a finitely generated free abelian group, a semi-abelian

variety G, and a morphism u : L→ G of groups schemes over k. Given any algebraic

curve C over k satisfying certain properties as in I.5, we can define the 1-motive

associated to C, which is an analogue of the Jacobian variety associated to a smooth

1In our case, it should be “The Tao produces One, One produces Everything”. The Two are usually interpreted
as Yin and Yang, it would be great if we could relate something in mathematics to Yin-Yang.

2



3

proper algebraic curve over k.

A morphism between two Deligne’s 1-motives is defined to be a morphism of the

complexes underlying the 1-motives. Then Deligne’s 1-motives form a categoryM1.

Abelian categories are very handy for doing homology theory. But the categoryM1

is far from being abelian. In order to make an abelian category out of M1, one

has to add the “torsion 1-motives” first. In their proof of Deligne’s conjecture on

1-motives in characteristic zero case (a modified version) in [4], L. Barbieri-Viale, A.

Rosenschon and M. Saito defined 1-motives with torsion, and constructed an abelian

category of 1-motives with torsion. We denote this category byM which is the base

on which are going to work in this thesis. Given any semi-abelian variety G over a

field k, let n be a positive integer which is coprime to the characteristic of k, then

the multiplication map G
[n]G−−→ G gives a short exact sequence

0→ nG→ G
[n]G−−→ G→ 0

of commutative group schemes over k. Let n be lr, passing to the l-adic Tate modules

for some prime number l different from char(k), we then get a short exact sequence

0→ TlG→ TlG→ lrG→ 0

of Zl-modules with continuous Galois action. Now, if we regard G as an object of

the abelian category M, the multiplication map gives a short exact sequence

0→ G
[lr]G−−→ G→ lrG[1]→ 0,

which is more coherent with the short exact sequence of l-adic realisations. This

justifies why 1-motives are motives in some sense. And also such coherence is very

useful in practise, and has been used very often in this thesis.

In [35], Serre described the properties of the category of commutative quasi-

algebraic groups by introducing pro-algebraic groups. Later, Oort determined that

the homological dimension of the abelian category G of commutative algebraic group

schemes over an algebraically closed field of positive characteristic is two in his book

[27]. When the field is not algebraically closed, Milne related the homological dimen-

sion of G over a perfect field k to the cohomological dimension of the Galois group

of k. Following the ideas from the above work, in the third chapter we are going
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to prove that the homological dimension d(M) of the abelian category M over a

perfect field k equals d + 1, where d is the cohomological dimension of the absolute

Galois group of k. In particular, d(M) = 2 over a finite field, d(M) = 3 over a

totally imaginary number field, and d(M) = d+ 1 =∞ over a number field which is

not totally imaginary. For number fields which are not totally imaginary, although

d(M) =∞ in general, we have d(M⊗ Z[1/2]) = 2 + 1 = 3.

Let A and B be two abelian varieties over a finitely generated field k, a theorem

of Faltings (in the finite field case Tate theorem) gives an isomorphism

Tl : Homk(A,B)⊗ Zl → HomR(TlA, TlB),

whereR denotes the category of finitely generated Zl-modules with continuous Galois

action. Since 1-motives are generalisations of abelian varieties, it is natural to ask

if we can generalise Faltings’ theorem to the case of 1-motives for even higher Exti

(i ≥ 0), i.e. to understand the maps

Tl : Exti?(M,M ′)⊗ Zl → HomR(TlM,TlM
′)

for two 1-motives M,M ′ in a suitable category “?” and i ≥ 0. The Hom case has

been dealt with by Fengsheng in [9] for semi-abelian varieties over number fields,

by Jannsen in [15] for Deligne’s 1-motives over number fields, and by Jossen in [16]

for his 1-motives with torsion. Jossen has also dealt with Ext1 for 1-motives over

number fields, and shown that Tl is injective. In the last chapter of this thesis, we will

investigate the homomorphisms Tl with respect to the categoryM, and show that Tl

is an isomorphism for i = 0 and injective for i = 1 over finite fields and number fields.

In particular, over finite fields, we will give full description for the homomorphism

Tl for all i ≥ 0. In particular, we will describe the kernels and cokernels of Tl.



CHAPTER I

1-motives

In this chapter, we will give an introduction to the theory of 1-motives with

torsion, which serves as the base on which this thesis is built. Proofs will usually be

sketched, or even omitted. The main reference for this chapter is [2, App. C]. In

each section we will also give specific further references.

1.1 Deligne’s 1-motive

In this section, we will introduce 1-motive, which was defined by Deligne in [6,

10.1]. Historically, this was the first step towards the theory of mixed motives. And

the construction is very concrete.

Let S be a scheme.

Definition I.1. An abelian scheme over S is a smooth proper group scheme π :

A → S, such that all its geometric fibres are connected. A torus T over S is a

commutative S-group scheme such that locally on Sfppf it is isomorphic to a product

of finitely many copies of the multiplicative group Gm,S. A semi-abelian scheme

over S is a smooth separated commutative group scheme π : G→ S with connected

fibres, such that each fibre is an extension of an abelian variety by a torus.

And like abelian varieties being commutative group varieties, abelian schemes are

commutative group schemes (see [25, chap. 6]).

Remark I.2. Let S be Speck for some field k. Then the above definition of abelian

schemes coincides with the usual definition of abelian varieties. In this case, being

a semi-abelian scheme is the same as being an extension of an abelian scheme by a

5
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torus in the category of group schemes over S, since S consists of only one point in

this case.

Definition I.3. A 1-motiveM over S is a two-term complex, concentrated in degree

−1 and 0, of S-commutative group schemes

M = [X
u→ G],

where X is an étale locally constant sheaf defined by some finitely generated free

Z-module on S, G is an extension of an abelian S-scheme A by an S-torus T, and

u is a morphism of S-group schemes. We also write M = (X,A, T,G, u) in order to

emphasize the roles of A and T .

Remark I.4. The above definition implies that G is a semi-abelian scheme over S.

However, not every semi-abelian scheme is an extension of an abelian scheme by

a torus. For example, let Eq be the Tate curve over Qp with invariant q for some

q ∈ Qp with vp(q) = 1, where vp denotes the canonical p-adic valuation, then the

Néron model of Eq is a semi-abelian scheme over SpecZp, and it has its generic fibre

the elliptic curve Eq and closed fibre the multiplicative group over Fp, hence cannot

be an extension of an abelian scheme by a torus. However, if the base is a field, it’s

enough to require G to be a semi-abelian scheme as we have seen before.

Given 1-motives M1 = [X1
u1→ G1] and M2 = [X2

u2→ G2], a morphism from M1 to

M2 is defined to be a morphism of complexes of commutative groups schemes, i.e. a

commutative diagram of the form:

X1
f−−−→ X2

u1

y yu2

G1
g−−−→ G2 .

Then 1-motives over S form a category, and we denote it by M1. Given M =

[X
u→ G] = (X,A, T,G, u) ∈ M, we have two canonical extensions of 1-motives,

namely:

0→ G→ [X
u→ G]→ X[1]→ 0

0→ T → G→ A→ 0

where T (resp. G, resp. A, resp. X[1]) is regarded as the 1-motive [0 → T ] (resp.

[0→ G], resp. [0→ A], resp. [X → 0]).
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These two sequences give a natural increasing filtration W• on M , which is called

the weight filtration, defined as follows:

Wi(M) =



0, if i ≤ −3

T, if i = −2

G, if i = −1

M, if i ≥ 0.

The associated graded pieces are:

grWi (M) =



T, if i = −2

A, if i = −1

X[1], if i = 0

0, otherwise.

The definition of 1-motives looks somehow artificial. However, the following ex-

ample will show how close 1-motives over a field k are related to certain algebraic

curves over k, as abelian varieties over k are related to smooth projective algebraic

curves over k.

Example I.5 (cf. [29] 2.1). Suppose S is the spectrum of a field k. Let C be

a geometrically reduced algebraic curve over k. Let C̄ be a compactification of C

such that the complement of C in C̄ consists of regular points. Assume that every

singular point as a prime divisor is a normal crossing divisor, i.e. it’s the zero locus

of coordinate function étale locally, and also assume that the residue fields at C̄ −C
are separable over k. Then the generalised Jacobian J = J(C̄) of C̄ is a semi-abelian

variety. Let Y be the étale sheaf generated by the divisors D with support in C̄−C,

whose restrictions to each geometric component of C̄ have degree zero. Then the

canonical map D → Cl(OC̄(D)) gives a morphism u : Y → J . This is called the

1-motive associated to the curve C.

Example I.6. In the definition of 1-motive, if taking X to be constant, i.e. X = Zr

for some non-negative integer r, and S = Speck for some field k, then giving such a

1-motive M is equivalent to specifying r k-rational points on G.
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Example I.7. Let S = Spec(k), where k is a finite extension of Qp with a discrete

valuation ν, let M be the 1-motive [Z u→ Gm] with u(1) = q, where q is in k∗ with

ν(q) ≥ 1. Then regarded as a complex in Dbrig(fppf), M is isomorphic to the sheaf

represented by the Tate curve Eq over k with q-invariant q(E) = q. Here Dbrig(fppf)

is the derived category of bounded complexes of fppf-sheaves over the small rigid site

Spec(k), see [29] for details.

1.2 1-motives with torsion over field k

The torsion group schemes play a very important role in the study of group

schemes. For example, the integral l-adic realisation of an abelian variety is given by

the inverse limit of its l-power torsion subgroup schemes. When we embed abelian

varieties into the category of 1-motives, unfortunately the n-torsion subgroup doesn’t

fit into the later resulting from the definition of 1-motives. In order to fix this

problem, there are several constructions of 1-motives with torsion. In their proof

of Deligne’s conjecture on 1-motives in characteristic zero case (a modified version)

in [4], L. Barbieri-Viale, A. Rosenschon and M. Saito define 1-motives with torsion,

and construct an abelian category of 1-motives with torsion. Later, L. Barbieri-Viale

and B. Kahn extend the construction to any characteristic in [2]. In [16], Jossen’s

category of 1-motives with torsion admits Cartier duality as the category of Deligne’s

1-motives does, however it is not abelian. In [30], H. Russell constructs a category

of 1-motives with torsion, which extends Laumon’s 1-motives with unipotent parts

and admits Cartier duality. In [3], L. Barbieri-Viale and A. Bertapelle construct

an abelian category of Laumon’s 1-motives with torsion. For our purpose here (we

are going to deal with Yoneda extensions), we use the first one, and follow the

construction in [2] closely. Note one should not confuse the category of effective

1-motives with torsion with the category of 1-motives with torsion, the first will be

defined first and is not abelian.

From now on, our base scheme S will always be Speck, where k is a perfect field.

We will omit the base provided no ambiguity arises.

Definition I.8. An effective 1-motive with torsion over k is a complex of group

schemes M = [L→ G], where L is finitely generated and locally constant for the étale

topology, and G is a semi-abelian scheme over k. From now on, we will call effective
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1-motives with torsion simply 1-motives, the motives defined before as Deligne’s

1-motives.

The L appeared in the above definition can be written as an extension

(1.1) 0→ Ltor → L→ Lfr → 0

where Ltor is a finite étale group scheme and Lfr is free. And the semi-abelian scheme

G can be written as an extension

(1.2) 0→ T → G→ A→ 0

where A is an abelian scheme and T is a torus.

Definition I.9. Given two 1-motives with torsion M = [L
u−→ G] and M ′ = [L′

u′−→
G′], an effective map from M to M ′ is a commutative square

L
f−−−→ L′

u

y yu′
G

g−−−→ G′

in the category of group schemes. We denote such a map by

(f, g) : M →M ′.

The natural composition of squares makes 1-motives with torsion into a cate-

gory, the category of 1-motives with torsion, denoted by tMeff
1 . We will denote by

Homeff(M,M ′) the abelian group of effective morphisms.

Since 1-motives with torsion are supposed to be generalizations of Deligne’s 1-

motives in order to have torsion, we would like to cut out the torsion part of a

1-motive with torsion and to see how Deligne’s 1-motives fit into the category of

1-motives with torsion. Given a 1-motive M = [L→ G], we have (in the category of
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commutative group schemes) a commutative diagram

(1.3)

0 0y y
0 −−−→ Ker(u) ∩ Ltor −−−→ Ltor

u−−−→ u(Ltor) −−−→ 0y y y
0 −−−→ Ker(u) −−−→ L

u−−−→ Gy y
Lfr

ū−−−→ G/u(Ltor)y y
0 0

with exact rows and columns. We then get three effective 1-motives

Mfr := [Lfr → G/u(Ltor)]

Mtor := [Ltor ∩Ker(u)→ 0]

Mtf := [L/(Ltor ∩Ker(u))→ G].

From the above diagram, there are also three canonical effective maps M → Mtf ,

Mtor →M and Mtf →Mfr.

Definition I.10. A 1-motive M = [L → G] is free if L is free, i.e. if M = Mfr.

It is torsion, if L is torsion and G = 0, i.e. if M = Mtor. It is torsion-free, if

Ker(u) ∩ Ltor = 0, i.e. if M = Mtf .

Denote by tMeff,fr
1 , tMeff,tor

1 and tMeff,tf
1 , the full subcategories of tMeff

1 given by

free, torsion and torsion-free 1-motives respectively. Then the category tMeff,fr
1 is

nothing else but the category M1 of Deligne’s 1-motives and we will henceforth use

this notation for simplicity. It’s obviously that the category tMeff,tor
1 is equivalent

to the category of finite étale group schemes. From diagram 1.3 we can see that, if

M is torsion-free, the morphism Ltor → u(Ltor) is an isomorphism, hence L is the

pull-back of Lfr along the isogeny G→ G/u(Ltor).

Proposition I.11. The categories tMeff
1 and M1 have all finite limits and colimits.

In particular, they admit kernel and cokernel. And given two 1-motives M = [L
u→

G], M ′ = [L′
u′→ G′] and an effective morphism ϕ = (f, g) : M →M ′ in tMeff

1 (resp.



11

M1), the kernel of ϕ is given by Ker(ϕ) = [Ker0(f)
u→ Ker0(g)] (resp. Ker(ϕ) =

[Ker0(f)
u→ Ker0(g)]), and the cokernel of ϕ is given by Coker(ϕ) = [Coker(f)

ū′→
Coker(g)] (resp. Coker(ϕ) = [Coker(f)

ū′→ Coker(g)]fr), where Ker0(g) is the reduced

connected component of the kernel of g in the category of commutative group schemes,

Ker0(f) is the pullback of Ker0(g) along u : Ker(f)
u→ G, and ū′ is the map induced

by u′.

Proof. See [2, prop. C.1.3].

Although tMeff
1 and M1 have all finite limits and colimits, they turn out to be

not abelian. In order to get an abelian category out of tMeff
1 , we are going to

define quasi-isomorphism in tMeff
1 , and then take localization with respect to quasi-

isomorphisms.

Definition I.12. Given M = [L
u→ G] and M ′ = [L′

u′→ G′] in tMeff
1 , an effective

morphism of 1-motives M →M ′ is a quasi-isomorphism (q.i. for short) of 1-motives

if it yields a pullback diagram

(1.4)

0 −−−→ F −−−→ L −−−→ L′ −−−→ 0∥∥∥ u

y u′

y
0 −−−→ F −−−→ G −−−→ G′ −−−→ 0,

where F is a finite étale group.

Remark I.13. In general, quasi-isomorphisms are not isomorphisms. For example,

for G a non-trivial semi-abelian variety over a field k of positive characteristic and

n a positive integer coprime to the characteristic of k, we have that

nG −−−→ 0y y
G

[n]G−−−→ G

is a quasi-isomorphism, but not an isomorphism.

Remark I.14. In fact quasi-isomorphisms between 1-motives M and M ′ are the same

as quasi-isomorphisms of the corresponding complexes of group schemes. This can

be verified by using snake lemma and the fact that the cokernel of any morphism

between two semi-abelian varieties is connected.
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Proposition I.15. Quasi-isomorphisms are simplifiable on the left and on the right.

And the class of quasi-isomorphisms admits a calculus of right fractions in the sense

of (the dual of) [11].

Proof. See [2, prop. C.2.3., C.2.4.].

Thank to I.15, we can formally inverting quasi-isomorphisms.

Definition I.16. The category tM1 of 1-motives with torsion is the localization of

tMeff
1 with respect to the multiplicative class {q.i.} of quasi-isomorphisms.

The category tM1 is (almost in positive characteristic case) what we want. It has

the same objects as tMeff
1 does, and the morphisms in tM1 are given by the formula

Hom(M,M ′) = lim−→
q.i.

Homeff(M̃,M ′),

where the limit is taken over the filtering set of all quasi-isomorphisms M̃ → M ′.

And any morphism of 1-motives M →M ′ can be represented by a diagram

M M ′

M̃.
q.i.

``

eff

==

The composition is given by the following commutative diagram

M M ′ M ′′

M̃
q.i.

``

eff

>>

M̃ ′
q.i.

aa

eff

==

M̂,

q.i.

__

eff

>>

where the existence of M̂ is guaranteed by the condition of calculus of right fractions

in I.15.

Now we introduce the notion of strict morphism, which is useful for investigating

the morphisms between 1-motives explicitly.

Definition I.17. Let (f, g) : M → M ′ be an effective morphism of 1-motives. It is

strict, if we have

Ker(f, g) = [Ker(f)→ Ker(g)],

i.e. if Ker(g) is a semi-abelian variety.



13

Proposition I.18. Any effective morphism ϕ ∈ Homeff(M,M ′) can be factored as

M
ϕ

//

ϕ̄
  

M ′

M̃

>>

where ϕ̄ is a strict morphism and M̃ →M ′ is a composition of a quasi-isomorphism

with a p-power isogeny. Note the p-power isogeny can only happen when the base

field is of postive characteristic.

Proof. See [2, C.4.3.] .

This proposition reveals that strict morphisms give the essential part of morphisms

between 1-motives in characteristic 0 case. But in characteristic p case, the same

thing only happens if we kill the p-power isogenies, i.e. tensoring with Z[1/p]. In

[2, C.5.], with the help of strict morphisms, Barbieri-Viale and Kahn give explicit

description of the morphisms in tM1 explicitly, and show the following proposition.

Proposition I.19. The category tM1 is abelian, if char(k) = 0. If char(k) = p > 0,

the category tM1[1/p] = tM1 ⊗Z Z[1/p] is abelian. Given an effective morphism

ϕ : M → M ′, the kernel of ϕ in tM1 is just its kernel in tMeff
1 , and the cokernel of

ϕ is given by the cokernel of the strict morphism appearing in the factorization of ϕ

as in the last proposition, up to quasi-isomorphism.

Proof. See [2, C.5.2, C.5.3.].

From now on, we will simply denote by M the category tM1 if char(k) = 0; the

category tM1[1/p] if char(k) = p > 0. Then we can formulate the Yoneda extensions

in the abelian category M.

Proposition I.20. A short exact sequence of 1-motives in M

0→M ′ →M →M ′′ → 0

can be represented up to isomorphisms by a strict effective epimorphism (f, g) : M →
M ′′ with kernel M ′, i.e. by an exact sequence of complexes.
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Example I.21. Let M be a 1-motive, there are two canonical short exact sequences

in M fitting into the following diagram

0 −−−→ Mtor −−−→ M −−−→ Mtf −−−→ 0∥∥∥ ∥∥∥ y
0 −−−→ Mtor −−−→ M −−−→ Mfr −−−→ 0

where the effective morphism M →Mtf is a strict epimorphism with kernel Mtor and

Mtf →Mfr is a quasi-isomorphism.

1.3 l-adic realization

The Tate modules of tori and abelian varieties carries a lot of information in both

geometric and arithmetic aspects. In this section, we are going to define the analogue

of Tate modules for 1-motives, namely the l-adic realizations of 1-motives.

Similar to the definition of Tate modules of abelian varieties and tori, our definition

of l-adic realizations of 1-motives involves multiplication morphisms. First let us

understand the kernel and cokernel of the multiplication morphism n : M → M ,

where M = [L
u→ G] is a 1-motive and n is invertible in k. By I.11, we can define

nM := Ker(M
n→M) = [Ker(u) ∩ nL→ 0].

Thus nM = 0 for all n with (n, char(k)) = 1 if and only if Mtor = 0. By I.19,

M/n := Coker(M →M)

is always a torsion 1-motive. And if L = 0, then we have an extension in M

0→ G
n→ G→ nG[1]→ 0,

with nG := ker(G
n−→ G). In the general case, we apply snake lemma to the canonical

exact sequence

0→ G→M → L[1]→ 0

of effective 1-motives, which is also exact in M. Then we get the following long

exact sequence in tMtor
1 [1/p]

0→ nM → nL[1]→ nG[1]→M/n→ L/n[1]→ 0.

Now let n = lv, where v ∈ N and l 6= char(k).
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Definition I.22. The l-adic realisation of a 1-motive M is

Tl(M) := “lim
←−
v

′′Lv

in the category of l-adic sheaves, where Lv is a finite étale group scheme such that

M/lv = [Lv → 0] for each v.

Since every term in the above long exact sequence is finite, the inverse limit functor

is exact. And lvL is stable for v big enough, so “lim
←−
v

′′
lvL = 0. Hence we get a short

exact sequence

0→ Tl(G)→ Tl(M)→ L⊗ Zl → 0

where Tl(G) is the Tate module of the semi-abelian variety G.

Given a short exact sequence

0→M ′ →M →M ′′ → 0

in M, apply snake lemma to it, we get a long exact sequence

0→ lvM
′ → lvM → lvM

′′ →M ′/lv →M/lv →M ′′/lv → 0.

These terms are finite for each v. By the similar argument as in the above case, we

have a short exact sequence

0→ Tl(M
′)→ Tl(M)→ Tl(M

′′)→ 0.

So we have:

Proposition I.23. The functor Tl is exact onM, and extends canonically toM⊗Zl.

1.4 Extensions

In this section, we are going to give some easy descriptions to the homomorphisms

and the Yoneda 1-extensions in the abelian category M, in terms of the homomor-

phisms and the Yoneda extensions in other categories which are easier to understand,

namely the abelian category of commutative algebraic k-group schemes, the category

of k-group schemes, and the category of finitely generated Galois modules. We will

denote by Homk(−,−) the group of homomorphisms in the category of commutative
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k-group schemes, by Extik(−,−) the i-th Yoneda extension group in the abelian cat-

egory of commutative algebraic k-group schemes (note for i = 0, this doesn’t conflict

with the previous notation), and by ExtiCk(−,−) the i-th Yoneda extension group

in the category of finitely generated Galois modules. Further investigations will be

given in Chapter III and Chapter IV.

Note that in the following context, we are going to use the fact that there are no

nontrivial quasi-isomorphisms to a 1-motive without semi-abelian part.

Proposition I.24. Let M = [L → G],M = [L′ → G′] ∈ M, and let T (resp. T ′)

and A (resp. A′) be the torus and abelian variety corresponding to G (resp. G′) given

by Chevalley decomposition. Then the following holds:

(a)

HomM(L[1], L′[1]) =

Homk(L,L
′) = HomCk(L,L′) , if char(k) = 0

Homk(L,L
′)⊗ Z[1/p] = HomCk(L,L′)⊗ Z[1/p], otherwise

;

(b) HomM(L[1], G′) = 0;

(c)

HomM(G,G′) ⊆

Homk(A,A
′)× Homk(T, T

′), if char(k) = 0

Homk(A,A
′)⊗ Z[1/p]× Homk(T, T

′)⊗ Z[1/p], otherwise
;

(d)

HomM(G,L′[1]) =

Homk(nG,L
′
tor), if char(k) = 0

Homk(nG,L
′
tor)⊗ Z[1/p], otherwise

where n is a positive integer such that nL′tor = 0. In particular, the group HomM(G,L′[1])

is a finite group.

Hence the group HomM(M,M ′) is finitely generated as a module over Z (resp.

Z[1/p]), if char(k) = 0 (resp. char(k) = p > 0).

Proof. It is enough to show the characteristic zero case. Since there are no nontrivial

quasi-isomorphisms to L[1], we have

HomM(L[1], L′[1]) = Homeff(L[1], L′[1]) = Homk(L,L
′)
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and

HomM(L[1], G′) = Homeff(L[1], G′) = 0,

this proves (a) and (b). Any quasi-isomorphism to G has the form (0, f) : [F →
G̃] → G, where F is an étale subgroup scheme of G̃ and f : G̃ → G is an isogeny

with kernel F . Any morphism (f, g) : [F → G̃] → G′ must have g mapping the

subgroup F of G̃ into 0. Hence (f, g) actually factor through G, and it follows that

HomM(G,G′) = Homeff(G,G′) = Homk(G,G
′).

Given α ∈ Homk(G,G
′) let ᾱ be the composition T ↪→ G

f→ G′ → A′. Since

Homk(T,A
′) = 0, we have ᾱ = 0. Hence T → G′ factors through T ′ and G → A′

factors through A. This gives a map

HomM(G,G′)→ Homk(A,A
′)× Homk(T, T

′),

which is obviously injective by snake lemma, hence (c) follows. For (d), by the above

description of quasi-isomorphism to G, we have

HomM(G,L′[1]) = lim
−→
q.i.

Homeff([F → G], L′[1]) = lim
−→
q.i.

Homk(F,L
′
tor).

If nL′tor = 0, then the limit is bounded by the quasi-isomorphism (0, nG) : [nG →
G]→ G, thus we have (d).

The last statement is an easy consequence of (a), (b), (c), (d) and a devissage for

Hom with respect to 0→ G→M → L[1]→ 0 and 0→ G′ →M ′ → L′[1]→ 0.

The above proposition is about groups of homomorphisms in both characteritic 0

case and positive characteristic case. The next two propositions concern 1-extensions,

but only for characteristic zero case (the corresponding positive characteristic state-

ment will be given in charpter III).

Proposition I.25. Notations as before, and suppose the characteristic of the base

field is zero. Then we have the following canonical isomorphisms.

(a) Ext1
Ck(L,L′)

∼=−→ Ext1
M(L[1], L′[1]);

(b) Homk(L,G
′)

∼=−→ Ext1
M(L[1], G′);

(c) Ext1
k(G,G

′)
∼=−→ Ext1

M(G,G′).



18

Proof. First of all, any element of Ext1
Ck(L,L′) gives an element of Ext1

M(L[1], L′[1]),

this gives the map in (a). The existence of the map in (b) is given by associating a

map α : L→ G′ to the diagram:

0 //

��

L

α
��

L

��

G G // 0.

By Chevalley’s structure theorem of commutative algebraic groups, any extension of

a semi-abelian variety by another semi-abelian variety in the category of commutative

algebraic k-group is still a semi-abelian variety, so we also have the map in (c).

By Proposition I.20, any short exact sequence of 1-motives can be represented

up to isomorphism by a short exact sequence of complexes in which each term is a

1-motive.

Then (a) is just an immediate consequence of the fact that there are no nontrivial

quasi-isomorphisms from or to a 1-motive with zero semi-abelian part.

For (b), an extension of L[1] by G′ in M is given by an exact sequence of of

complexes of the form

0 −−−→ F ′ −−−→ L′′ −−−→ L −−−→ 0y v

y y
0 −−−→ G̃′ G̃′ −−−→ 0 −−−→ 0,

where M̃ ′ = [F ′ → G̃′] is quasi-isomorphic to G′. We can mod out F ′, i.e. take

push-out along M̃ ′ → G′, and get a quasi-isomorphic sequence which is an element

of Homk(L,G
′), hence the map in (b) is surjective. It’s also injective, since the

existence of a section of the sequence

0→ G′ → [L
v→ G′]→ L[1]→ 0

means exactly that v is zero.

For (c), we see that an extension of G by G′ inM can be represented by a diagram

0 −−−→ F ′ −−−→ L′′ −−−→ F −−−→ 0y y y
0 −−−→ G̃′ −−−→ G′′ −−−→ G̃ −−−→ 0
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with M̃ ′ = [F ′ → G̃′] is quasi-isomorphic to G′, and M̃ = [F → G̃] is quasi-

isomorphic to G. We can mod out F ′, and get a quasi-isomorphic exact sequence

0 −−−→ 0 −−−→ L′′/F ′
∼=−−−→ F −−−→ 0y y y

0 −−−→ G′ −−−→ G′′/F ′ −−−→ G̃ −−−→ 0.

We can further mod out L′′/F ′ ∼= F , and get

0 −−−→ 0 −−−→ 0 −−−→ 0 −−−→ 0y y y
0 −−−→ G′ −−−→ G′′/L′′ −−−→ G −−−→ 0.

Hence the map in (c) is surjective. Its injectivity is obtained by similar argument as

in the proof to (b).

Proposition I.26. Notations as before, and suppose that the characteristic of the

base field is zero. Then we have a canonical isomorphism

Φ : lim−→
n

Ext1
Ck(nG,L

′) −→ Ext1
M(G,L′[1]).

In particular, when NL′ = 0 for some positive integer N , i.e. L′ is torsion, the map

Φ becomes

H1(k,HomCk̄(NG,L
′)) ∼= lim−→

n

Ext1
Ck(nG,L

′)
Φ−→ Ext1

M(G,L′[1]),

and these groups are zero when k is algebraically closed.

Proof. First, we construct a map Φn : Ext1
Ck(nG,L

′)→ Ext1
M(G,L′[1]) for all positive

integers n. Let L′′ ∈ Ext1
Ck(nG,L

′) and consider the following diagram

(1.5)

0 −−−→ L′ −−−→ L′′ −−−→ nG −−−→ 0y y y
0 −−−→ 0 −−−→ G G −−−→ 0

where the map L′′ → G is given by the composition of L′′ → nG → G. Since

[nG → G] is canonically quasi-isomorphic to G, this provides an extension of G by

L′[1] in M. For n variable {Ext1
Ck(nG,L

′)}n is a direct system. The maps Φn’s are

compatible with respect to pull-back, and hence give a well-defined map

Φ : lim−→
n

Ext1
Ck(nG,L

′)→ Ext1
M(G,L′[1]).
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This map is surjective since any extension of G by L′[1] can be represented by a

diagram 1.5 for some n (as multiplications by positive integers are cofinal in the

direct system of isogenies). So we are left to show the injectivity.

Before going to the injectivity, let us first give another description to the map

Φ. From the short exact sequence 0 → G
n→ G → nG[1] → 0, we get a long exact

sequence

0→ HomM(G,L′[1])⊗ Z/nZ→ Ext1
M(nG[1], L′[1])→ nExt1

M(G,L′[1])→ 0.

Taking dierect limit, we get a short exact sequence

0→ lim−→
n

HomM(G,L′[1])⊗Z/nZ→ lim−→
n

Ext1
M(nG[1], L′[1])→ lim−→

n

nExt1
M(G,L′[1])→ 0.

The group HomM(G,L′[1]) is finite by I.24 (d), so we get

lim−→
n

HomM(G,L′[1])⊗ Z/nZ = 0.

The map Φ being surjective implies that the group Ext1
M(G,L′[1]) is torsion, so we

have

Ext1
M(G,L′[1]) = lim−→

n

nExt1
M(G,L′[1]).

By I.25 (a), we have

Ext1
M(nG[1], L′[1]) = Ext1

Ck(nG,L
′).

Combining all the above, we get an isomorphism

lim−→
n

Ext1
Ck(nG,L

′)
∼=−→ Ext1

M(G,L′[1]).

This isomorphism is nothing but the map Φ.

Now we consider the case that L′ is killed by N . According to II.28, there is a

spectral sequence

H i(Γ,ExtjCk̄(nG,L
′)) =⇒ Exti+jCk (nG,L

′)

for each positive integers n. This gives an exact sequence of low degree terms

(1.6) 0→ H1(k,HomCk̄(nG,L
′))→ Ext1

Ck(nG,L
′)→ Ext1

Ck̄(nG,L
′)Γ.
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Taking the direct limit over n, we get an exact sequence

(1.7) 0→ lim−→
n

H1(k,HomCk̄(nG,L
′))→ lim−→

n

Ext1
Ck(nG,L

′)→ lim−→
n

Ext1
Ck̄(nG,L

′)Γ.

Note that as an abelian group Ext1
Ck̄(nG,L

′) is just an extension group of abelian

groups, and it’s a standard homological computation of Z-modules to shows that

(1.8) lim−→
n

Ext1
k̄(nG,L

′) = 0.

By the isomorphism lim−→n
H1(k,HomCk̄(nG,L

′)) = lim−→r
H1(k,HomCk̄(rNG,L

′)) and

the fact that the maps HomCk̄(NG,L
′) → HomCk̄(rNG,L

′) are isomorphisms, we

have

(1.9) H1(k,HomCk̄(NG,L
′))

∼=−→ lim−→
n

H1(k,HomCk̄(nG,L
′)).

Combining 1.7, 1.8 and 1.9, we get the isomorphism

H1(k,HomCk̄(NG,L
′)) ∼= lim−→

n

Ext1
Ck(nG,L

′).

When k is algebraic closed, we have

lim−→
n

Ext1
Ck(nG,L

′) ∼= H1(k,HomCk̄(NG,L
′)) = 0,

hence so is Ext1
M(G,L′[1]).



CHAPTER II

Some cohomology theories

In this chapter, we are going to formulate some homological results related to

1-motives. A large part of this chapter is taking from the literature, and the main

references are [26], [33] and [38].

2.1 Comparison between extension groups of 1-motives and extension
groups of their l-adic realisations

Let R denote the abelian category of finitely generated Zl-modules with continu-

ous Γ-action, where Γ denotes the absolute Galois group of the base field k. Recall

that in I.23, the l-adic realisation functor Tl is exact on M, and hence sends any

Yoneda n-extension

0→M ′ →M1 · · ·Mn →M → 0

in M to a Yoneda n-extension

0→ TlM
′ → TlM1 · · ·TlMn → TlM → 0

in R.

Suppose given two commutative diagrams with exact rows

E 0 //M ′ //M1

��

// N

β
��

// 0

E ′ 0 //M ′ // M̃1
// Ñ // 0

F 0 // N

β
��

//M2

��

//M // 0

F ′ 0 // Ñ // M̃2
//M // 0,

22
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i.e. given

E · F = (E ′β) · F ∼ E ′ · (βF) = E ′ · F ′,

applying the functor Tl, we get two commutative diagrams with exact rows

TlE 0 // TlM
′ // TlM1

��

// TlN

β
��

// 0

TlE ′ 0 // TlM
′ // TlM̃1

// TlÑ // 0

TlF 0 // TlN

β
��

// TlM2

��

// TlM // 0

TlF ′ 0 // TlÑ // TlM̃2
// TlM // 0.

Hence we have

TlE · TlF = (TlE ′β) · TlF ∼ TlE ′ · (βTlF) = TlE ′ · TlF ′,

i.e. the functor Tl keeps the relation E · F ∼ E ′ · F ′. Since the equivalent relation

used to define the Yoneda extension groups is generated by the relations of the form

E · F ∼ E ′ · F ′, we get a map ExtnM(M,M ′) → ExtnR(TlM,TlM
′). Actually, this is

not only a map, but also a homomorphism of abelian groups. Here we only check

that it keeps the group operation, and the rest can be shown in the same way. Given

any two n-extensions E and E ′ of M by M ′ in M, recall that the addition [E ] + [E ′]
in the Yoneda n-extension group ExtnM(M,M ′) is defined by the rule

[E ] + [E ′] := [∇M ′(E ⊕ E ′)4M ].

It is obvious that we have

Tl(∇M ′(E ⊕ E ′)4M) = ∇TlM ′(TlE ⊕ TlE ′)4TlM ,

hence the functor Tl indeed gives a group homomorphism from ExtnM(M,M ′) to

ExtnR(TlM,TlM
′). Moreover, the group ExtnR(TlM,TlM

′) has a natural Zl-module

structure, so we get a homomorphism

(2.1) Tl : ExtnM(M,M ′)⊗ Zl → ExtnR(TlM,TlM
′)

of Zl-modules. Here our notation Tl should be (Tl)n, however we will abuse the

notation Tl for any n, whenever the index n is clear from the context.
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Let M be a 1-motive in M, given a short exact sequence

0→ N ′
u−→ N

v−→ N ′′ → 0

in M, we then get a canonical long exact sequence

ExtiM(M,N ′)→ ExtiM(M,N)→ ExtiM(M,N ′′)
δ−→ Exti+1

M (M,N ′)→,

where δ is the connection morphism. Since the ring Zl is flat over Z, we get another

long exact sequence

ExtiM(M,N ′)⊗Zl → ExtiM(M,N)⊗Zl → ExtiM(M,N ′′)⊗Zl
δ−→ Exti+1

M (M,N ′)⊗Zl → .

We also have a short exact sequence for the l-adic realisations

0→ TlN
′ → TlN → TlN

′′ → 0,

hence get another canonical long exact sequence

ExtiR(TlM,TlN
′)→ ExtiR(TlM,TlN)→ ExtiR(TlM,TlN

′′)→ Exti+1
R (TlM,TlN

′)→ .

These two sequences fit into the following diagram

(2.2)

// ExtiM(M,N)⊗ Zl //

��

ExtiM(M,N ′′)⊗ Zl

��

δ // Exti+1
M (M,N ′)⊗ Zl

��

//

// ExtiR(TlM,TlN) // ExtiR(TlM,TlN
′′) δ // Exti+1

R (TlM,TlN
′) // .

This diagram is actually commutative. To prove the commutativity, it suffices to

check the commutativity of the two squares. Given any i-extension

E : 0→ N → P1 · · ·Pi →M → 0,

we consider the push-out diagram

E 0 // N

v

��

// P1

��

// P2
// · · · //M // 0

vE 0 // N ′′ // P̃1
// P2

// · · · //M // 0

By applying the functor Tl, we get a commutative diagram with exact rows

TlE 0 // TlN

Tlv

��

// TlP1

��

// TlP2
// · · · // TlM // 0

Tl(vE) 0 // TlN
′′ // TlP̃1

// TlP2
// · · · // TlM // 0.
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This diagram has to be a push-out diagram, hence we have Tl(vE) = (Tlv)(TlE).

This shows the commutativity of the first square. For the second square, just notice

that the connection map is given by splicing a given i-extension of M by N ′′ with

the short exact sequence 0 → N ′
u−→ N

v−→ N ′′ → 0, then the commutativity follows

from applying the functor Tl in a similar way.

Later in the fourth chapter, we are going to use the commutativity of the diagram

2.2 repeatedly.

2.2 Galois cohomology

The definition of 1-motives with torsion involves discrete sheaves over the base

field k with respect to the étale topology. In the characteristic zero case, such sheaves

are just finitely generated Galois modules. In the positive characteristic case, since

we invert the multiplication-by-p map, the finite étale p-group schemes regarded as

1-motives become isomorphic to zero, hence we only need to consider the discrete

sheaves without p-torsion. Such sheaves are again just finitely generated Galois

modules. Hence Galois cohomology is quite useful in the study of 1-motives.

In this section, we are going to give a quick introduction to the cohomology of

profinite groups, and list some results which are needed for our investigation of 1-

motives, but proofs will be omitted mostly. The main reference for this section is

[33].

Definition II.1. Let G be a profinite group, a G-module M is said to be discrete if

one has M = ∪MU , where U runs over all open subgroups of G.

The discrete G-modules can also be defined as abelian groups with discrete topol-

ogy, on which G acts continuously. The discrete G-modules form an abelian category

CG, in which there are enough injective objects.

Definition II.2. LetM be a discreteG-module, the q-th cohomology groupHq(G,M)

of G with coefficient in M is defined to be RqF (M). Here RqF denotes the q-th right

derived functor of the functor M 7→ F (M) = MG, with MG being the maximal sub-

group of M fixed by G.

From this definition, we get the usual formal results for cohomology groups, see

[13, chap. II thm. 1.1A.]. In particular, we have the very useful long exact sequences
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associated to short exact sequences of discrete G-modules. This definition is not very

helpful for computation. There is another definition for the cohomology groups of G

via cochain.

Let C0(G,M) be M , and Cn(G,M) be the abelian group of all continuous maps

from Gn to M (the topology on M is the discrete one) for n > 0. We define the

differential map d : Cn(G,M)→ Cn+1(G,M) by the formula

(df)(g1, · · · , gn+1) =g1 · f(g2, · · · , gn+1)

+
n∑
i=1

(−1)if(g1, · · · , gigi+1, · · · , gn+1)

+ (−1)n+1f(g1, · · · , gn).

It’s a formal check to see that d ◦ d = 0, hence we get a complex C•(G,M). Then

the cohomology groups Hq(G,M) can be computed as the cohomology groups of the

following complex

(2.3) C•(G,M) : 0→ C0(G,M)→ C1(G,M)→ · · · → Cn(G,M)→ · · · .

By using the cochain complex, we are able to do some useful computation. The

following results are taken from Serre’s book [33].

Proposition II.3. Let (Gi) be a projective system of profinite groups, and let (Mi)

be an inductive system of discrete Gi-modules (the homomorphisms Mi → Mj have

to be compatible with the morphisms Gj → Gi). Let G be lim←−iGi, M be lim−→i
Mi.

Then we have Hq(G,M) = lim−→i
Hq(Gi,Mi) for each q ≥ 0.

Proof. The canonical homomorphism lim−→C•(Gi,Mi) −→ C•(G,M) is an isomor-

phism, whence the result follows by passing to homology.

Corollary II.4. Let M be a discrete G-module, then we have

Hq(G,M) = lim−→Hq(G/U,MU)

for each q ≥ 0, where U runs over all open normal subgroups of G.

Proof. Since we have G = lim←−G/U and M = lim−→MU , then the result follows from

II.3.
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Corollary II.5. Let M be a discrete G-module, then we have

Hq(G,M) = lim−→Hq(G,N)

for each q ≥ 0, where N runs over the set of finitely generated sub-G-modules of M .

Proof. The result follows from II.3 with the help of the expression M = lim−→N .

Corollary II.6. The groups Hq(G,M) are torsion for q > 0.

Proof. The case G being a finite group is a classical result, see [34, chap. VII prop.

6]. The general case follows from this and II.4.

Example II.7. The cohomology groups in degree zero, one and two can be described

very explicitly via the cochain complex C•(G,M) as follows:

(1) H0(G,M) = MG;

(2) H1(G,M) is the group of classes of continuous crossed-homomorphisms from G

to M , and in particular it is the group Hom(G,M) in the category of topological

groups when M is a constant module;

(3) H2(G,M) is the group of classes of continuous factor systems from G to M .

Let G and G′ be two profinite groups, and let f : G → G′ be a morphism. Take

M ∈ CG and M ′ ∈ CG′ , suppose that we have a morphism h : M ′ → M which is

compatible with f , i.e. h is a G-morphism with M ′ regarded as a G-module via

f . Such a pair (f, h) defines a homomorphism Hq(G′,M ′) → Hq(G,M) for each

q ≥ 0. In particular, when G′ is a closed subgroup H of G, and M ′ = M is a discrete

G-module, we obtain the restriction homomorphisms

Res : Hq(G,M) −→ Hq(H,M), q ≥ 0.

When H is a closed normal subgroup, we obtain the inflation homomorphisms

Inf : Hq(G/H,MH) −→ Hq(G,M), q ≥ 0.

When H is an open subgroup of G with finite index n, we have the corestriction

homomorphisms

Cor : Hq(H,M) −→ Hq(G,M), q ≥ 0.

Similar as in the case that G is finite, we have Cor ◦ Res = n.
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Proposition II.8. Let H be a closed normal subgroup of G and let M be a discrete

G-module. Then we have an exact sequence

0→ H1(G/H,MH)
Inf−→ H1(G,M)

Res−−→ H1(H,M).

Proof. This is actually just part of the five term exact sequence of the Hochschild-

Serre spectral sequence, which will be given in 2.5.

Definition II.9. Let l be a prime number, andG a profinite group. The l-cohomological

dimension (resp. strict l-cohomological dimension) of G, denoted by cdl(G) (resp.

scdl(G)), is the smallest integer n such that the l-primary component of Hq(G,M) is

null for every discrete torsion (resp. not necessary torsion) G-module M and every

q > n. If there is no such integer, then we define cdl(G) (resp. scdl(G)) to be +∞.

The cohomological dimension (resp. strict cohomological dimension) of G is defined

to be cd(G) := supl cdl(G) (resp. scd(G) := supl scdl(G)).

Proposition II.10. Let G be a profinite group, n be an integer, and l be a prime

number. The following are equivalent:

(a) cdl(G) ≤ n.

(b) Hq(G,M) = 0 for all q > n and every discrete G-module which is an l-primary

torsion group.

(c) Hn+1(G,M) = 0 when M is a simple discrete G-module killed by l.

Proof. See [33, chap. I prop. 11].

Proposition II.11. scdl(G) is equal to either cdl(G) or cdl(G) + 1.

Proof. See [33, chap I prop 13].

Let k be a field, and Γ be its absolute Galois group which is a profinite group.

Let M be a discrete Γ-module. We will write Hq(k,M) instead of Hq(Γ,M) as in

most text books.

Example II.12. Let k be a finite field, then the absolute Galois group of k is

isomorphic to Ẑ. For any prime l, we have cdl(Ẑ) = 1, for reference see [34, XIII

prop 2]. It follows that we also have cd(Ẑ) = 1. Consider the short exact sequence

0→ Z→ Q→ Q/Z→ 0



29

of constant Ẑ-modules, we get the cohomological long exact sequence

H1(k,Q)→ H1(k,Q/Z)→ H2(k,Z)→ H2(k,Q).

Since we have H1(k,Q) = Homcts(Ẑ,Q) = 0, and the fact H2(k,Q) = 0 can be

deduced by [34, XIII prop 2] with the help of II.4. Hence we get

H2(k,Z) ∼= H1(k,Q/Z) = Homcts(Ẑ,Q/Z) ∼= Q/Z,

whence scd(Ẑ) = scdl(Ẑ) = 2 by II.11.

Example II.13. Let p be a prime number, k be a p-adic field (i.e. a finite field

extension of Qp), and Γ be the absolute Galois group of k. Then we have scdl(Γ) =

cdl(Γ) = 2 for all prime number l, see [33, chap. II, 5.3].

Example II.14. Let k be an algebraic number field, and Γ be its absolute Galois

group. If l 6= 2, or k is totally imaginary, we have cdl(Γ) ≤ 2. Otherwise, we have

cdl(Γ) = ∞. Although cd2(Γ) could be ∞, we can still control the group Hq(k,M)

very well for any discrete torsion Γ-module M and q > 2. Actually, we have

Hq(k,M) =
∏
v

Hq(kv,M)

for q > 2, where v varies over all the real archimedean places of k. This group is in

fact a 2-torsion group, since the absolute Galois group of kv is just the cyclic group

of order two for any real archimedean place v.

2.3 Continuous cochain cohomology

The l-adic realisations of 1-motives lie in the category R of finitely generated Zl-
modules with continuous Galois action. In order to study the l-adic realisations of 1-

motives, it is necessary to study the categoryR. The continuous cochain cohomology

is a useful tool. In this section, we are going to formulate the continuous cochain

cohomology, and collect some propositions on continuous cochain cohomology groups.

The final aim is to give some applications in our context.

Let G be a profinite group, and let M be a topological G-module (i.e. a topolog-

ical abelian group with continuous G-action). We construct the continuous cochain

complex C•cts(G,M) of G with coefficients in M in the same way as in 2.3, except that

we write Cn
cts(G,M) instead of Cn(G,M) to indicate that we are using the topology

of M itself.



30

Definition II.15. The q-th continuous cochain cohomology group of G is defined

to be the q-th cohomology group of the complex C•cts(G,M), which we denote by

Hq
cts(G,M).

Remark II.16. If the topology on M is the discrete one, then the continuous cochain

cohomology groups coincide with the ones defined in II.2. However, for arbitrary

topological G-module M , the groups Hq(G,M) may not be defined.

Since the continuous cochain cohomology is not defined via the standard derived

functor method, given any short exact sequence of topological G-modules, we don’t

get the cohomological long exact sequence automatically. However, we have the

following proposition from [26].

Proposition II.17. Let

0→M ′ →M
β−→M ′′ → 0

be a short exact sequence of topological G-modules such that the topology of M ′ is

induced from that of M and such that β has a continuous section (not necessary a

homomorphism). Then there exist canonical boundary homomorphisms

δ : Hq
cts(G,M

′′)→ Hq+1
cts (G,M ′)

and we obtain a long exact sequence

· · · → Hq
cts(G,M

′)→ Hq
cts(G,M)→ Hq

cts(G,M
′′)

δ−→ Hq+1
cts (G,M ′)→ · · · .

Proof. See [26, chap. II, 2.7.2].

Remark II.18. We can apply this proposition in the particular case when M ′ is an

open submodule of M and M ′′ = M/M ′ is the quotient module with the quotient

topology, which is discrete. For our purpose, we are going to consider the short exact

sequence

0→ TlM
ln−→ TlM → TlM/ln → 0

coming from applying the l-adic realisation functor to the short exact sequence

0→M
ln−→M →M/ln → 0

associated to a torsion-free 1-motive M .
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We are particularly interested in the l-adic realisations of 1-motives, which are

the inverse limits of finite étale group schemes. The following proposition (taken

from [26]) relates the continuous cochain cohomology groups of compact topological

G-modules, whose underlying topology is profinite, to the Galois cohomology groups

of finite G-modules.

Proposition II.19. Let M be a compact topological G-module which has a presen-

tation

M = lim←−
n∈N

Mn

as a countable inverse limit of finite G-modules. Then there exists a natural exact

sequence

0→ lim←−
n

1H i−1(G,Mn)→ H i
cts(G,M)→ lim←−

n

H i(G,Mn)→ 0

for each i > 0, where lim←−n
1 denotes the first right derived functor of lim←−n.

Proof. See [26, chap. II, 2.7.2].

Corollary II.20. If H i(G,Mn) is finite for each i ≤ N and each n, then we have

H i
cts(G,M) = lim←−

n

H i(G,Mn)

for all i ≤ N + 1.

Proof. For i ≤ N+1, since the groups H i−1(G,Mn) are all finite for all n, the inverse

system satisfies the Mittag-Leffler condition. So we get lim←−n
1H i−1(G,Mn) = 0,

whence the result follows from II.19.

At last, we give an application of continuous cochain cohomology to some exten-

sion groups in the category R.

Proposition II.21. Let M,N ∈ R, and suppose that M is free as a Zl-module.

Then we have

Ext1
R(M,N) ∼= H1

cts(Γ,HomZl
(M,N)).

Proof. First suppose that the continuous Γ-actions on M and N are given by the

continuous homomorphisms

ρM : Γ→ AutZl
(M)
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and

ρN : Γ→ AutZl
(N)

respectively. Recall that the continuous Γ-module structure on HomZl
(M,N) is given

by

fσ(m) = (ρN(σ)fρM(σ−1))(m)

for any σ ∈ Γ, f ∈ HomZl
(M,N), and m ∈M .

Given any element in Ext1
R(M,N), which is represented by an short exact se-

quence

(2.4) 0→ N → E →M → 0

in R, let ρE : Γ→ AutZl
(E) be the continuous homomorphism giving the continuous

Γ-module structure. Since M is free as a Zl-module, the short exact sequence 2.4

splits as a sequence of Zl-modules, i.e. E ∼= N ⊕M as a Zl-module via some section

s : M → E. Then under this expression, for any element σ ∈ Γ, ρE(σ) can be written

as a matrix ρN(σ) fσ

0 ρM(σ)

 ,

where fσ : M → N is a homomorphism of Zl-modules. Given any two elements

σ, τ ∈ Γ, we have ρE(στ) = ρE(σ)ρE(τ), i.e.ρN(σ) fσ

0 ρM(σ)

 ·
ρN(τ) fτ

0 ρM(τ)

 =

ρN(στ) fστ

0 ρM(στ)

 .

So we get

fστ = ρN(σ)fτ + fσρM(τ),

which is equivalent to the equality

fστρM((στ)−1) = (ρN(σ)fτ + fσρM(τ))ρM((στ)−1)

= ρN(σ)fτρM((στ)−1) + fσρM(τ)ρM((στ)−1)

= ρN(σ)fτρM(τ−1)ρM(σ−1) + fσρM(σ−1)

= (fτρM(τ−1))σ + fσρM(σ−1)

for any σ and τ in Γ. This equality says nothing but that the collection

Ss := {fσρM(σ−1)|σ ∈ Γ}
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gives a 1-cocycle, i.e. it represents an element of H1
cts(Γ,HomZl

(M,N)).

Now we prove the cohomological class associated to this extension is independent

of the choice of the splitting. Given another section s′, the difference t := s−s′ gives

an element of HomZl
(M,N). Suppose that ρE(σ) can be written as a matrixρN(σ) gσ

0 ρM(σ)


under the splitting given by the section s′, where gσ : M → N is a homomorphism

of Zl-modules, then the collection Ss′ = {gσρM(σ−1)|σ ∈ Γ} gives another 1-cocycle.

We have two equalities

fσ(m) = ρE(σ)(s(m))− s(ρM(σ)(m))

gσ(m) = ρE(σ)(s′(m))− s′(ρM(σ)(m))

for any m ∈M . The difference between them gives

fσ(m)− gσ(m) = ρE(σ)(t(m))− t(ρM(σ)(m))

= ρN(σ)(t(m))− t(ρM(σ)(m)),

i.e. fσ − gσ = ρN(σ)t− tρM(σ). This is equivalent to

fσρM(σ−1)− gσρM(σ−1) = ρN(σ)tρM(σ−1)− t

= tσ − t.

This shows the difference between the two 1-cocycles is a coboundary, hence we get

a well-defined map

ϕ : Ext1
R(M,N)→ H1

cts(Γ,HomZl
(M,N)).

On the other hand, given any 1-cocycle, we can construct an extension of M by N

easily, from what we have seen above. And it’s easy to see the map ϕ is bijective.

So we are left to show that ϕ is a homomorphism of abelian groups. It’s easy to

see that ϕ map the trivial extension to zero. Then it suffices to show that ϕ keeps the

group operations. Before continuing the proof, we digress to describe the functorial

behavior of the map ϕ.
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Claim. Given morphisms a : N → N ′ and b : M ′ →M with M ′ free as a Zl-module,

let 0→ N
u−→ E

v−→M → 0 represents an element of Ext1
R(M,N). Suppose that this

extension corresponds to a 1-cocycle (fσρM(σ−1))σ∈Γ for some section s of v, then:

(1). The canonical push-out morphism

u∗ : Ext1
R(M,N)→ Ext1

R(M,N ′)

maps the extension class [E] to the extension class corresponding to the 1-cocycle

(afσρM(σ−1))σ∈Γ.

(2). The canonical pullback morphism

v∗ : Ext1
R(M,N)→ Ext1

R(M ′, N)

maps the extension class [E] to the extension class corresponding to the 1-cocycle

(fσρM(σ−1)b)σ∈Γ.

We only prove (1), whilst the proof to (2) goes similarly. Consider the push-out

diagram

0 // N u //

a
��

E v //

c
��

M

s

bb
// 0

0 // N ′ u′ // E ′ v′ //M

s′

bb
// 0,

where s′ := cs is a section of v′. Denote the 1-cocycle associated to the section s′

for the extension class [E ′] by (f ′σρM(σ−1))σ∈Γ, where by definition f ′σ is such that

u′f ′σ = ρE′(σ)s′ − s′ρM(σ) for each σ ∈ Γ. Since ufσ = ρE(σ)s− sρM(σ), we get

u′afσ = cufσ = c(ρE(σ)s− sρM(σ))

= ρE′(σ)cs− csρM(σ)

= ρE(σ)s′ − s′ρM(σ)

= u′f ′σ.

The injectivity of u′ implies f ′σ = afσ, which shows the (1) of the Claim.

Now we go back to the proof of the proposition. Given two extensions of M by N

0 // N // E
v //M

s

bb
// 0 0 // N // E ′

v′ //M

s′

bb
// 0 ,
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by definition we have E + E ′ = 5N(E ⊕ E ′)4M . Let s and s′ be sections of v

and v′ respectively, and denote the corresponding 1-cocycles by (fσρM(σ−1))σ∈Γ and

(f ′σρM(σ−1))σ∈Γ respectively. It’s easy to see that the 1-cocycle corresponding to the

section s⊕ s′ of v ⊕ v′ for the extension E ⊕ E ′ is just

((fσ ⊕ f ′σ)(ρM ⊕ ρM)(σ−1))σ∈Γ.

Then by the claim, we have the extension E + E ′ can be represented by the 1-

cocycles ((fσ +f ′σ)ρM(σ−1))σ∈Γ. And this just shows that the map ϕ keeps the group

operations.

2.4 The five lemma

We are going to use the five lemma repeatedly, hence it’s worth stating it.

Proposition II.22 (The five lemma). Let C be a small abelian category. Given a

commutative diagram with exact rows

A //

f1
��

B //

f2
��

C

f3
��

// D
u //

f4
��

E

f5
��

A′
v // B′ // C ′ // D′ // E ′

in C. Then we have the following:

(1) If both f2 and f4 are monomorphisms, and f1 is an epimorphism, then f3 is a

monomorphism.

(2) If both f2 and f4 are epimorphisms, and f5 is a monomorphism, then f3 is a

epimorphism.

(3) If both f2 and f4 are isomorphisms, f1 is an epimorphism, and f5 is a monomor-

phism, then f3 is an isomorphism.

Proof. See [23, chap. I, thm. 21.1] for the case C being the category of abelian

groups. The general case follows from [23, chap. IV, metathm 1.1 and thm. 2.6]

Remark II.23. Let C be an abelian category in which we can do diagram chasing

(eg. the category of modules over a fixed ring), we can make the five lemma slightly

stronger. For (1), the condition concerning f1 can be weaken to that for any b′ ∈
im(v) there exists an a ∈ A such that vf1(a) = b′. For (2), the condition concerning

f5 can be weakened to f5 being injective when restricted to the image of u.
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2.5 Some spectral sequences

Spectral sequences are very useful in computing (co)homology groups. In this

section, we just give the definition of (cohomological) spectral sequences, then list

several (cohomological) spectral sequences needed for our purpose.

Definition II.24. Let A be an abelian category, m be a positive integer. An Em-

spectral sequence in A consists of

(1) objects Ep,q
r ∈ A for all p, q ∈ Z and all integer r ≥ m.

(2) morphisms dp,qr : Ep,q
r → Ep+r,q−r+1

r such that: (a) dp,qr dp−r,q+r−1
r = 0, i.e. we

have a complex · · · → Ep−r,q+r−1
r → Ep,q

r → Ep+r,q−r+1
r → · · · passing through Ep,q

r ;

(b) Ep,q
r+1
∼= ker(dp,qr )/im(dp−r,q+r−1

r ), i.e. Ep,q
r+1 comes from the cohomology at (p, q)

place of the complex in (a); (c) for each fixed pair (p, q) ∈ Z2 the morphisms dp,qr and

dp−r,q+r−1
r vanish for sufficient large r.

(3) finite decreasingly filtrated objects (En ∈ A, F •) for all n ∈ Z, such that Ep,q
∞
∼=

grpE
n, where E∞ = Ep,q

r for some r large enough such that dp,qr = dp−r,q+r−1
r = 0.

We denote the spectral sequence by Ep,q
m =⇒ Ep+q. If Ep,q

r = 0 for p < 0 or q < 0,

then we call such a spectral sequence a first quadrant spectral sequence.

For a first quadrant spectral sequence Ep,q
m =⇒ Ep+q, we have that F n+1En = 0

and F 0En = En for all n ≥ 0. Hence we get an injection En,0
∞ = F nEn ↪→ En and

a quotient map En � E0,n
∞ . For any r ≥ 2, the morphisms En,0

r
dn,0
r−−→ En+r,−r+1

r = 0

and 0 = E−r,n+r−1
r

d−r,n+r−1
r−−−−−−→ E0,n

r are forced to be zero for all n ≥ 0, so we have

inclusions En,0
r+1 ↪→ En,0

r and quotient maps E0,n
r � E0,n

r+1. Then we get two chains of

morphisms

En,0
2 � En,0

3 � · · ·� En,0
∞ ↪→ En

and

En � E0,n
∞ ↪→ · · · ↪→ E0,n

3 ↪→ E0,n
2 .

The compositions of these two chains give two morphisms En,0
2 → En and En → E0,n

2

for each n, and these morphism are called the edge morphisms.

Proposition II.25 (The five term exact sequence). Given any first quadrant spectral

sequence Ep,q
2 =⇒ Ep+q, we have an exact sequence

(2.5) 0→ E1,0
2

edge−−→ E1 edge−−→ E0,1
2 → E2,0

2

edge−−→ E2.
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Proof. Since the spectral sequence given is a first quadrant one, we have

E1,0
∞ = E1,0

2(2.6)

E0,1
∞ = E0,1

3 = ker(d0,1
2 )(2.7)

E2,0
∞ = E2,0

3 = coker(d0,1
2 ).(2.8)

We then have a short exact sequence

0→ E1,0
∞ → E1 → E0,1

∞ → 0

from the filtration on E1, an exact sequence

0→ ker(d0,1
2 )→ E0,1

2 → E2,0
2 → coker(d0,1

2 )→ 0

from the morphism d0,1
2 , and an injection

0→ E2,0
∞ → E2

from the filtration on E2. Under the identifications from 2.6, 2.7 and 2.8, splicing

the above three exact sequences gives the required one.

The five term exact sequence is very useful for dealing with lower degree coho-

mology groups. And it can be extended further in various cases. The following is

taken from [26, chap. 2.13].

Proposition II.26. Suppose that we have a first quadrant spectral sequence

Ep,q
2 =⇒ Ep+q.

(1) If Ep,q
2 = 0 for all q > 1 and all p, then we have a long exact sequence

0 // E1,0
2

edge
// E1 edge

// E0,1
2

// E2,0
2

edge
// E2 // E1,1

2

// E3,0
2

edge
// E3 // E2,1

2
// · · · .

(2) If Ep,q
2 = 0 for all p > 1 and all q, then we have short exact sequences

0→ E1,n−1
2 → En edge−−→ E0,n

2 → 0

for all n ≥ 1.
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Proof. Under the condition of (1) (resp. (2)), the differentials dp,qr vanish for all r > 2

(resp. r ≥ 2). The proofs are similar to the proof of the five term exact sequence.

Theorem II.27 (The Hochschild-Serre spectral sequence). Let G be a profinite

group, H be a closed normal subgroup of G, and M be a discrete G-module. Then

there is a first quadrant spectral sequence

Ep,q
2 = Hp(G/H,Hq(H,M)) =⇒ Hp+q(G,M).

Proof. See [26, chap II, 2.4.1].

Theorem II.28. Let G be a profinite group, and M,N be two discrete G-modules.

As in [22, chap. I, sec. 0] set

Hom(M,N) :=
⋃
Uopen

Hom(M,N)U

= {f ∈ Hom(M,N) |σf = fσ for all σ in some open subgroup U},

let Extr(M,N) denote the r-th derived functor of the left exact functor

CG → CG, N 7→ Hom(M,N).

Then there is a first quadrant spectral sequence

Ep,q
2 = Hp(G, Extq(M,N)) =⇒ Extp+qCG (M,N).

In particular, when M is finitely generated as an abelian group, then for any q ≥ 0

the group underlying the discrete G-module Extq(M,N) is just the abelian group

ExtqZ(M,N), and we follow Milne’s notation in [22] to write Extq(M,N) instead of

Extq(M,N).

Proof. See [22, chap. I 0.8].

Theorem II.29. Let k be a perfect field, and let A and B be commutative algebraic

group schemes over k. Then there is a first quadrant spectral sequence

Ep,q
2 = Hp(k,Extqks(A,B)) =⇒ Extp+qk (A,B),

where ks denotes the separable closure of k.

Proof. See [21].
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2.6 Yoneda extensions in abelian subcategories

In this section, we are going to compare the Yoneda extension groups in a given

abelian category and its abelian subcategories.

First let us give a description of Yoneda extension groups from the point of view

of derived category. Given any abelian category A, let C(A) be the category of

complexes in A and C∗(A) (∗ = b,+,−) be the full subcategory of C(A) consisting

of bounded (resp. bounded below, bounded above) complexes. The homotopy cate-

gory K(A) is a triangulated category which has the same objects as C(A), but has

the morphisms being the morphisms in C(A) modulo chain homotopy equivalence.

Similarly, we can also define the category K∗(A) (∗ = b,+,−) in the same manner.

Then the derived category D(A) is defined to be the localisation of K(A) with re-

spect to quasi-isomorphism, and is a triangulated category naturally. Similarly, the

derived category D∗(A) (∗ = b,+,−) can also be defined. We have four natural

functors fitting into the following commutative diagram

D+(A)

$$

Db(A)

::

$$

D(A)

D−(A)

::

and all of these functors are all fully faithful, see [37, chap. III, them. 1.2.3.]. For

details about derived category, see [17], [37] or [38].

The categories K∗(A) and D∗(A) are additive. Given two objects X, Y ∈ A,

regarded as objects of D(A) with X and Y in degree zero and 0 in all other degrees,

the group of homomorphism between X and Y can be described as follows:

HomD(A)(X, Y )

= lim−→
(Qis/X)◦

HomK(A)(·, Y ) = lim−→
(Qis−/X)◦

HomK(A)(·, Y ) = lim−→
(Qisb/X)◦

HomK(A)(·, Y )

= lim−→
Y \Qis

HomK(A)(X, ·) = lim−→
Y \Qis+

HomK(A)(X, ·) = lim−→
Y \Qisb

HomK(A)(X, ·),

where Qis/X denotes the category of quasi-isomorphisms into X in K(A) and

its opposite category (Qisb/X)◦ is filtrant, Y \Qis denotes the category of quasi-

isomorphisms with domain Y in K(A) which is filtrant, Qis−/X, Qisb/X, Y \Qis+
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and Y \Qisb are defined in a similar way. See [37, chap. III, prop. 3.1.3.] for details

of these descriptions.

Now given a Yoneda n-extension

0→ Y → Zn−1 → Zn−2 → · · · → Z0 → X → 0

in A, let Z• be the complex

· · · → 0→ Y → Zn−1 → · · ·Z0 → 0→ · · ·

where Y lies in degree −n and Zi lies in degree −i for each i. Then the extension

gives a canonical quasi-isomorphism Z• → X, the complex Z• itself gives a canonical

element Z• → Y [n] in HomK(A)(Z
•, Y [n]), so we get an element of HomD(A)(X, Y [n]).

This gives a map δn from the set of Yoneda extensions to HomD(A)(X, Y [n]). Actu-

ally, we can say more.

Proposition II.30. The map δn induces an isomorphism

δ̄n : ExtnA(X, Y )→ HomD(A)(X, Y [n])

of groups.

Proof. See [37, chap III, prop. 3.2.2.].

The proposition II.30 reveals that the Yoneda extension group ExtnA(X, Y ) can

be defined alternatively as the group HomD(A)(X, Y [n]) of morphisms in the derived

category, so in the rest of this thesis we will use these two definitions freely.

Now we go back to the category CG of discrete G-modules for a profinite group

G. Let CfG be the full subcategory of CG consisting of all finitely generated discrete

G-modules, this category is obviously a full abelian subcategory of CG. When G is

the absolute Galois group of a field k, we will use the notation Ck instead of CfG. Let

Db

CfG
(CG) be the full additive subcategory of Db(CG) consisting of all objects X such

that H i(X) ∈ CfG for all i. Then we have natural functors

Db(CfG)
δb

−→ Db

CfG
(CG) ↪→ Db(CG).

Proposition II.31. The above functor δb is an equivalence of categories, and hence

the canonical morphism

ExtiCfG
(X, Y )→ ExtiCG(X, Y )

is actually an isomorphism for any X, Y ∈ CfG.
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Proof. Recall that a thick subcategory of an abelian category is a full subcategory

which is closed by kernels, cokernels, and extensions, see [17, chap. 8, def. 8.3.21].

It’s easy to see that CfG is a thick subcategory of CG. Given any epimorphism f :

X → Y in CG with Y ∈ CfG, let y1, · · · , yn be a set of generators for Y , take preimage

x1, · · · , xn ∈ X such that f(xi) = yi. Since X is a discrete G-module, there exists

an open subgroup U of G such that XU contains all the xi’s, let X ′ be the sub-G/U -

module of XU generated by the xi’s. Then Y ′ is finitely generated and is naturally

a discrete sub-G-module of X, hence an object of the category CfG. The composition

Y ′ ↪→ X
f−→ Y is obviously an epimorphism, hence by the dual version of [17, chap.

13, them. 13.2.8], the functor δb is an equivalence of categories.

The category Db

CfG
(CG) is a full subcategory of Db(CG), hence we have

HomDb

Cf
G

(CG)(X, Y [i]) = HomDb(CG)(X, Y [i])

for any X, Y ∈ CfG. On the other hand, the functor δb gives a canonical isomorphism

HomDb(CfG)(X, Y [i])
∼=−→ HomDb

Cf
G

(CG)(X, Y [i]).

So we get a canonical isomorphism HomDb(CfG)(X, Y [i])
∼=−→ HomDb(CG)(X, Y [i]) which

is just the morphism appearing in the statement under the identification in II.30.

Corollary II.32. Given X, Y ∈ CfG, we have a first quadrant spectral sequence

Ep,q
2 = Hp(G,Extq(X, Y )) =⇒ Extp+q

CfG
(X, Y ).

Proof. Easy consequence of II.28 and II.31.

Theorem II.33. Let A be an abelian category, B a full abelian subcategory which is

thick. Suppose that B is also closed by subobjects and quotients, see [17, chap. 8, def.

8.3.21] for definitions. Suppose given any two objects X, Y ∈ B and a positive integer

i > 1, the canonical map ϕi−1 : Exti−1
B (X, Y ) → Exti−1

A (X, Y ) for Yoneda extension

groups is an isomorphism, then the canonical map ϕi : ExtiB(X, Y )→ ExtiA(X, Y ) is

injective. In particular, the map ϕ2 is always injective.

Proof. Before going to the proof, we first make a claim.

Claim. For any short exact sequence 0 → A′ → A → A′′ → 0 in A, A lies in B if

and only if both A′ and A′′ lie in B.
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The claim is just an easy consequence of the fact that B is thick and closed by

subobjects and quotients.

Now suppose that the map ϕi−1 is an isomorphism. Given any i-extension in B,

which represents the trivial element of the group ExtiA(X, Y ), write it as E · F for

some (i− 1)-extension E and some 1-extension F .

E 0→ Y → Y1 → · · · → Yi−1 → P → 0 0→ P
α−→ Yi → X → 0 F .

By the claim, it is easy to see that the extension F lies in the category B. We have

the long exact sequence associated to F

→ Exti−1
A (Yi, Y )

α∗−→ Exti−1
A (P, Y )

δ−→ ExtiA(P,X)→ .

Note that the map δ is just the map splicing with F . Then [E · F ] = 0 implies that

E ∼ α∗(E ′) and E · F ∼ α∗(E ′) · F ∼ E ′ · (α∗F) for some (i− 1)-extension E ′ of Yi by

Y . From the isomorphism

Exti−1
B (Yi, Y )→ Exti−1

A (Yi, Y ),

there exists an extension E ′′ of Yi by Y in B which is equivalent to E ′. It follows that

[E · F ] = [E ′ · (α∗F)] = [E ′′ · (α∗F)] = 0 in B. This shows the injectivity of ϕi.

Note the claim implies that the map ϕ1 is an isomorphism, hence ϕ2 is injective.

Lemma II.34. Let G be the profinite group Ẑ, R be the ring Zl[T, T−1] with T

some indeterminate, B be the abelian category of finitely generated Zl-modules with

continuous G-action. Then the abelian category B is equivalent to the abelian cate-

gory R −Modf consisting of all R-modules which are finitely generated over Zl. In

particular, given any X, Y ∈ B, we have a canonical isomorphism

ExtiB(X, Y )
∼=−→ Exti

R−Modf (X, Y )

for each positive integer i.

Proof. For any finitely generated Zl-module X, the topology on AutZl
(X) is the l-

adic one which is complete and compact. Hence a continuous homomorphism from Ẑ
to AutZl

(X) is uniquely determined by the image of the topological generator of Ẑ,
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or equivalently is uniquely determined by the induced homomorphism from the dense

subgroup Z of Ẑ to AutZl
(X). Note that we have an isomorphism Zl[Z] ∼= Zl[T, T−1]

sending 1 ∈ Z to T . It follows that we get an equivalence from the category B to the

category R−Modf consisting of all the R-modules which are finitely generated over

Zl.

Lemma II.35. Let A be a noetherian ring, and M,N two finitely generated A-

modules. Then any element of ExtiA(M,N) can be represented by an i-extension of

M by N which consists of only finitely generated A-modules.

Proof. First the category of A-modules admits enough projectives, so the group

ExtiA(M,N) can also be computed via resolution. Since M is finitely generated

and A is notherian, so there exists a projective resolution of M

· · · → Li+1
di+1−−→ Li

di−→ · · · → L1
d1−→ L0 →M,

in which all Lj’s are finitely generated A-modules. Given any α ∈ ExtiA(M,N), i.e.

an element of the group ker(HomA(di+1, N))/im(HomA(di, N)), choose a represen-

tative f ∈ HomA(Li, N), then we have f ◦ di+1 = 0. It follows the map f factors

through L̃i := Li/im(di+1) which is a finitely generated A-module. We also have the

following diagram

E : 0 // L̃i //

f̃
��

Li−1
// · · · // L0

//M // 0

N.

Then the Yoneda extension class corresponding to α can be represented by the ex-

tension f̃∗E , which consists of finitely generated A-modules.

Theorem II.36. Let notations be as in II.34, then we have canonical isomorphisms

ϕi : Exti
R−Modf (X, Y )

∼=−→ ExtiR−Mod(X, Y )

for all positive integers i. In particular, the group Exti
R−Modf (X, Y ) vanishes for each

i > 2.

Proof. Firstly it’s easy to see that ϕ1 is an isomorphism. By theorem II.33, the map

ϕ2 is injective. Secondly, the groups ExtiR(X, Y ) vanish for all i > 2, since the global
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dimension of the ring R is two. So the surjectivity of the maps ϕi is obvious for all

i > 2. If ϕ2 is an isomorphism, then ϕi’s are all injective by using theorem II.33

repeatedly. So we are left to show the surjectivity of the map ϕ2.

Given any element α ∈ ExtiR(X, Y ) regarded as a class of Yoneda extensions,

choose a representative

0→ Y → L1 → L0 → X → 0

with L1, L0 finitely generated R-modules.

Since Y is finitely generated as a Zl-module, the annihilator ideal ann(Y ) of Y

must contain an element f which doesn’t lie in Zl. Let Lf1 be the set

{x ∈ L1|f rx = 0 for some r ∈ N},

it’s easy to see that Lf1 is a R-submodule of L1, hence a finitely generated R-module.

And also we have Y ⊂ Lf1 . Let {x1, x2, · · · , xt} be a set of generators of Lf1 as a R-

module, and suppose that fnixi = 0 for some positive integer ni. Let n be maxi{ni},
then we have fnLfi = 0.

We claim that Y ∩fnL1 = {0}. Take y ∈ Y ∩fnL1, then y can be written as fnx.

y ∈ Y implies that fn+1x = fy = 0, so x lies in Lf1 . It follows that y = fnx = 0.

So we get the following commutative diagram with exact rows

(2.9) fL1� _

��

0 // Y // L1
u //

��

L0
//

��

X //

��

0

0 // Y // L1/f
nL1

// L0/u(fnL1) // X // 0.

Since L1 is a finitely generated R-module, there exists a surjective map Rr v−→ L1 for

some positive integer r. Consider the following diagram

0 // ker(v) //

s1
��

Rr v //

s2

��

L1
//

s3

��

0

0 // ker(v) // Rr v // L1
// 0,

where the three vertical maps are the multiplication maps by fn. By the snake

lemma, we have an exact sequence

0→ ker(s3)→ coker(s1)→ coker(s2)→ coker(s3)→ 0.
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f doesn’t lie in Zl, so R/fnR is finitely generated over Zl, hence so is L1/f
nL1 =

coker(s3). Hence L0/u(fnL1) is also finite generated over Zl, and α lies in the image

of ϕ2.

2.7 The noetherianity of M

First recall that in the theory of rings and modules, the chain condition gives two

special kinds of objects, the artinian ones and the noetherian ones, which satisfy

descending chain condition and ascending chain condition respectively. These kinds

of rings and modules are very useful and relatively easy to understand. In the abelian

categories, we can do the similar thing.

Definition II.37 (cf. [10] chap. II, sec. 4). Let C be an abelian category. An object

M in C is noetherian (resp. artinian) if every ascending (resp. descending) chains

of subobjects of M is stationary. The category C is noetherian (resp. artinian) if all

the objects of C are noetherian (resp. artinian).

Proposition II.38. The category M is not artinian.

Proof. Let L be a torsion-free finitely generated locally constant sheaf for the étale

topology, then L[1] is a 1-motive. Let r be a prime number which is not equal to

char(k), the family

{L[1]
rn−→ L[1] |n ∈ N}

of monomorphisms shows thatM is not artinian. This can also be shown by another

example, the family

{G rn−→ G |n ∈ N}

of monomorphisms, where G is a nonzero semi-abelian variety.

Theorem II.39. The category M is noetherian.

Proof. Given any 1-motive M = [L→ G], we have a canonical short exact sequence

0→ G→M → L[1]→ 0.

Then by [10, lemme 1], in order to show M is noetherian, it is enough to that both

G and L[1] are noetherian. Note that any subobject of L[1] has to be of the form
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L′[1], where L′ is a subsheaf of L, then the noetherianity of L[1] follows from the

noetherianity of L which is obvious.

Now we are left to show the noetherianity of G. Again by [10, lemme 1], we can

assume that the semi-abelian variety G doesn’t contain any proper subgroup variety.

Any morphism to G can be represented by an effective map of the form

F

u
��

0 // 0

��

G′
g
// G

such that u(F ) goes to zero under g. The morphism (0, g) is a monomorphism if

and only if the map u is injective. If this is the case, then (0, g) factors through the

quasi-isomorphism [F
u−→ G′]→ G′/F , as in the following diagram

[F
u−→ G′]

(0,g)
//

q.i.
%%

G

G′/F.

ḡ

==

Then we can go further, any monomorphism to G can be represented by a morphism

of the form G′
g−→ G with g a morphism of k-group schemes such that ker(g) is a

finite étale subgroup of G′. Since G doesn’t contain any proper subgroup variety, g

has to be an isogeny of semi-abelian varieties. It follows that any chain of subobjects

of G can be represented by the diagram:

G0
i0 //

g0
!!

G1
i1 //

g1

��

G2
i2 //

g2
}}

· · ·

G

,

with gi’s isogenies to G. Note that we can choose ij’s to be effective maps which

again have to be isogenies. Since ker(g0) (note here it is the kernel of the morphism

of group schemes) is finite, so the chain is stationary.

Remark II.40. In [27], the author shows that the category G of commutative group

schemes over an algebraically closed field is artinian, then embeds G as a full sub-

category into its pro-category Pro(G) in which there are enough projectives. Then

the groups ExtiG(A,B) can be computed as ExtiPro(G)(A,B) for any A,B ∈ G by

[28, them. 3.5]. Here we have shown M is not artinian, but noetherian. We can
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embed M into its Ind-category (instead of Pro-category) in which there are enough

injectives, and the groups ExtiM(M,M ′) can be computed as ExtiInd(M)(M,M ′) for

any M,M ′ ∈M by the dual version of [28, them. 3.5].



CHAPTER III

Higher Yoneda extensions in the abelian category of
1-motives with torsion

Throughout this chapter, M = [L→ G] and M ′ = [L′ → G′] will be two 1-motives

over the base filed k, Γ = Gal(k̄/k) will be the absolute Galois group of k, and p will

be the characteristic of k.

In 1.4, we have discussed the groups HomM(M,M ′) and Ext1
M(M,M ′) for simple

M and M ′ in characteristic zero case. In this chapter we are going to investigate

systematically the Yoneda extension groups in the abelian category M. The main

result we want to prove in this chapter is the following theorem.

Theorem III.1. The homological dimension of the abelian category M is

d(M) = cd(Γ) + 1,

where cd(Γ) denotes the cohomological dimension of the absolute Galois group Γ of

the base field k.

We are going to prove III.1 in the first section for the characteristic zero case with

the help of I.25 and I.26. In the second section, we are going to give the analogues

of I.25 and I.26 in the positive characteristic case, and then finish the proof of III.1.

The last two sections are devoted to some applications of III.1.

3.1 Proof of theorem III.1 in characteristic zero case

Throughout this section, the characteristic of k will be zero. Recall that the

homological dimension of an abelian category C is defined to be the non-negative

integer n such that the functor ExtiC(−,−) is zero for i > n; if such n doesn’t exist,

then the homological dimension is defined to be infinity, see [27, I.3-2].

48
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Lemma III.2. Let G,G′ be two semi-abelian varieties, then the group Ext2
M(G,G′)

is torsion.

Proof. Take any element in Ext2
M(G,G′), then it can be expressed as the product of

some F ∈ Ext1
M(G, [Y → J ]) and E ∈ Ext1

M([Y → J ], G′) for a suitable 1-motive

[Y → J ].

From the canonical short exact sequence 0→ J
α−→ [Y → J ]

β−→ Y [1]→ 0, we have

an exact sequence:

→ Ext1
M(G, J)

α∗−→ Ext1
M(G, [Y → J ])

β∗−→ Ext1
M(G, Y [1])→ .

By I.26, the group Ext1
M(G, Y [1]) is torsion, so there exists a positive integer r such

that β∗(r·F) = r·β∗(F) = 0. It follows that r·F = α∗(F ′) for some F ′ ∈ Ext1
M(G, J).

Then we have

r · (E · F) = E · (α∗(F ′)) ∼ (α∗(E)) · F ′ = E ′ · F ′,

where E ′ := α∗(E) ∈ Ext1
M(J,G′). By I.25 (c), both E ′ and F ′ can be represented by

the short exact sequences in the category of commutative group schemes as follows:

E ′ 0 // G′ // J1
// J // 0 0 // J // J2

// G // 0 F ′.

Now let us write G and J as 0 → T → G → A → 0 and 0 → T1
µ−→ J

λ−→ B → 0

respectively. By Poincaré’s complete reducibility theorem, the group Ext1
k(A,B) is

torsion, the torsioness of the group Ext1
k(T, T1) follows from the torsioness of the

extension group of their character groups, and Ext1
k(T,B) is torsion by Chevalley’s

theorem on the structure of algebraic groups over k, hence we have both Ext1
k(G,B)

and Ext1
k(T, J) are torsion (note that these results still hold if we replace G and J

by any semi-abelian varieties). Applying the functor Homk(G,−) to the short exact

sequence 0→ T1
µ−→ J

λ−→ B → 0, we get an exact sequence

Ext1
k(G, T1)

µ∗−→ Ext1
k(G, J)

λ∗−→ Ext1
k(G,B).

Hence there exists a positive integer s such that λ∗(s · F ′) = s · λ∗(F ′) = 0, and it

follows that s · F ′ = µ∗(F ′′) for some F ′′ ∈ Ext1
k(G, T1). So we have

(sr) · (E · F) ∼ s · (E ′ · F ′) = E ′ · µ∗(F ′′)) ∼ µ∗(E ′) · F ′′ = E ′′ · F ′′,
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where E ′′ = µ∗(E ′). So we get:

E ′′ 0 // G′ // J ′1 // T1
// 0 0 // T1

// J ′2 // G // 0 F ′′.

Now Ext1
k(T1, G

′) is torsion by the same reason as Ext1
k(T, J) is torsion, hence

E ′′ ·F ′′ represents a torsion element, so does E ·F . Therefore, the group Ext2
M(G,G′)

is torsion.

Let Γ = Gal(k̄/k) be the absolute Galois group of the base field k, and let Ck = CfΓ
be the abelian category of finitely generated abelian groups on which Γ acts discretely

as in 2.6.

We have seen in I.24 (a) and I.25 (a) that HomCk(L,L′) ∼= HomM(L[1], L′[1]) and

Ext1
Ck(L,L′) ∼= Ext1

M(L[1], L′[1]). In fact, this is true for any Exti by the following

lemma.

Lemma III.3. For each positive integer i, there is a canonical morphism

Ψi : ExtiCk(L,L′)→ ExtiM(L[1], L′[1])

sending the Yoneda i-extension

0→ L′ → L1 → · · · → Li → L→ 0

in Ck to the Yoneda i-extension

0→ L′[1]→ L1[1]→ · · · → Li[1]→ L[1]→ 0

inM with each Lj regarded as a group scheme over k. And they are all isomorphisms.

Proof. The i = 1 case is just I.25 (a), so we only need to prove the lemma for i > 1.

Surjectivity:

We prove the surjectivity of Ψi by using induction on i. Suppose the morphism

Ψi is surjective. Given any element of Exti+1
M (L[1], L′[1]), we can express it as the

product of some E ∈ Ext1
M([Y → J ], L′[1]) and F ∈ ExtiM(L[1], [Y → J ]) for some

[Y → J ] ∈ M, such that we can find a short exact sequence of complexes as a

representative of E as follows:

E : 0 // L′

��

// Y1

��

// Y

��

// 0

0 // 0 // J J // 0.
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Let E ′ be the short exact sequence 0 → L′[1] → Y1[1] → Y [1] → 0 coming from E
by forgetting the semiabelian part, and let α be the canonical map [Y → J ]→ Y [1].

Then it’s easy to see that E = α∗(E ′), whence

E · F = α∗(E ′) · F ∼ E ′ · (α∗(F)).

By induction, α∗(F) ∈ ExtiM(L[1], Y [1]) can be represented by some element F ′ of

ExtiCk(L, Y ). And E ′ comes from an element of Ext1
Ck(Y, L′), hence E · F ∼ E ′ · F ′

can be represented by some element of Exti+1
Ck (L,L′).

Injectivity:

For any element in the kernel of Ψi+1, we express it as the product E · F of

E ∈ Ext1
Ck(Y, L′) and F ∈ ExtiCk(L, Y ) for some Y ∈ Ck. We pick representatives for

E and F as follows:

E 0 // L′ // L1
// Y // 0 0 // Y // L2

// · · · // L // 0 F .

By [23, chap. VII lemma 4.1.], there exists a morphism γ : [X → J ] → Y [1] in M,

and F ′ ∈ ExtiM(L, [X → J ]), such that F = γ∗(F ′) and γ∗(E) = 0. We can assume

γ to be an effective map, after replacing [X → J ] by another 1-motive [X̃ → J̃ ] from

which there is an quasi-isomorphism s to [X → J ], since s being an isomorphism in

M induces an isomorphism between ExtiM(L, [X̃ → J̃ ]) and ExtiM(L, [X → J ]).

It is easy to see that E ′ := γ∗(E) is represented by the extension

E ′ : 0 // L′

��

// L1 ×Y X

��

// X

��

// 0

0 // 0 // J J // 0.

And E ′ = 0 means the map [L1 ×Y X → J ] → [X → J ] admits a section s. After

replacing [X → J ] by some suitable (i.e. “big” enough) 1-motive which admits a

quasi-isomorphism to [X → J ], we can assume the section s is an effective map, i.e.

the sequence E ′′ : 0 → L′ → L1 ×Y X → X → 0 splits. Let β be the canonical

map [X → J ] → X[1], then we have E ′ = β∗(E ′′). Hence we get E · F ∼ E ′ · F ′ =

β∗(E ′′) · F ′ ∼ E ′′ · β∗(F ′) = E ′′ · F ′′, where F ′′ denotes the extension β∗(F ′) ∈
ExtiM(L[1], X[1]). We have already proven the surjectivity of the morphisms Ψi’s,

so F ′′ can be represented by an i-extension F ′′′ in the category Ck. Hence we have

E · F ∼ E ′′ · F ′′′ and E ′′ · F ′′′ ∈ Exti+1
Ck (L,L′). The fact that E ′′ splits implies that

[E · F ] = [E ′′ · F ′′′] = 0 in Ck, hence Φi+1 is injective.
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Corollary III.4. The groups ExtiM(L[1], L′[1]) are all torsion for i ≥ 1.

Proof. By III.3, it is enough to prove that the groups ExtiCk(L,L′) are torsion for all

i ≥ 1. We are going to use the spectral sequence II.32

(3.1) Ei,j
2 = H i(k,Extj(L,L′)) =⇒ Exti+jCk (L,L′).

Since the homological dimension of the category of abelian groups is equal to the

global dimension of the ring Z which is one, we have that Ei,j
2 = H i(k,ExtjZ(L,L′)) =

0 for all j > 1. So we must have the morphisms di,jr = 0 for r > 2, and the following

holds:

Ei,1
∞ = Ei,1

3 = kerdi,12

Ei,0
∞ = Ei,0

3 = Ei,0
2 /imdi−2,1

2

for i ≥ 0. In particular E1,0
∞ = E1,0

2 and E0,0
∞ = E0,0

2 = E0. We also have the following

exact sequences:

0→ Ei,0
∞ → Ei → Ei−1,1

∞ → 0

0→ Ei−1,1
3 → Ei−1,1

2

di−1,1
2−−−→ Ei+1,0

2 → Ei+1,0
3 → 0

for all i ≥ 1. Combining all the above, we get exact sequences

0→ Ei,0
3 → Ei → Ei−1,1

2

di−1,1
2−−−→ Ei+1,0

2 → Ei+1,0
3 → 0

for all i ≥ 1. Taking into account Ei,j
2 = H i(k,ExtjZ(L,L′)) and Ei+j = Exti+jCk (L,L′),

we can rewrite the above exact sequences as

(3.2) 0→ H i(k,HomZ(L,L′))/imdi−2,1
2 → ExtiCk(L,L′)→ H i−1(k,Ext1

Z(L,L′))→

for all i ≥ 1. In particular for i = 1, the morphism di−2,1
2 = 0, this is just the exact

sequence of lower degree associated to our spectral sequence. According to II.6, the

group H i(k,HomZ(L,L′)) is torsion, so is the first term of the above short exact

sqeuence. And Ext1
Z(L,L′)) is torsion, hence so is the third term of the above exact

sequence. It follows that the middle term is also torsion.

Lemma III.5. There is a canonical epimorphism

Φi : lim−→
n

ExtiCk(nG,L
′) −→ ExtiM(G,L′[1]),

for each i ≥ 0. In particular, the groups ExtiM(G,L′[1]) are all torsion for i ≥ 0.
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Proof. For the case i = 1, see I.26. The case i = 0 follows from I.24 (d).

In general, the reason for the existence of the morphism Φi is the same reason as

for the existence of Φ1 given in I.26, though the notation there is just Φ instead of Φ1

here. We need to show that Φi is surjective for i. We prove this by using induction on

i. Suppose that for any semiabelian variety G and discrete sheaf L which is defined

by a finitely generated abelian group, the morphism Φi is surjective. Any element of

Exti+1
M (G,L′[1]) can be represented by the product E ·F for some 1-motive [Y → J ],

and E ∈ Ext1
M([Y → J ], L′[1]), F ∈ ExtiM(G, [Y → J ]). Replacing [Y → J ] by

another 1-motive which is quasi-isomorphic to [Y → J ], we can assume that E is

represented by the short exact sequence of complexes

0 // L′

��

// X

��

// Y

��

// 0

0 // 0 // J J // 0.

Let E ′ be the short exact sequence 0 → L′ → X → Y → 0 coming from E by

forgetting the semi-abelian part. Let α be the canonical map [Y → J ]→ Y [1], then

we have E = α∗(E ′). It follows that

E · F = α∗(E ′) · F ∼ E ′ · α∗(F) = E ′ · F ′,

where F ′ denotes α∗(F). By induction, the class represented by F ′ comes from the

group ExtiCk(nG, Y ) for some positive integer n, thus we can choose its representative

F ′′ ∈ ExtiCk(nG, Y ). Hence the class represented by E · F can also be represented

by E ′ · F ′′, which represents an element in the group Exti+1

CfΓ
(nG,L

′). This shows the

morphism Φi+1 is surjective, hence Φi’s are all surjective for all i > 0.

Since the groups ExtiCk(nG,L
′) are torsion for all i ≥ 0 and n ∈ N, so are the

groups ExtiM(G,L′[1]) for all i ≥ 0.

Lemma III.6. The group Ext2
M(L[1], G′) is torsion.

Proof. Take any element in Ext2
M(L[1], G′), and we can write it as the product E · F

for E ∈ Ext1
M([X → J ], G′) and F ∈ Ext1

M(L[1], [X → J ]) for some 1-motive

[X → J ].

Applying the functor HomM(L[1],−) to the canonical short exact sequence

0→ J
α−→ [X → J ]

β−→ X[1]→ 0,
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we get a long exact sequence

Ext1
M(L[1], J)→ Ext1

M(L[1], [X → J ])→ Ext1
M(L[1], X[1]).

By III.4, Ext1
M(L[1], X[1]) is a torsion group, hence there exists a positive integer n

such that β∗(nF) = nβ∗(F) = 0. Then nF lies in the image of α∗, i.e. nF = α∗(F ′)
for some F ′ ∈ Ext1

M(L[1], J). Now we get

nE · F = E · (nF) = E · α∗(F ′) ∼ α∗(E) · F ′ = E ′ · F ′,

where E ′ denotes α∗(E). By I.25 (c), E ′ can be represented by a short exact sequence

of semiabelian varieties

0→ G′ → J1 → J → 0.

By I.25 (b), F ′ can be represented by a short exact sequence of complexes as follows:

0 // 0

��

// L

��

L

��

// 0

0 // J J // 0 // 0.

Consider the short exact sequence 0→ T1
u−→ J

v−→ B → 0 associated to J , where T1

is the torus part of J and B is the maximal abelian quotient of J . Then we have a

long exact sequence

Ext1
k(B,G

′)
v∗−→ Ext1

k(J,G
′)

u∗−→ Ext1
k(T1, G

′).

The group Ext1
k(T1, G

′) being torsion implies that there exists a positive integer n′

such that n′u∗(E ′) = 0. Hence n′E ′ equals v∗(E ′′) for some E ′′ ∈ Ext1
k(B,G

′). So we

have

nn′(E · F) ∼ n′(E ′ · F ′) = v∗(E ′′) · F ′ ∼ E ′′ · v∗(F ′) = E ′′ · F ′′,

where F ′′ denotes v∗(F ′). So we can express E ′′ and E ′′ into the following forms

E ′′ 0 // 0

��

// 0

��

// 0

��

// 0

0 // G′ // J2
// B // 0

0 // 0

��

// L

��

L

��

// 0

0 // B B // 0 // 0

F ′′

for some semiabelian variety J2.
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Consider the short exact sequence 0→ T2
λ−→ G′

µ−→ A→ 0 associated to G′, where

T2 is the torus part of G′ and A is the maximal abelian quotient of G′. Then we

have a long exact sequence

Ext1
k(B, T2)

λ∗−→ Ext1
k(B,G

′)
µ∗−→ Ext1

k(B,A).

The group Ext1
k(B,A) being torsion implies that there exists a positive integer n′′

such that n′′µ∗(E ′′) = 0. Hence n′′E ′′ lies in the image of λ∗, i.e. n′′E ′′ = λ∗(E ′′′) for

some E ′′′ ∈ Ext1
k(B, T2). So we get

n′′(E ′′ · F ′′) = λ∗(E ′′′) · F ′′ = λ∗(E ′′′ · F ′′).

It follows that to prove E · F is torsion, it’s enough to prove E ′′′ · F ′′ is torsion. And

we can express E ′′′ and F ′′ as follows:

E ′′′ 0 // 0

��

// 0

��

// 0

��

// 0

0 // T2
// J3

// B // 0

0 // 0

��

// L

��

L

��

// 0

0 // B B // 0 // 0

F ′′

for some semiabelian variety J3.

Applying the functor Homk−fppf(L,−) to the short exact sequence

0→ T2 → J3 → B → 0,

we get a long exact sequence

0→ Homk−fppf(L, T2)→ Homk−fppf(L, J3)→ Homk−fppf(L,B)
δ−→ Ext1

k−fppf(L, T2).

Claim. The group Ext1
k−fppf(L, T2) is torsion.

Proof of the Claim: Decompose the group L as 0→ Lt → L→ Ltf → 0, where Lt is

the torsion part of L and Ltf is the quotient. From this, we get a long exact sequence

Ext1
k−fppf(Ltf , T2)→ Ext1

k−fppf(L, T2)→ Ext1
k−fppf(Lt, T2).

The third term is obviously torsion, so we can assume L to be torsion-free. Take a

finite Galois extension K/k such that L (resp. T2) becomes isomorphic to Zr (resp.

G
s
m) for some r ∈ N (resp. s ∈ N) over K. By the local-global spectral sequence for

Exts

Ei,j
2 = H i

fppf(Speck, Extj(L, T2))⇒ Exti+jk−fppf(L, T2),
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we have an exact sequence

0→ H1
fppf(Speck,Hom(L, T2))→ Ext1

k−fppf(L, T2)→ H0
fppf(Speck, Ext1(L, T2)).

The fppf-sheaf Ext1(L, T2)) is zero by [5, lem. 1.1.6.], so we have

H1
fppf(Speck,Hom(L, T2)) ∼= Ext1

k−fppf(L, T2).

Let X(T2) denotes the groups of characters of the torus T2, then we have

Hom(L, T2)) ∼= Hom(L,Hom(X(T2),Gm))

∼= Hom(L⊗Z X(T2),Gm),

whence the fppf-sheafHom(L, T2)) is represented by the torusHom(L⊗ZX(T2),Gm).

Fppf-torsors under smooth group schemes are the same as the étale-torsors, it follows

that

H1
fppf(Speck,Hom(L, T2)) = H1

ét(Speck,Hom(L, T2))

= H1(k,Hom(L, T2)).

The Hochschild-Serre spectral sequence gives an exact sequence

0→ H1(Gal(K/k),Hom(L, T2))→ H1(k,Hom(L, T2))→ H1(K,Hom(L, T2))Gal(K/k).

The torus Hom(L, T2) becomes isomorphic to Grs
m , and H1(K,Gm) equals zero by

Hilbert’s 90, then the torsioness of the group Ext1
k−fppf(L, T2) ∼= H1(k,Hom(L, T2))

follows from the torsiness of the group H1(Gal(K/k),Hom(L, T2)) which is a stan-

dard result of group cohomology of finite groups.

Now we go back to the proof of III.6. By I.25 (b), we have Ext1
M(L[1], B) =

Homk(L,B), and we assume that F ′′ corresponds to f ∈ Homk(L,B). By the claim,

there exists m ∈ N such that δ(mf) = mδ(f) = 0. Then the homomorphism mf

can be lifted to f̃ ∈ Homk(L, J3).

Let ι be the canonical embedding B → [L
mf−−→ B], and E ′′′′ be the following short

exact sequence of complexes

E ′′′′ 0 // 0

��

// L

f̃
��

L

mf
��

// 0

0 // T2
// J3

// B // 0.



57

Then we have that E ′′′ = ι∗(E ′′′′). Since mf corresponds to mF ′′, so we get that

m(E ′′′ · F ′′) = E ′′′ · (mF ′′) = (ι∗E ′′′′) · (mF ′′) ∼ E ′′′′ · (ι∗(mF ′′)).

Note that ι is part of the extension

mF ′′ : 0→ B
ι−→ [L

mf−−→ B]→ L[1]→ 0,

whence the extension ι∗(mF ′′) is trivial. It follows that E ′′′ · F ′′ is torsion, so is

E · F .

Theorem III.7. The groups ExtiM(M,M ′) are all torsion for i ≥ 2.

Proof. Combining III.2, III.4, III.5 and III.6, it’s easy to see that the group Ext2
M(M,M ′)

is torsion by diagram chasing. Hence the groups ExtiM(M,M ′) are torsion for all

i ≥ 2.

Remark III.8. The result in theorem III.7 is not true for i = 1 in general. For

example, if taking the base field k to be the field of rational numbers Q, M to be an

elliptic curve E with a non-torsion rational point, M ′ to be the multiplicative group

Gm, then we have Ext1
M(E,Gm) ∼= Ext1

k(E,Gm) ∼= Ê(Q) ∼= E(Q) is not a torsion

group, where Ê is the elliptic curve dual to E, which is canonical isomorphic to E.

Proof of III.1 in characteristic zero case: Let d be the cohomological dimen-

sion of the absolute Galois group of the base field k. To prove the theorem, we are

going to prove the following first.

(1) Extd+i
M (L[1], L′[1]) = 0 for i ≥ 2;

(1’)Extd+1
M (L[1], L′[1]) = 0 provided that L is torsion free and L′ is torsion;

(2) There exists a finite Galois module M which is killed by some prime number l,

such that

Extd+1
M (Z/lZ[1],M [1]) = Extd+1

Ck (Z/lZ,M)

= Hd(k,Ext1
Z((Z/lZ,M))

6= 0;

(3) Extd+2
M (G,L′[1]) = 0;

(4) Extd+i
M (L[1], G′) = 0 for i ≥ 2;
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(5) Extd+2
M (G,G′) = 0.

For (1) and (2), we are going to use the spectral sequence 3.1 again. Recall that

the exact sequence 3.2,

0→ Hd+i(k,HomZ(L,L′))/imdd+i−2,1
2 → Extd+i

Ck (L,L′)→ Hd+i−1(k,Ext1
Z(L,L′))→ .

Since the Galois module Ext1
Z(L,L′) is torsion and the cohomological dimension of the

absolute Galois group of k is d, bothHd+i(k,HomZ(L,L′)) andHd+i−1(k,Ext1
Z(L,L′))

are zero for i ≥ 2, hence the group Extd+i
M (L[1], L′[1]) ∼= Extd+i

Ck (L,L′) is zero. This

proves (1).

To prove (1’), just notice that both Hd+1(k,HomZ(L,L′)) and Hd(k,Ext1
Z(L,L′)))

are zero in this case, hence we have Extd+1
M (L[1], L′[1]) = 0 by considering the exact

sequence above.

For (2), since the cohomological dimension of the absolute Galois group of k is d,

by II.10 (c) we can find a simple Galois module M killed by some prime number l

(which is finte) such that Hd(k,M) 6= 0. The short exact sequence

0→ Z l−→ Z→ Z/lZ→ 0

of discrete G-modules gives a short exact sequence

0→ Hom(Z,M)→ Ext1(Z/lZ,M)→ Ext1(Z,M)→ 0

of discreteG-modules. Here to avoid confusion, we remind that the notation Exti(−,−)

denotes a discrete G-module, for its definition see the end of II.28. Since Hom(Z,M)

is canonically isomorphic to M as discrete G-modules, and Ext1(Z,M) is zero, so we

have Ext1(Z/lZ,M) ∼= M . By proposition II.26 (1) and the spectral sequence II.32,

we have exact sequence

→Hd+1(k,Hom(Z/lZ,M))→ Extd+1
Ck (Z/lZ,M)→ Hd(k,Ext1(Z/lZ,M))

→Hd+2(k,Hom(Z/lZ,M))→ .

The group Hom(Z/lZ,M) being torsion implies

Hd+1(k,Hom(Z/lZ,M)) = Hd+2(k,Hom(Z/lZ,M)) = 0,
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hence we have

Extd+1
Ck (Z/lZ,M) ∼= Hd(k,Ext1(Z/lZ,M)) ∼= Hd(k,M) 6= 0.

Applying the functor HomM(−, L′[1]) to the short exact sequence

0→ G
n−→ G→ nG[1]→ 0

in M, we get a long exact sequence

→ Extd+2
M (nG[1], L′[1])→ Extd+2

M (G,L′[1])
n−→ Extd+2

M (G,L′[1])→ Extd+3
M (nG[1], L′[1]).

We know from (1) that both Extd+2
M (nG[1], L′[1]) and Extd+3

M (nG[1], L′[1]) are zero,

hence the multiplication-by-n map is an isomorphism on Extd+2
M (G,L′[1]). Let n vary

in N, then we know the group Extd+2
M (G,L′[1]) is actually a Q-vector space. But we

already know that Extd+2
M (G,L′[1]) is a torsion group by III.7, which cannot be a

nontrivial Q-vector space, so it has to be the zero group. This proves (3).

For the proof to (4), it suffices to prove it for the cases L being torsion and being

torsion free separately. If L is torsion, i.e. there exists a positive integer m such that

m · L = 0. Applying the functor HomM(L[1],−) to the short exact sequence

0→ G′
m−→ G′ → mG

′[1]→ 0

in M, we get a long exact sequence

→ Extd+i
M (L[1], G′)

m−→ Extd+i
M (L[1], G′)→ Extd+i

M (L[1], mG
′[1])→ .

The fact m · L = 0 implies that the multiplication-by-m map on Extd+i
M (L[1], G′) is

just the zero map. And by (1), we have that Extd+i
M (L[1], mG

′[1]) = 0 for i ≥ 2.

Hence the group Extd+i
M (L[1], G′) is zero for i ≥ 2. Now we come to the torsion free

case. In this case, similarly as above, we have the long exact sequence

Extd+i−1
M (L[1], nG

′[1])→ Extd+i
M (L[1], G′)

n−→ Extd+i
M (L[1], G′)→ Extd+i

M (L[1], nG
′[1])

for each positive integer n. Both Extd+i−1
M (L[1], nG

′[1]) and Extd+i
M (L[1], nG

′[1]) are

zero for i ≥ 2 by (1) and (1’), hence the multiplication-by-n map on Extd+i
M (L[1], G′)

must be an isomorphism. It follows that Extd+i
M (L[1], G′) is actually a Q-vector space.

Since it is also a torsion group, it is forced to be the trivial group. This proves (4).
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Applying the functor HomM(−, G′) to the short exact sequence

0→ G
n−→ G→ nG[1]→ 0

in M, we get a long exact sequence

Extd+2
M (nG[1], G′)→ Extd+2

M (G,G′)
n−→ Extd+2

M (G,G′)→ Extd+3
M (nG[1], G′).

By (4), both the leftmost side and the rightmost side are zero, hence the multiplication-

by-n map is an isomorphism for all positive integers n. Then we know Extd+2
M (G,G′)

is a Q-vector space and also a torsion abelian group, hence it has to be zero. So (5)

is proven.

At last, combining (1), (3), (4) and (5), it’s a standard conclusion of diagram

chasing that the group Extd+2
M (M,M ′) is zero. Hence, the homological dimension of

the categoryM is at most d+ 1. And (2) tells us that the homological dimension of

M is at least d+ 1, so it is d+ 1 indeed.

3.2 Proof of theorem III.1 in positive characteristic case

Throughout this section, we assume the characteristic of k is positive and denote

it by p.

First let’s describe homomorphisms in the category M. Recall that the category

M is defined to be the category tM1[1/p], i.e. the localisation of tM1 with respect to

the multiplicative system {M pi−→M |M ∈ tM1, i ≥ 0}. Note that this multiplicative

system is both right and left, hence it admits calculus of both right and left fractions.

Given any two 1-motives M,M ′ ∈M, any homomorphism between M and M ′ can be

represented either by the diagram (corresponding to right multiplicative structure)

(3.3) M

M
pi

aa

M ′

M̃
q.i.

`` >>
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in tMeff
1 , or by the diagram (corresponding to left multiplicative structure)

(3.4) M ′

pi}}

M M ′

M̃
q.i.

`` >>

in tMeff
1 . And the diagram 3.3 can be also rewritten as

(3.5) M

M̃
q.i.

``

M ′

M̃
pi

`` >>

since the multiplication-by-pi map commutes with any map.

Now we turn to the analogues of I.25 and I.26 in positive characteristic case.

Proposition III.9. Notations as in I.25, we have the followings canonical isomor-

phisms:

(a) Ext1
Ck(L,L′)⊗ Z[1/p]

∼=−→ Ext1
M(L[1], L′[1]);

(b) Homk(L,G
′)⊗ Z[1/p]

∼=−→ Ext1
M(L[1], G′);

(c) Ext1
k(G,G

′)⊗ Z[1/p]
∼=−→ Ext1

M(G,G′).

Here the morphism in (a) is given by sending [E ]⊗ pi ∈ Ext1
Ck(L,L′)⊗ Z[1/p] to the

extension class represented by piE, and piE can be taken as either the pushout of E
along the multiplication map by pi on L′ in the category M, or the pullback of E
along the multiplication map by pi on L in the same category (note that pi is also a

morphism in M for negative i according to 3.3 and 3.4). The morphisms in (b) and

(c) are similar to the morphism in (a).

Proof. The injectivity in (a), (b) and(c) is just an immediate consequence of the

following. Any short exact sequence 0 → A → B → C → 0 in the left side become

zero in the right side means that it admits an section in M. By 3.3, this amouts to

giving a commutative diagram of the form

C

pt

��
u

��

0 // A // B // C // 0.
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Note that the map u can be chosen as an effective map in all the three cases. And

such a diagram means exactly that the extension becomes zero after tensoring with

Zl.

Now we turn to the proof of the surjectivity in (a), (b) and (c). Recall in I.20,

any short exact sequence of 1-motives can be represented up to isomorphism by a

short exact sequence of complexes in which each term is an effective 1-motive.

By the same argument as in the proof of (a) of I.25, given any element Θ in

Ext1
M(L[1], L′[1]), it can be represented up to isomorphism by an short exact sequence

E : 0→ L̃′ → Y → L̃→ 0

in Ck with L̃′[1] (resp. L̃[1]) isomorphic to L′[1] (resp. L[1]) in M. By the diagram

3.4, the isomorphism from L̃′[1] to L′[1] can be expressed as

p−iα : L̃′[1]
α−→ L′[1]

pi←− L′[1]

for some nonnegative integer i. By the diagram 3.3, the isomorphism from L[1] to

L̃[1] can be expressed as

βp−j : L[1]
pj←− L[1]

β−→ L̃[1]

for some nonnegative integer j. Note that both α and β are forced to be isomorphisms

in M. So we get the following diagram:

L

L

pj

OO

β
��

0 // L̃′ //

α
��

Y // L̃ // 0

L′

L′

pi

OO

Then Θ can also be represented by α∗β
∗(E) ∈ Ext1

Ck(L,L′) up to isomorphism, and

it actually lies in Ext1
Ck(L,L′)⊗ p−i−j. This shows the surjectivity in (a).
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By the same argument as in the proof of (b) of I.25, any element Θ of Ext1
M(L[1], G′)

can be represented up to isomorphism by a short exact sequence of complexes

E : 0 // 0

��

// L̃

f
��

L̃

��

// 0

0 // G̃′ G̃′ // 0 // 0.

with L̃[1] (resp. G̃′) isomorphic to L[1] (resp. G′) inM. To have such a short exact

sequence amounts to have the homomorphism f . By 3.4 and 3.3, the isomorphisms

from G̃′ to G′ and from L[1] to L̃[1] can be expressed as

p−iα : G̃′
α−→ G′

pi←− G′

and

βp−j : L[1]
pj←− L[1]

β−→ L̃[1]

respectively, for some i and j nonnegative integers, α ∈ Homk(G̃′, G
′) and β ∈

Homk(L, L̃). Then Θ can also be represented by the short exact sequence

α∗β
∗(E) : 0 // 0

��

// L

αfβ
��

L

��

// 0

0 // G′ G′ // 0 // 0.

up to isomorphisms inM. Hence Θ corresponds to αfβ ⊗ p−i−j, and this shows the

surjectivity of (b).

The surjectivity follows the same strategy as in the proof of the surjectivity in (a)

and (b), with help of the proof of (c) in I.25.

Proposition III.10. Let notations be as in I.26. Then we have a canonical isomor-

phism

Φ : lim−→
n

Ext1
Ck(nG,L

′)⊗ Z[1/p] −→ Ext1
M(G,L′[1]),

hence Ext1
M(G,L′[1]) is a torsion group.

Proof. The injectivity is obvious, so we are left to show the surjectivity. Given an

element Θ in Ext1
M(G,L′[1]), it can be represented up to isomorphism by a short

exact sequence of complexes

0 // L̃′

��

// X

��

// F

��

// 0

0 // 0 // G̃ G̃ // 0
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with L̃′[1] (resp. [F → G̃]) isomorphic to L′[1] (resp. G) in M. By 3.4, the

isomorphism from L̃′[1] to L′[1] can be expressed as p−iα : L̃′
α−→ L′

pi←− L′ for some

nonnegative integer i, and α ∈ Homk(L̃′, L
′). By 3.3, the isomorphism from G to

[F → G̃] can be expressed as β−jp−j : G
pj←− G

β←− [F → G̃] for some nonnegative

integer j, and β the canonical quasi-isomorphism from [F → G̃] to G. Since the

multiplication-by-n isogenies are cofinal, we can assume [F → G̃] to be [nG → G].

So we get the following commutative diagram:

G

G

pj

OO

0 // L̃′[1] //

α

��

[X → G] // [nG→ G] //

β

OO

0

L′[1]

L′[1]

pi

OO

We denote the extension 0 → L̃′ → X → nG → 0 by E , then Θ can also

be represented by α∗E ∈ Ext1
Ck(nG,L

′) up to isomorphisms. It follows Θ lies in

Ext1
Ck(nG,L

′)⊗ pj−i. This shows the surjectivity of Φ.

Lemma III.11. Notations as in III.3, then for each positive integer i, there is a

canonical isomorphism Ψi : ExtiCk(L,L′)⊗Z[1/p]→ ExtiM(L[1], L′[1]), sending [E ]⊗
pi to the extension class [piE ], with E an i-extension

0→ L′ → L1 → · · · → Li → L→ 0

in Ck. Note for negative integer i, piE makes sense as before, since pi is a homomor-

phism in M.

Proof. The i = 1 case is just III.9 (a). So we are left to prove it for the case i > 1.

For the surjectivity, we only need to make a small modification to the proof of the

surjectivity in III.3. The upper left term of E is not necessary L′ anymore, but some

L̃′ which is isomorphic to L′ in M. Hence by III.9 (a), E ′ comes from an element

of Ext1
Ck(Y, L′) ⊗ Z[1/p]. At the same time, by induction F ′ can be represented by
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an element of ExtiCk(L, Y )⊗ Z[1/p]. Hence the extension class represented by E · F
comes from an element of ExtiCk(L,L′)⊗ Z[1/p].

And the proof for injectivity is also a slight modification to the proof of the

injectivity in III.3. The homomorphism α in III.3 should be changed to

[X → J ]
pi←− [X → J ]

s←− [X̃ → J̃ ]
α−→ Y [1]

by 3.3, with s an quasi-isomorphism and i some nonnegative integer. Then the

extension class represented by (αp−is−1)∗(E) = (s−1)∗(p−iα∗E) being zero in M
implies that the class represented by E ′ := α∗E is zero in M. The extension E ′ can

be expressed as a short exact sequence of complexes

E ′ : 0 // L′

��

// L1 ×Y X̃

��

// X̃

��

// 0

0 // 0 // J̃ J̃ // 0.

And the extension E ′ being trivial implies that the extension E ′ admits a section on

the right side, and such a section must be of the form

[X̃ → J̃ ]
pj←− [X̃ → J̃ ]

q.i.←−?→ [L1 ×Y X̃ → J̃ ]

for some nonnegative integer j, and some quasi-isomorphism to [X̃ → J̃ ]. We can

replace [X̃ → J̃ ] by “?” , i.e. making this quasi-isomorphism to be identity. Then

we have that X̃[1]
pj←− X̃[1]→ L1 ×Y X̃[1] is an section to the extension

E ′′ : 0→ L′[1]→ L1 ×Y X̃[1]→ X̃[1]→ 0

in M. It follows that pj kills the extension 0 → L′ → L1 ×Y X̃ → X̃ → 0 in Ck.
Then the injectivity follows as in the proof of III.3.

Corollary III.12. The groups ExtiM(L[1], L′[1]) are all torsion for i > 0.

Proof. This is an consequence of III.4 and III.11.

Lemma III.13. Both the group Ext2
M(G,G′) and the group Ext2

M(L[1], G′) are tor-

sion.

Proof. These follow from the proof of III.2 and III.6 with the help of III.9 and

III.10.
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Lemma III.14. There is a canonical epimorphism

Φi : lim−→
n

ExtiCk(nG,L
′)⊗ Z[1/p] −→ ExtiM(G,L′[1]),

for each i > 0. In particular, the groups ExtiM(G,L′[1]) are all torsion for i ≥ 0.

Proof. This can be proven by in exactly the same strategy as in III.5 with the help

of III.9 (a) and III.10.

Now we are ready to prove the positive characteristic version of III.7 and the

positive characteristic case of our main theorem III.1.

Theorem III.15. The groups ExtiM(M,M ′) are all torsion for i ≥ 2.

Proof. The proof is the same as in III.7.

Proof of theorem III.1 in positive characteristic case: This follows from the

proof 3.1 with the help of III.15.

3.3 Torsioness of Yoneda extension groups

By III.6 and III.15, the group Ext2
M(M,M ′) is torsion, hence so are the groups

ExtiM(M,M ′) for i > 1.

The group of homomorphisms between two lattices is not necessarily torsion, for

example if both of them have constant torsion-free part. The group of homomor-

phisms between two abelian varieties is a finitely generated free abelian group unless

it’s zero. The group of homomorphism between tori Gm and Gm is isomorphic to Z.

Hence by I.24, the group HomM(M,M ′) could be far from being torsion.

Now we are going to discuss the torsioness of the group Ext1
M(M,M ′). We first

study its torsioness for both M and M ′ being concentrated only in one degree. By

I.26 and III.10, we know that Ext1
M(G,L′[1]) is a torsion group. By I.25 (a), III.9

(a) and III.4, we know the group Ext1
M(L[1], L′[1]) is torsion. We need to investigate

the two cases left.

Proposition III.16. Let T (resp. T ′) and A (resp. A′) be the torus and abelian

variety corresponding to G (resp. G′) given by Chevalley decomposition as algebraic

groups over k. Then the following hold.

(1) The groups Ext1
k(T, T

′), Ext1
k(A,A

′) and Ext1
k(T,A

′) are torsion.
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(2) Let Â be the dual abelian variety of A, and K be a finite Galois field extension of k

such that T ′ becomes isomorphic to Gr
m over K for some positive integer r. Then the

group Ext1
k(A, T

′) is isomorphic to H0(Gal(K/k),M), where the Gal(K/k)-module

M is the abelian group Â(K)r with action not only on the group Â(K) but also on

the components induced from the structure of the torus T ′.

Proof.

(1) By the spectral sequence II.29, we have the assocaited exact sequence of lower

degree

0→ H1(k,Homk̄(Tk̄, T
′
k̄))→ Ext1

k(T, T
′)→ H0(k,Ext1

k̄(Tk̄, T
′
k̄)).

The first term being a Galois cohomology group is obviously torsion. The third term

is zero, since any torus over k̄ is isomorphic to a direct sum of a finite number of

copies of Gm and the group Ext1
k̄(Gm,Gm) ∼= Ext1

Ck(Z,Z) equals zero, where the Z
inside the bracket stands for the character group ofGm. Hence the group Extk(T, T

′)

is torsion.

The group Extk(A,A
′) being torsion is a simple conclusion of the Poincaré com-

plete reducibility theorem of abelian varieties. More explicitly, any extension of A

by A′ is isogenous to the product A× A′.
Given any extension 0 → A′ → J → T → 0, consider the decomposition of J

given by Chavelley theorem as shown in the column of the diagram:

0

��

T̃

u

��

0 // A′ s // J t //

v
��

T // 0

Ã

��

0.

Then the morphism vs has to be an isogeny, otherwise there will be an nontrivial

abelian subvariety of A′ which lies in the torus T̃ which is impossible. Then it is

an easy exercise involving the universal property of pushout to conclude that the
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extension (vs)∗(J) splits. It follows that n · J also splits for n = deg(vu). Hence the

group Extk(T,A
′) is torsion.

(2) By the spectral sequence II.29, we have the associated exact sequence of lower

degree

0→ H1(k,Homk̄(Ak̄, T
′
k̄))→ Ext1

k(A, T
′)→ H0(k,Ext1

k̄(Ak̄, T
′
k̄))→ H2(k,Homk̄(Ak̄, T

′
k̄)).

Since there is no nontrivial morphism from a complete variety to an affine variety, the

Galois module Homk̄(Ak̄, T
′
k̄
) is zero. So we get Ext1

k(A, T
′) ∼= H0(k,Ext1

k̄(Ak̄, T
′
k̄
)).

By [32, Chap. VII, 16], the Galois module Ext1
k̄(Ak̄, T

′
k̄
) is isomorphic to Â(k̄)r

as an abelian group. Since T ′K
∼= G

r
m, we also have that H0(k,Ext1

k̄(Ak̄, T
′
k̄
)) ∼=

H0(Gal(K/k),M) where M := H0(K,Ext1
k̄(Ak̄, T

′
k̄
)) is isomorphic to Â(K)r as an

abelian group.

The above proposition tells us that the non-torsion elements of Ext1
M(G,G′) ∼=

Ext1
k(G,G

′) (or Ext1
k(G,G

′) ⊗ Z[1/p] in positive characteristic case) can only come

from Ext1
k(A, T

′), which is essentially related to the rational points of the dual abelian

variety of A. So we have the following theorem.

Theorem III.17. Notation as in III.16, then the group Ext1
M(G,G′) is torsion if

the group H0(Gal(K/k),M) is torsion, where the Galois module M is isomorphic to

Â(K)r as an abelian group.

Proof. This is an easy corollary of the proposition III.16.

Let Ltor be the torsion part of L and Ltf = L/Ltor. It is obvious that the group

Ext1
M(Ltor[1], G′) ∼= Homk(Ltor, G

′) is torsion. We have an exact sequence

0→ Homk(Ltf , G
′)→ Homk(L,G

′)→ Homk(Ltor, G
′),

hence to understand the torsioness of the group Ext1
M(L[1], G′) ∼= Homk(L,G

′), it

suffices to study the torsioness of the group Homk(Ltf , G
′).

Let K ′ be a finite Galois extension of the base field k such that (Ltf)K′ is isomor-

phic to Zr with r ∈ N. Then we have

Homk(Ltf , G
′) = H0(Gal(K ′/k),HomK′(Zr, G′K′))

= H0(Gal(K ′/k),HomK′(Z, G′K′)r)
∼= H0(Gal(K ′/k), G′(K ′)r).
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Here the Gal(K ′/k)-module structure on G′(K ′)r is induced from Ltf and G′, i.e. for

σ ∈ Gal(K ′/k), (P1, · · · , Pr) ∈ G′(K ′)r, the action is given by

σ · (P1, · · · , Pr) = (σ−1 · P1, · · · , σ−1 · Pr)ρ(σ),

where ρ : Gal(K ′/k) → GLr(Z) is the group homomorphism corresponding to the

Gal(K ′/k)-module structure of Ltf . So we get the following theorem.

Theorem III.18. The group Ext1
M(L[1], G′) is torsion if the group H0(Gal(K ′/k), G′(K ′)r)

is torsion. In particular, if Ltf is constant and the group G′(k) is torsion, then

Ext1
M(L[1], G′) is torsion.

We can assume K ⊃ K ′. If not, we can always enlarge the field K up to a finite

extension. Now combining all of the above, we have the following theorem.

Theorem III.19. If both H0(Gal(K/k),M) (as in III.16) and H0(Gal(K/k), G′(K)r)

(as in III.18) are torsion, then the group Ext1
M(M,M ′) is torsion.

Proof. This is just an easy conclusion of diagram chasing.

Remark III.20. We can see from the discussion that the torsioness of the first Yoneda

extension group is closely related to the arithmetic structure of the group varieties of

Â and G′. It could be nontorsion, for example if letting k = Q, M = Z[1], M ′ = E

for some elliptic curve E over Q such that E(Q) is not a torsion group, then the

group Ext1
M(M,M ′) ∼= E(Q) is not torsion. Another example to this is M = E and

M ′ = Gm.

3.4 Over special fields

In this section, we will make further study on the Yoneda extension groups for

finite fields and number fields.

First let’s consider the finite fields case. Finite fields are simple in two aspects.

Firstly, the varieties defined over finite fields have only finitely many rational points.

According to III.20, this give us torsioness property for the bifunctor Ext1
M(−,−).

Secondly, the cohomological dimension of the absolute Galois group of a finite field

is one.
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Theorem III.21. Let k be Fq, the finite field with q = pr elements, where p is some

prime number. Then we have that the homological dimension of the categoryM is 2,

and the groups ExtiM(M,M ′) are all torsion for any two 1-motives M,M ′ and i > 0.

Proof. The absolute Galois group is isomorphic to the profinite group Ẑ with a

topological generator the Frobenius automorphism of k. According to [33, Chap.

I, 3.2], the cohomological dimension of Ẑ is one, hence by III.1 the homological

dimension of the abelian categoryM is just 2. Since our base field is finite, both the

varieties Â and G′, as in III.19, have only finitely many K-rational points. It follows

that Ext1
M(M,M ′) is torsion by III.19. And we know that Ext2

M(M,M ′) is torsion

by III.15.

In fact, we can go further than III.21 for Yoneda 1-extension. In [20], Milne proved

that the group Ext1
k(A,A

′) is finite for abelian varieties A,A′ over finite field k. We

are going to mimic his strategy to prove that the group Ext1
M(M,M ′) is finite for

any two 1-motives over a finite field. The key point is the the duality pairing in [20,

lem. 2, lem. 3]. And the key ingredient is the finiteness of the groups Ext1
k(Gm, A

′)

and lim−→n
Ext1

Ck(nG,Z) for abelian variety A and semiabelian variety G.

We are going to use some of Milne’s notations in [20]. To avoid confusion, let’s first

list those notations. Let k be a finite field of characteristic p, and l be a prime number

(l is not necessarily different from p), write Extrk(Z1, Z2) (resp. Extrk,v(Z1, Z2)) for the

group of equivalence classes of r-fold Yoneda extensions of Z1 by Z2 in the category

of algebraic group schemes over k (resp. of finite group schemes over k killed by lv).

If G is a semiabelian variety over k, we write A(l∞) the l-divisible group lim−→v lvG of

A , and TlG the pro-l-group lim←−v l
vG, which is essentially the Tate module of A when

l is not equal to p. Also, if Z1 or Z2 is an ind-algebraic (resp. pro-algebraic) group

schemes, then Extrk(Z1, Z2) denotes the group formed in the category of ind-algebraic

(resp. pro-algebraic) group schemes over k. Given any abelian group Z, we use the

following notations:

nZ := ker(Z
n−→ Z), Z(l) := lim−→

v

lvZ, TlZ := lim←−
v

lvZ.

Finally, if G and H are l-divisible groups over k, we write

Extrk(TlG,H) := lim−→
v

Extrk,v(Gv, Hv).
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Note here Extrk(TlG,H) is really just a notation, since there is no suitable category

in which one formulates the extensions group of a pro-algebraic group scheme by a

ind-algebraic group scheme. Also note that r could be zero in the above notations,

and we mean Hom by Ext0.

Now we begin with the following theorem.

Theorem III.22. Let k be as in III.21, and A be an abelian variety over k. Then

the group

Ext1
k(Gm, A)⊗ Z[1/p]

is dual to the group

Ext1
k(A,Gm)⊗ Z[1/p] ∼= Â(k)⊗ Z[1/p],

where Â is the dual abelian variety of A. In particular Ext1
k(Gm, A) is a finite group.

Proof. We already know that the group Ext1
k(Gm, A) is torsion by III.16 (1), so we

have that

Ext1
k(Gm, A)⊗ Z[1/p] =

⋃
l

Ext1
k(Gm, A)(l),

where l varies over all prime numbers except p. First we prove that the group

Ext1
k(Gm, A)(l) is finite. The torsion l-group Ext1

k(Gm, A)(l) can be written as T ⊕
(Ql/Zl)t, where (Ql/Zl)t is the l-divisible subgroup of Ext1

k(Gm, A)(l) (note that t is

not necessary a finite number). Applying the functor Homk(−, A) to the short exact

sequence 0→ µln → Gm → Gm → 0 gives us another short exact sequence

0→ Homk(Gm, A)⊗ Z/lnZ→ Homk(µln , A)→ lnExtk(Gm, A)→ 0.

From the fact that Homk(Gm, A) = 0, we get

lvExtk(Gm, A) ∼= Homk(µlv , A) = Homk(µlv , lvA)

is finite for each positive integer v, hence the group T is finite. We also have the

expression

(3.6) Ext1
k(Gm, A)(l) ∼= lim−→

v

Homk(µlv , lvA) = Homk(Zl(1), A(l∞)).

Then the group Ext1
k(Gm, A)(l) is finite if and only if its l-divisible subgroup is zero.

Applying the functor Homk(−, lvA) to the short exact sequence

0→ Zl(1)
lv−→ Zl(1)→ µlv → 0
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gives us Homk(Zl(1), lvA) ∼= Homk(µlv , lvA). It follows that

Tl Ext1
k(Gm, A) = lim←−

v

lvExtk(Gm, A)

= lim←−
v

Homk(µlv , lvA)

= lim←−
v

Homk(Zl(1), lvA)

= Homk(Zl(1), Tl(A))

= 0.

This shows that Ext1
k(Gm, A)(l) is finite.

Applying the functor Homk(TlA,−) to the short exact sequence

0→ Zl(1)
lv−→ Zl(1)→ µlv → 0,

we get the following short exact sequence

0→ Ext1
k(TlA,Zl(1))⊗ Z/lvZ→ Ext1

k(TlA, µlv)→ lvExt2
k(TlA,Zl(1))→ 0.

Taking inverse limit gives an exact sequence

(3.7) 0→ Ext1
k(TlA,Zl(1))→ lim←−

v

Ext1
k(TlA, µlv)→ TlExt2

k(TlA,Zl(1))→ 0.

The non-degenerate pairing in [20, lemma 3.] gives a non-degenerate pairing

lim←−
v

Ext1
k(TlA, µlv)× Homk(Zl(1), A(l∞)) −→ Ql/Zl.

By 3.6, the finiteness of the group Ext1
k(Gm, A)(l) implies that Homk(Zl(1), A(l∞))

is finite. Then the non-degeneracy of the above pairing implies that the group

lim←−v Ext1
k(TlA, µlv) is finite. From the short exact sequence 3.7, it follows that

TlExt2
k(TlA,Zl(1)) is zero and

Ext1
k(TlA,Zl(1)) ∼= lim←−

v

Ext1
k(TlA, µlv)

is dual to

Ext1
k(Gm, A)(l) ∼= Homk(Zl(1), A(l∞)).

Also note that for l 6= char(k), we have

Ext1
k(TlA,Zl(1)) = Ext1

Zl[Γ](TlA,Zl(1)),
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and

Ext1
Zl[Γ](TlA,Zl(1)) ∼= Ext1

k(A,Gm)⊗ Zl ∼= Â(k)⊗ Zl,

the later isomorphism comes from the Weil-Barsotti formula, see [27, chap. III, sec.

18]. Hence we can conclude that Ext1
k(Gm, A)(l) is dual to the group Â(k)⊗ Zl for

l 6= char(k). Let l varies over all prime numbers which are different from p = char(k),

we get that the group Ext1
k(Gm, A)⊗Z[1/p] is dual to the group Â(k)⊗Z[1/p], which

is obviously a finite group. Since we already know Ext1
k(Gm, A)(l) is finite for all

prime number l, in particular for p, then the finiteness of the group Ext1
k(Gm, A)

follows.

Theorem III.23. Let k be as in III.21, and G be a semiabelian variety over k. Then

the group

lim−→
n

Ext1
Ck(nG,Z)⊗ Z[1/p]

is dual to the group

Homk(Z, G)⊗ Z[1/p] ∼= G(k)⊗ Z[1/p],

where p denotes the characteristic of k as usual. In particular

lim−→
n

Ext1
Ck(nG,Z)⊗ Z[1/p]

is a finite group.

Proof. Let T denote the torsion group lim−→n
Ext1

Ck(nG,Z) ⊗ Z[1/p], then we have

T = ∪lT (l) with T (l) = lim−→v
Ext1

Ck(lvG,Z) and l varying over all prime number

except p. In order to have a duality between T and G(k), it suffices to give a duality

between T (l) and G(k)(l) = G(k)⊗ Zl for each prime number l 6= p.

Applying the functor HomCk(lvG,−) to the short exact sequence

0→ Z lv−→ Z→ Z/lvZ→ 0

gives

Ext1
Ck(lvG,Z) ∼= HomCk(lvG,Z/lvZ) = Homk(lvG,Z/lvZ).

Taking the direct limit, we get that

(3.8) T (l) = lim−→
v

Homk(lvG,Z/lvZ) = Homk(TlG,Ql/Zl).
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Similar as in III.22, we have a non-degenerate pairing

(3.9) lim←−
v

Ext1
k(Zl, lvG)× Homk(TlG,Ql/Zl) −→ Ql/Zl.

Applying the functor HomCk(−, lvG) to the exact sequence

0→ Z lv−→ Z→ Z/lvZ→ 0

gives an exact sequence

(3.10) 0→ HomCk(Z, lvG)→ Ext1
Ck(Z/lvZ, lvG)→ Ext1

Ck(Z, lvG)→ 0.

Applying the functor Homk(−, lvG) to the exact sequence

0→ Zl → Zl → Z/lvZ→ 0

gives an exact sequence

(3.11) 0→ Homk(Zl, lvG)→ Ext1
k(Z/lvZ, lvG)→ Ext1

k(Zl, lvG)→ 0.

Since we have

HomCk(Z, lvG) = Homk(Zl, lvG)

and

Ext1
Ck(Z/lvZ, lvG) ∼= Ext1

k(Z/lvZ, lvG),

the exact sequences 3.10 and 3.11 give that

Ext1
Ck(Z, lvG) ∼= Ext1

k(Zl, lvG).

Applying the functor Homk−fppf(Z,−) to the short exact sequence

0→ lvG→ G
lv−→ G→ 0

gives an exact sequence

(3.12)

Homk−fppf(Z, G)
lv−→ Homk−fppf(Z, G)→ Ext1

k−fppf(Z, lvG)→ Ext1
k−fppf(Z, G).

We have

Ext1
k−fppf(Z, G) ∼= H1

fppf(Speck,G)

∼= H1
ét(Speck,G)

∼= H1(k,G)

= 0.
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Here the second isomorphim comes from the fact that the fppf-torsors over a smooth

group scheme are the same as the étale-torsors over that group scheme, and the

triviality of H1(k,G) is given by Lang’s theorem (see [31, them. 20.3]). We also have

that

Homk(Z, G) ∼= G(k)

and

Ext1
k−fppf(Z, lvG) ∼= Ext1

Ck(Z, lvG),

then the exact sequence 3.12 implies that

Ext1
k(Zl, lvG) ∼= Ext1

Ck(Z, lvG) ∼= Ext1
k−fppf(Z, lvG) ∼= G(k)⊗ Z/lvZ.

Taking inverse limit, we get

(3.13) lim←−
v

Ext1
Ck(Zl, lvG) ∼= G(k)⊗ Zl.

Combining 3.8 and 3.13, the required duality follows from the non-degenerate pairing

3.9.

Theorem III.24. Let k,M,M ′ be as in III.21, then the group Ext1
M(M,M ′) is

finite.

Proof. By diagram chasing, it’s enough to check that the groups Ext1
M(L[1], L′[1]),

Ext1
M(L[1], G′), Ext1

M(G,L′[1]) and Ext1
M(G,G′) are all finite.

Before going to the proof of the finiteness of the four groups, we first make a

claim.

Claim. Let M be a Galois module over the field k, and k′/k be a finite Galois

extension. Suppose that H0(k′,M) is finite generated and H1(k′,M) is finite, then

we claim H1(k,M) is finite.

Consider the exact sequence of lower degree terms of Hochschild-Serre spectral

sequence

0→ H1(Gal(k′/k),MGal(k̄/k′))→ H1(k,M)→ H1(k′,M)Gal(k′/k).

The finiteness of the first term is a classical result of group cohomology of finite

groups, then the finiteness of the middle term follows. This shows the claim.
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By the spectral sequence II.32, we get an exact sequence

0→ H1(k,Hom(L,L′))→ Ext1
k(L,L

′)→ H0(k,Ext1(L,L′)).

The term on the right side is obviously finite. The finiteness of the term on the

left side is a consequence of the claim. Hence the middle term is finite. Then the

finiteness of Ext1
M(L[1], L′[1]) follows from III.9 (a).

By III.9 (b), to show that Ext1
M(L[1], G′) is finite, it suffices to show Homk(L,G

′)

is finite. This is an easy consequence of the finiteness of the group of rational points

of a group scheme defined over a finite field.

By III.10, to show Ext1
M(G,L′[1]) is finite, it suffices to show that lim−→n

Ext1
k(nG,L

′)⊗
Z[1/p] is finite. Let L′tor be the torsion subgroup of L′ and L′fr be L′/L′tor. Then we

have an exact sequence

→ lim−→
n

Ext1
k(nG,L

′
tor)⊗Z[1/p]→ lim−→

n

Ext1
k(nG,L

′)⊗Z[1/p]→ lim−→
n

Ext1
k(nG,L

′
fr)⊗Z[1/p].

The term on the left hand side equals H1(k,Homk̄(NG,L
′
tor)) ⊗ Z[1/p] for some

positive integer N with N · L′tor = 0 by the argument in I.26, hence it is finite. So

we can assume L′ is torsion-free. Consider the exact sequence

0→ H1(k,Homk̄(nG,L
′))→ Ext1

k(nG,L
′)→ H0(k,Ext1

k̄(nG,L
′))

→ H2(k,Homk̄(nG,L
′)).

Then Homk̄(nG,L
′)) = 0 implies that Ext1

k(nG,L
′) ∼= H0(k,Ext1

k̄(nG,L
′)). Take

a finite extension k′/k such that L′k′
∼= Zr for some integer r. We have that

Ext1
k(nG,L

′)) = Ext1
k′(nG,L

′)Gal(k′/k), and

lim−→
n

Ext1
k(nG,L

′)⊗ Z[1/p] = lim−→
n

Ext1
k′(nG,L

′)Gal(k′/k) ⊗ Z[1/p]

= (lim−→
n

Ext1
k′(nG,L

′)⊗ Z[1/p])Gal(k′/k).

By III.23, the group lim−→n
Ext1

k′(nG,L
′)⊗Z[1/p] is finite, hence so is lim−→n

Ext1
k(nG,L

′).

By III.9 (c), in order to show that Ext1
M(G,G′) is finite, it is enough to show that

Ext1
k(G,G

′) is finite. Moreover, it is enough to show that the groups Ext1
k(T, T

′),

Ext1
k(T,A

′), Ext1
k(A, T

′) and Ext1
k(A,A

′) are all finite. The finiteness of Ext1
k(T, T

′)

follows from the corresponding result for their character groups. The finiteness of
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Ext1
k(A, T

′) is a consequence of the Weil-Barsotti formula with the help of the claim.

The finiteness of Ext1
k(A,A

′) is given in [20, theorem 3]. The finiteness of Ext1
k(T,A

′)

follows from III.22 with the help of the claim.

Before going to the number field case, let’s first look at the p-adic field case. Let

k be a p-adic field, i.e. a finite field extension of Qp. By [33, Chap. II, Prop. 15],

the absolute Galois group Gal(k̄/k) has cohomological dimension 2 (actually even

the strict cohomological dimension is 2, but we don’t need it here). Hence by III.1,

the homological dimension of the abelian category of 1-motives over k is 3. Now we

turn to the case of k being a number field. Number fields are almost as good as

p-adic fields. The absolute Galois group of k has l-cohomological dimension 2 for all

prime number l 6= 2, but might have infinite 2-cohomological dimension depending

on whether it is totally imaginary or not. Hence the cohomological dimension of

Gal(k̄/k) might be infinite. So we cannot use theorem III.1 directly to determine

the homological dimension of the category M. However, if we formally make the

multiplication by 2 map invertible, i.e. kill the 2-torsion parts of the Hom groups,

we can have that the homological dimension of the abelian categoryM⊗Z Z[1/2] is

equal to 3, by using a modified version of III.1. Here the category M⊗Z Z[1/2] has

the same objects as M, but with

HomM⊗ZZ[1/2](−,−) = HomM(−,−)⊗Z Z[1/2].

Theorem III.25. Let k be a number field.

(a) If k is totally imaginary, then the category M has cohomological dimension 3.

(b) The category M⊗Z Z[1/2] over k has homological dimension 3.

Proof. In case (a), the cohomological dimension of the absolute Galois group of k is

3, so (a) is just an easy conclusion of theorem III.1.

In case (b), since the multiplication by 2 map is an isomorphism in the abelian

category M ⊗Z Z[1/2], the groups ExtiM(M,M ′) have no 2-torsion part for any

two 1-motives M,M ′ and i ≥ 0. At the same time, we still have that the groups

ExtiM⊗ZZ[1/2](M,M ′) are all torsion for i ≥ 2 by the same proof as for III.15, but

without 2-torsion parts. Recall that the definition of p-cohomological dimension of a

profinite group G in [33, Chap. I, 3.1], the p-cohomological dimension of G equals n

if for every discrete torsion G-module A and every q > n, the p-primary component



78

of Hq(G,A) is null. Then it’s easy to see that the proof of theorem III.1 also works

here.



CHAPTER IV

Extensions of 1-motives and their l-adic realisations

Throughout this chapter, M = [L → G] and M ′ = [L′ → G′] will be two 1-

motives over the base field k, and k will be either a number field or a finite field with

Γ = Gal(k̄/k) its absolute Galois group. We write R the abelian category of finitely

generated Zl-module with continuous Galois action, with l some prime number which

is different from the characteristic of the base field.

In section 1.3, we have defined the l-adic realisations of 1-motives, which lie in

the category R. Realisations are linearizations of geometric objects, they are easy to

study and carry important information from the geometry. For example, there is a

well-known theorem by Faltings (resp. by Tate in the finite field case), for reference

see [8] (resp. [36]).

Theorem IV.1 (Faltings’ Theorem). Let A, B be two abelian varieties defined over

a field which is finitely generated over its prime subfield, let l be a prime number

which is different from the characteristic of the base field. Then the canonical homo-

morphism

Homk(A,B)⊗ Zl → HomR(TlA, TlB)

is an isomorphism.

We would like to know if the above result holds for 1-motives. Furthermore, what

happens if we replace the Hom functor by the Exti for some positive integer i? In

this chapter, we are going to investigate the homomorphisms

Tl : ExtiM(M,M ′)⊗ Zl → ExtiR(TlM,TlM
′)

for i = 0, 1. The main results are the following two theorems.

79
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Theorem IV.2. The canonical homomorphism

Tl : HomM(M,M ′)⊗ Zl → HomR(TlM,TlM
′)

is an isomorphism.

Theorem IV.3. The canonical homomorphism

Tl : Ext1
M(M,M ′)⊗ Zl → Ext1

R(TlM,TlM
′)

is injective.

We will first deal with four special cases in 4.1, 4.2, 4.3, and 4.4 respectively, then

give the full proof of IV.2 and IV.3 in 4.5.

The last section is devoted to the case over finite fields, and the main result is

theorem IV.23, in which we give an explicit description of the maps Tl for all Yoneda

extension groups (actually just i = 0, 1, 2, since the ExtiM’s and the ExtiR’s vanish

for i > 2).

4.1 The case M = L[1] and M ′ = L′[1]

We begin with a lemma describing the structure of finite étale commutative group

schemes over k.

Lemma IV.4. Suppose X is a finite étale commutative group scheme over k. Then

X can be written as X = ⊕X(q), where q varies over all the prime numbers and

X(q) is a q-group scheme. In particular, X(q) is the q-subgroup scheme of X.

Proof. Since X is just a finite abelian group equipped with a Galois action, we

can write X as ⊕X(q) as an abelian group, with X(q) the q-subgroup of X. Any

automorphism of X as an abelian group must send X(q) onto X(q), hence X can be

written as ⊕X(q) as a finite group scheme.

Lemma IV.5. Let X, Y be two finitely generated locally constant sheaves for the

étale topology over k, and X is finite. Then we have

Extik(X, Y ) ∼=
⊕
q

Extik(X(q), Y )
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and

Extik(Y,X) ∼=
⊕
q

Extik(Y,X(q)),

hence we also have

Extik(X, Y )⊗ Zl ∼= Extik(X(l), Y )

and

Extik(Y,X)⊗ Zl ∼= Extik(Y,X(l))

for all i ≥ 0.

Proof. Since the bifunctor Extik(−,−) commutes with direct sum, this is an imme-

diate consequence of lemma IV.4.

Proposition IV.6. The canonical map

Homk(L,L
′)⊗ Zl → HomR(L⊗ Zl, L′ ⊗ Zl)

is an isomorphism in the following cases:

(a)Both L and L′ are torsion;

(b)L is torsion-free, and L′ is torsion;

(c)Both L and L′ are torsion-free;

(d)L′ is torsion-free.

Proof. For (a), consider the following commutative diagram

Homk(L,L
′)⊗ Zl

∼= //

��

Homk(L(l), L′(l))

��

HomR(L⊗ Zl, L′ ⊗ Zl)
∼= // HomR(L(l), L′(l)).

We have

HomR(L(l), L′(l)) = (HomZl
(L(l), L′(l)))Γ

= (HomZ(L(l), L′(l)))Γ

= Homk(L(l), L′(l)),

then (a) follows from the above commutative diagram.
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For (b), let N be a positive integer such that N ·L′ = 0, then L being torsion-free

gives a short exact sequence 0 → L
N−→ L → L/NL → 0. So we get the following

commutative diagram with exact rows:

0 // Homk(L/NL,L
′)⊗ Zl //

��

Homk(L,L
′)⊗ Zl //

��

0

0 // HomR(L/NL⊗ Zl, L′ ⊗ Zl) // HomR(L⊗ Zl, L′ ⊗ Zl) // 0.

Then the vertical map on the left hand side is an isomorphism by (a), hence so is

the vertical map on the right hand side.

For (c), firstly it’s easy to see that

Homk(L,L
′)⊗ Zl = HomZ(L,L′)Γ ⊗ Zl

and

HomR(L⊗ Zl, L′ ⊗ Zl) = (HomZl
(L⊗ Zl, L′ ⊗ Zl))Γ.

From the homological long exact sequence associated to the short exact sequence

0→M
ln−→M →M⊗Z/lnZ→ 0, where M denotes the Galois module HomZ(L,L′),

we get a short exact sequence

0→MΓ ⊗ Z/lnZ→ (M ⊗ Z/lnZ)Γ → ln(H1(k,M))→ 0

for each positive integer n. Since MΓ⊗Z/lnZ is finite for each positive integer n, the

inverse system {MΓ⊗Z/lnZ}n∈N satisfies the Mittag-Leffler condition automatically.

Hence passing to the projective limit, we get the following short exact sequence

0→MΓ ⊗ Zl → (M ⊗ Zl)Γ → lim←−
l

ln(H1(k,M))→ 0.

Let k′/k be a finite Galois extension such that L and L′ become constant over k′,

consider the inflation-restriction exact sequence

0→ H1(Gal(k′/k),M)→ H1(k,M)→ H1(k′,M)Gal(k′/k).

SinceM is a finitely generated free constant Galois module over k′, we haveH1(k′,M)

is zero. It follows that H1(k,M) ∼= H1(Gal(k′/k),M) is a finite group. Hence we

have lim←−l ln(H1(k,M)) = 0, and Homk(L,L
′) ⊗ Zl = (HomZ(L,L′) ⊗ Zl)Γ. So it is
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left to show (HomZ(L,L′)⊗Zl)Γ ∼= (HomZl
(L⊗Zl, L′⊗Zl))Γ. Let {x1, · · · , xm} and

{y1, · · · , yn} be bases of L and L′ as abelian groups respectively. Then we have

HomZl
(L⊗ Zl, L′ ⊗ Zl) =

⊕
i,j

Zlfij,

with 1 ≤ i ≤ m and 1 ≤ j ≤ n, and fij is the homomorphism such that fij(xk) =

δikyj (here δik denotes the Kronecker symbol). So we have a canonical isomorphism

HomZ(L,L′)⊗Zl → HomZl
(L⊗Zl, L′⊗Zl) of Zl-modules. Both sides of the map have

natural Galois module structure inherited from L and L′, by taking the Γ-invariants

we get the isomorphism Homk(L,L
′)⊗ Zl → HomR(L⊗ Zl, L′ ⊗ Zl).

For (d), consider the short exact sequence 0 → Ltor → L → Ltf → 0, where Ltor

is the torsion subgroup of L and Ltf = L/Ltor. It’s obvious that both Homk(Ltor, L
′)

and HomR(Ltor ⊗ Zl, L′ ⊗ Zl) are zero. Then (d) is an easy consequence of (c) with

the help of the following commutative diagram

Homk(Ltf , L
′)⊗ Zl �

�
//

∼=
��

Homk(L,L
′)⊗ Zl //

��

Homk(Ltor, L
′)⊗ Zl

��

HomR(Ltf ⊗ Zl, L′ ⊗ Zl) �
�

// HomR(L⊗ Zl, L′ ⊗ Zl) // HomR(Ltor ⊗ Zl, L′ ⊗ Zl).

Proposition IV.7. Consider the canonical map

Ext1
k(L,L

′)⊗ Zl → Ext1
R(L⊗ Zl, L′ ⊗ Zl).

We have the following.

(a) If both L and L′ are torsion, then the above map is an isomorphism.

(b) If L is torsion free, and L′ is torsion, then the above map is an isomorphism.

(c) If both L and L′ are torsion-free, then the above map is injective.

(d) If L is torsion, and L′ is torsion-free, then the above map is an isomorphism.

Proof. By lemma IV.5, we have

Ext1
k(L,L

′)⊗ Zl = Ext1
k(L(l), L′(l))

and

Ext1
R(L⊗ Zl, L′ ⊗ Zl) = Ext1

R(L(l), L′(l)).
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Then (a) follows from the fact Ext1
k(L(l), L′(l)) = Ext1

R(L(l), L′(l)).

For (b), we can assume L′ to be an l-group scheme without loss of generality. Let

r be some positive integer such that lr · L′ = 0. The fact L being torsion-free gives

a short exact sequence 0 → L
lr−→ L → L ⊗ Z/lrZ → 0, so we get a commutative

diagram with exact rows

Homk(L,L
′)⊗ Z/lrZ � � //

��

Ext1
k(L⊗ Z/lrZ, L′) // //

��

Ext1
k(L,L

′)

��

HomR(L⊗ Zl, L′)⊗ Z/lrZ � � // Ext1
R(L⊗ Zl, L′) // // Ext1

R(L⊗ Zl, L′).

By proposition IV.6 (b), the vertical map on the left hand side is an isomorphism,

and by (a) the vertical map in the middle is an isomorphism, so is the vertical one

on the right hand side.

Now we come to the proof of (c). Since L is torsion-free, any extension of L by L′

in the category of group schemes is just the abstract group L× L′ with a Gal(k̄/k)-

action which gives the corresponding Galois action of L and L′ via restriction and

quotient respectively. And this kind of action is classified by the Galois cohomology

group H1(k,Homk(L,L
′)). We also have Ext1

R(L⊗ Zl, L′ ⊗ Zl) is isomorphic to the

continuous cochain cohomology

H1
cts(Γ,HomR(L⊗ Zl, L′ ⊗ Zl)) = H1

cts(Γ,Homk(L,L
′)⊗ Zl)

by proposition II.21. The functor Tl sends a cocycle (fσ)σ∈Γ ∈ H1(k,Homk(L,L
′))

to the continuous cocycle (fσ ⊗ 1)σ∈Γ ∈ H1
cts(Γ,Homk(L,L

′) ⊗ Zl). Let k′/k be a

finite Galois extension of fields such that both L and L′ are constant over k′, then

we get a commutative diagram with two rows coming from the inflation-restriction

exact sequence

0 // H1(H,S)⊗ Zl //

��

H1(k, S)⊗ Zl //

��

H1(k′, S)H ⊗ Zl

��

0 // H1(H,S ⊗ Zl) // H1
cts(Γ, S ⊗ Zl) // H1

cts(Gal(k̄/k′), S ⊗ Zl)H ,

where S denotes the Galois module Homk̄(L,L
′) = HomZ(L,L′) and H denotes the

Galois group Gal(k′/k). We need to show the vertical map in the middle is injective.

Since we have H1(k′, S) = HomZ(Gal(k̄/k′), S) = 0, it’s enough to show the vertical

map on the left side is injective by the five lemma. It’s a standard result that
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H1(H,S) is finite, and H1(H,S⊗Zl) can be shown to be finite by the similar reason

in the context of Zl-modules instead of Z-modules. Take some positive integer r such

that lr kills both H1(H,S)⊗Zl and H1(H,S⊗Zl), consider the short exact sequence

0→ S
lr−→ S → S⊗Z/lrZ→ 0, then we get a commutative diagram with exact rows:

SGal(k′/k) ⊗ Zl //

��

(S ⊗ Z/lrZ)Gal(k′/k) ⊗ Zl //

��

H1(Gal(k′/k), S)⊗ Zl

��

// 0

(S ⊗ Zl)Gal(k′/k) // (S ⊗ Zl ⊗ Z/lrZ)Gal(k′/k) // H1
cts(Gal(k′/k), S ⊗ Zl) // 0.

The vertical map on the left hand side is an isomorphism by proposition IV.6 (c),

the vertical map in the middle is obviously an isomorphism, hence so is the vertical

map on the right hand side by the five lemma. This finish the proof of (c).

For (d), without loss of generality we can assume that ln ·L = 0 for some positive

integer n. L′ being torsion-free gives rise to a short exact sequence

0→ L′
ln−→ L′ → L′ ⊗ Z/lnZ→ 0.

So we get a commutative diagram with exact rows

Homk(L,L
′)⊗ Zl //

��

Homk(L,L
′ ⊗ Z/lnZ)⊗ Zl // //

��

Ext1
k(L,L

′)⊗ Zl

��

HomR(L⊗ Zl, L′ ⊗ Zl) // HomR(L⊗ Zl, L′ ⊗ Zl/lnZ) // // Ext1
R(L⊗ Zl, L′ ⊗ Zl).

The vertical map on the left hand side (resp. in the middle) is an isomorphism by

proposition IV.6 (d) (resp. (a)), hence the vertical map on the right hand side is an

isomorphism too.

Theorem IV.8. Theorem IV.2 and theorem IV.3 are true for M = L[1],M ′ = L′[1].

Proof. First we remark that there is no need to distinguish the positive characteristic

case from characteristic zero case, since we have

HomM(L[1], L′[1])⊗ Zl = Homk(L,L
′)⊗ Z[1/p]⊗ Zl = Homk(L,L

′)⊗ Zl

and

Ext1
M(L[1], L′[1])⊗ Zl = Ext1

k(L,L
′)⊗ Z[1/p]⊗ Zl = Ext1

k(L,L
′)⊗ Zl

in the positive characteristic case.
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We are going to use the five lemma repeatedly. Let Ltor (resp. L′tor) be the torsion

subgroup of L (resp. L′), and Ltf (resp. L′tf) be L/Ltor (resp. L′/L′tor). The short

exact sequence 0 → Ltor → L → Ltf → 0 gives the following commutative diagram

with exact rows:

0 // HomM(Ltf [1], L′tor[1])⊗ Zl //

(1)
��

HomM(L[1], L′tor[1])⊗ Zl
(2)
��

0 // HomR(TlLtf [1], TlL
′
tor[1]) // HomR(TlL[1], TlL

′
tor[1])

// HomM(Ltor[1], L′tor[1])⊗ Zl
(3)

��

// Ext1
M(Ltf [1], L′tor[1])⊗ Zl

(4)
��

// HomR(TlLtor[1], TlL
′
tor[1]) // Ext1

R(TlLtf [1], TlL
′
tor[1])

// Ext1
M(L[1], L′tor[1])⊗ Zl //

(5)
��

Ext1
M(Ltor[1], L′tor[1])⊗ Zl

(6)
��

// Ext1
R(TlL[1], TlL

′
tor[1]) // Ext1

R(TlLtor[1], TlL
′
tor[1]).

The homomorphism (1) and (3) are isomorphisms by proposition IV.6, the homo-

morphism (4) and (6) are also isomorphisms by proposition IV.7, hence by the five

lemma (2) is an isomorphism and (5) is monomorphism. The short exact sequence

0→ L′tor → L′ → L′tf → 0 gives the following commutative diagram with exact rows:

0 // HomM(L[1], L′tor[1])⊗ Zl //

(2)
��

HomM(L[1], L′[1])⊗ Zl
(7)
��

0 // HomR(TlL[1], TlL
′
tor[1]) // HomR(TlL[1], TlL

′[1])

// HomM(L[1], L′tf [1])⊗ Zl
(8)

��

// Ext1
M(L[1], L′tor[1])⊗ Zl

(5)
��

// HomR(TlL[1], TlL
′
tf [1]) // Ext1

R(TlL[1], TlL
′
tor[1])

// Ext1
M(L[1], L′[1])⊗ Zl //

(9)
��

Ext1
M(L[1], L′tf [1])⊗ Zl

(10)
��

// Ext1
R(TlL[1], TlL

′[1]) // Ext1
R(TlL[1], TlL

′
tf [1]).
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The homomorphism (8) is an isomorphism by proposition IV.6, we already know

that the homomorphism (5) is a monomorphism, and the homomorphism (10) is

a monomorphism given by the five lemma with the help of proposition IV.6 (d),

proposition IV.7 (c) and proposition IV.7 (d). It follows that the homomorphism (7)

is an isomorphism and the homomorphism (9) is an monomorphism.

4.2 The case M = L[1] and M ′ = G′

Theorem IV.9. Theorem IV.2 is true for M = L[1],M ′ = G′.

Proof. We have HomM(L[1], G′) = 0 by proposition I.24 (b), so need to show that

HomR(Z⊗ Zl, TlG) = 0. Firstly, let’s consider the case where L equals Z. We have

HomR(Z⊗Zl, TlG) = (TlG)Γ, and (TlG)Γ equals zero due to the fact that k is either

a number field or a finite field. The general case can be deduced from this case after

a finite Galois field extension of k such that L becomes constant.

Lemma IV.10. The canonical map

Tl : Ext1
M(Zr[1], G′)⊗ Zl → Ext1

R(Zrl , TlG′)

is injective, here r is some positive integer.

Proof. Without loss of generality, we can assume r = 1. We have

Ext1
M(Z[1], G′)⊗ Zl ∼= G′(k)⊗ Zl

by proposition I.25 (b) in characteristic zero case and by proposition III.9 (b) in

positive characteristic case. We also have Ext1
R(Zl, TlG′) ∼= H1

cts(k, TlG
′) by the same

reason as in the proof of (c) of proposition IV.7. Now we turn to give an explicit

description of the map Tl under these two identifications. Given a point P ∈ G′(k),

the Tate module of the 1-motive [Z→ G′] corresponding to P is

TP := Tl([Z→ G′]) =
{(Pn, yn)n∈N}
{(P, ln)n∈N}

,

where Pn ∈ G′(ks), yn ∈ Z satisfying

lnPn = ynP

lPn+1 − Pn = znP

yn+1 = yn + lnzn
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for some zn ∈ Z. And TP fits into the following short exact sequence

0→ TlG
′ → TP → Zl → 0.

This short exact sequence splits in the category of Zl-modules, and a splitting can

be chosen by a section s : Zl → TP , (1)n∈N 7→ (Qn, 1)n∈N, where Qn ∈ G′(ks) are

chosen such that lnQn = P , lQn+1 = Qn for all n ∈ N. Under such a splitting, for

any σ ∈ Γ and (yn)n∈N ∈ Zl, we have

σ · s((yn)n∈N) = σ · (ynQn, yn)n∈N

= (yn(σ ·Qn −Qn), 0) + (yn)n∈N(Qn, 1)n∈N.

It follows that the cocycle corresponding to the extension TP can be represented by

((σ · Qn − Qn)n)σ∈Γ. In other words, the map Tl sends a point P ∈ G′(k) to the

1-cocycle ((σ ·Qn−Qn)n)σ∈Γ. Write G′(k) as Fl ⊕ Fl′ ⊕ S, where Fl (resp. Fl′ , resp.

S) is the l subgroup (resp. l-prime subgroup, resp. free subgroup) of G′(k). To

show the map Tl is injective, it suffices to show that any point P ∈ Fl′ ⊕S satisfying

Tl(P ) = 0 has to be zero. If P is not zero, then Tl(P ) = 0 implies that

((σ ·Qn −Qn)n)σ∈Γ = ((σ ·Rn −Rn)n)σ∈Γ

for some (Rn)n∈N ∈ TlG′. Hence we get a set of points {Qn − Rn|n ∈ N} satisfying

σ · (Qn − Rn) = Qn − Rn, l(Qn+1 − Rn+1) = Qn − Rn and ln(Qn − Rn) = P . Let

l−∞(P ) denotes the subgroup of G′(k) generated by {Qn − Rn|n ∈ N} ∪ {P}, then

l−∞(P ) is a non-trivial l-divisible subgroup of G′(k). But the group G′(k) is finitely

generated by Mordell-Weil theorem in the number field case, and it is finite in the

finite field case. We get a contradiction, it follows that P has to be zero.

Corollary IV.11. Suppose L is torsion-free, then the canonical map

Tl : Ext1
M(L[1], G′)⊗ Zl → Ext1

R(L⊗ Zl, TlG′)

is injective.

Proof. Firstly, we have

Ext1
M(L[1], G′)⊗ Zl ∼= Homk(L,G

′)⊗ Zl
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and

Ext1
R(L⊗ Zl, TlG′) ∼= H1(k,HomZl

(L⊗ Zl, TlG′))

Let k′/k be a finite Galois extension such that L becomes constant over k′, H be the

Galois group Gal(k′/k), S be the module HomZl
(L ⊗ Zl, TlG′) ∈ R. Then we have

the following commutative diagram

Homk(L,G
′)⊗ Zl

��

Homk′(L,G
′)H ⊗ Zl

��

H1
cts(Gal(k̄/k), S)

Res
// H1

cts(Gal(k̄/k′), S)H

where the map Res denotes the restriction map for continuous cochain cohomology.

The vertical map on the right hand side is injective by lemma IV.10, hence so is the

vertical map on the left hand side. This finishes the proof.

Now we come to the main result of this section.

Theorem IV.12. Theorem IV.3 is true for M = L[1],M ′ = G′.

Proof. Firstly, we have Ext1
M(L[1], G′) ⊗ Zl = Homk(L,G

′) ⊗ Zl. Let Ltor be the

torsion subgroup of L, and Ltf be the quotient L/Ltor, so we get a short exact

sequence 0 → Ltor[1] → L[1] → Ltf [1] → 0 in M. This exact sequence gives us a

commutative diagram with exact rows

0 // Homk(Ltf , G
′)⊗ Zl //

(1)
��

Homk(L,G
′)⊗ Zl

(2)
��

HomR(Ltor ⊗ Zl, TlG′) // Ext1
R(Ltf ⊗ Zl, TlG′) // Ext1

R(L⊗ Zl, TlG′)

// Homk(Ltor, G
′)⊗ Zl

(3)
��

// Ext1
R(Ltor ⊗ Zl, TlG′).

It’s obvious that HomR(Ltor ⊗ Zl, TlG′) equals zero, and the map (1) is injective by

IV.11. Hence to show the injectivity of the map (2), it suffices to show the injectivity

of the map (3). Let r be some positive integer such that rLtor = 0, and consider

the short exact sequence 0 → G′
r−→ G′ → rG

′[1] → 0. Then we have the following
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commutative diagram with exact rows

HomM(Ltor[1], G′)⊗ Zl //

��

HomM(Ltor[1], rG
′[1])⊗ Zl // //

��

Ext1
M(Ltor[1], G′)⊗ Zl

(4)
��

HomR(Ltor ⊗ Zl, TlG′) // HomR(Ltor ⊗ Zl, rG′ ⊗ Zl) // // Ext1
R(Ltor ⊗ Zl, TlG′).

Both HomM(Ltor[1], G′) and HomR(Ltor⊗Zl, TlG′) are zero, and the vertical map in

the middle is an isomorphism by IV.6 (a), hence so is the map (4). And the map (4)

is nothing else but the map (3).

4.3 The case M = G and M ′ = L′[1]

Theorem IV.13. Theorem IV.2 is true for M = G,M ′ = L′[1].

Proof. Let L′tor be the torsion subgroup of L′, and L′tf be the quotient L′/L′tor. Then

we have the following commutative diagram with exact rows

0 // HomM(G,L′tor[1])⊗ Zl //

��

HomM(G,L′[1])⊗ Zl //

��

HomM(G,L′tf [1])⊗ Zl

��

0 // HomR(TlG,L
′
tor ⊗ Zl) // HomR(TlG,L

′ ⊗ Zl) // HomR(TlG,L
′
tf ⊗ Zl).

Since both HomM(G,L′tf [1]) ⊗ Zl and HomR(TlG,L
′
tf ⊗ Zl) are zero, it’s enough to

prove the theorem for the case L′ being torsion. Moreover L′ can be assumed to be

an l-group. Let r be a positive integer such that lr kills L′. The short exact sequence

0→ G
lr−→ G→ lrG[1]→ 0 gives a commutative diagram with exact rows:

0 // HomM(lrG[1], L′[1])⊗ Zl //

(1)
��

HomM(G,L′[1])⊗ Zl lr //

(2)
��

HomM(G,L′[1])⊗ Zl

��

0 // HomR(lrG,L
′ ⊗ Zl) // HomR(TlG,L

′ ⊗ Zl) lr // HomR(TlG,L
′ ⊗ Zl).

The two multiplication-by-lr maps on the right hand side are zero, and (1) is an

isomorphism by proposition IV.6 (a), hence (2) is an isomorphism.

Theorem IV.14. Theorem IV.3 is true for M = G,M ′ = L′[1].

Proof. By proposition I.26 and proposition III.10, we have an isomorphism

Φ : lim−→
r

Ext1
k(lrG,L

′) = lim−→
n

Ext1
k(nG,L

′)⊗ Zl → Ext1
M(G,L′[1])⊗ Zl.
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Note that here we abuse the notation Φ, which should be Φ⊗ 1 according to propo-

sitions I.26 and III.10. Since the group Ext1
M(G,L′[1]) ⊗ Zl is torsion, its image

under the map Tl lies in the torsion subgroup of Ext1
R(TlG,L

′ ⊗ Zl), which can be

expressed as Ext1
R(TlG,L

′ ⊗ Zl)(l) := lim−→r lrExt1
R(TlG,L

′ ⊗ Zl). The short exact

sequence 0→ TlG
lr−→ TlG→ lrG[1]→ 0 in R gives a short exact sequence

0→ HomR(TlG,L
′⊗Zl)⊗Z/lrZ→ Ext1

R( lrG,L
′⊗Zl)→ lrExt1

R(TlG,L
′⊗Zl)→ 0.

Passing to the direct limit, we get a short exact sequence fitting into the following

commutative diagram with exact rows

lim−→r
Ext1

k(lrG,L
′) Φ

∼=
//

(1)

��

Ext1
M(G,L′[1])⊗ Zl

Tl
��

// 0

0 // B // lim−→r
Ext1

R( lrG,L
′ ⊗ Zl) // Ext1

R(TlG,L
′ ⊗ Zl)(l) // 0,

where B denotes the group HomR(TlG,L
′⊗Zl)⊗Ql/Zl. The group HomR(TlG,L

′⊗
Zl) ia actually a finite group due to the fact HomR(TlG,Zl) = 0, hence the group B is

zero. So Tl being injective is equivalent to the map (1) being injective. For the cases

L being torsion and being torsion free, we have Ext1
k(lrG,L

′) ∼= Ext1
R( lrG,L

′ ⊗ Zl)
by proposition IV.7 (a) and (d), hence the map (1) is actually an isomorphism in

both cases.

In the general case, let L′tor be the torsion subgroup of L′ and L′tf be the quotient

L′/L′tor, then we have a commutative diagram with exact rows

// HomM(G,L′tf [1])⊗ Zl //

��

Ext1
M(G,L′tor[1])⊗ Zl //

(2)
��

Ext1
M(G,L′[1])⊗ Zl

(3)
��

// HomR(TlG,L
′
tf ⊗ Zl) // Ext1

R(TlG,L
′
tor ⊗ Zl) // Ext1

R(TlG,L
′ ⊗ Zl)

// Ext1
M(G,L′tf [1])⊗ Zl

(4)
��

// Ext2
M(G,L′tor[1])⊗ Zl

��

// Ext1
R(TlG,L

′
tf ⊗ Zl) // Ext2

R(TlG,L
′
tor ⊗ Zl).

Both groups HomM(G,L′tf [1]) and HomR(TlG,L
′
tf⊗Zl) are zero, and we have proven

both map (2) and map (4) are isomorphism, hence the map (3) is injective.
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4.4 The case M = G and M ′ = G′

Let T (resp. T ′) be the torus part of the semiabelian variety G (resp. G′), and A

(resp A′) be the corresponding abelian quotient. So we get two short exact sequences

of k-group schemes 0→ T → G→ A→ 0 and 0→ T ′ → G′ → A′ → 0. In order to

prove theorems IV.2 and IV.3 for the case M = G, M ′ = G′, we first deal with some

special cases.

Lemma IV.15. Theorem IV.2 is true for the following cases.

(a)G′ = A′;

(b)G = T,G′ = T ′;

(c)G = A,G′ = T ′.

Proof. First we have Ext1
M(G,G′)⊗Zl ∼= Ext1

k(G,G
′)⊗Zl by proposition I.25 (c) in

characteristic zero case and by proposition III.9 (c) in positive characteristic case.

The short exact sequence 0→ T → G→ A→ 0 gives us a commutative diagram

with exact rows

0 // Homk(A,A
′)⊗ Zl //

(1)
��

Homk(G,A
′)⊗ Zl //

��

Homk(T,A
′)⊗ Zl

��

0 // HomR(TlA, TlA
′) // HomR(TlG, TlA

′) // HomR(TlT, TlA
′).

The group Homk(T,A
′) is obviously trivial. By using Cartier duality, we have

HomR(TlGm, TlA
′) ∼= HomR(TlÂ′,Z⊗ Zl) = (TlÂ′

∨
)Γ ∼= TlÂ′

Γ
= 0,

where Â′ denotes the dual abelian variety of A′ and (−)∨ denotes the dual continuous

Galois module. Hence it’s easy to see that the group HomR(TlT, TlA
′) is also trivial.

The map (1) is an isomorphism by theorem IV.1, then case (a) follows.

Case (b) actually follows from proposition IV.6 (d) with the help of the fact that

tori are dual to lattices under Cartier duality. More explicitly, this follows from the

following results

Homk(T, T
′) = Homk(X(T ′), X(T )),

TlT = HomR(X(T )⊗ Zl,Zl(1)),

and

HomR(TlT, TlT
′) = HomR(X(T ′)⊗ Zl, X(T )⊗ Zl).
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Here X(T ) denotes the group of characters of the torus T .

By using Cartier duality, we have

HomR(TlA, TlGm) = (HomZl
(TlA, TlGm))Γ ∼= (TlÂ)Γ = 0.

Then case (c) follows since we have Homk(A, T
′) = 0 = HomR(TlA, TlT

′).

Theorem IV.16. Theorem IV.3 is true for M = G,M ′ = G′.

Proof. Consider the short exact sequence 0→ G′
ln−→ G′ → lnG

′ → 0 in M, then we

have the following commutative diagram with exact rows

0 // Ext1
M(G,G′)⊗ Zl/lnZl //

(1)
��

Ext1
M(G, lnG

′[1])⊗ Zl //

(2)
��

lnExt2
M(G,G′)

��

0 // Ext1
R(TlG, TlG

′)⊗ Zl/lnZl // Ext1
R(TlG, lnG

′) //
lnExt2

R(TlG, TlG
′).

The map (2) is injective by theorem IV.13, so is the map (1) by the five lemma.

Passing to the projective limit, we get an injection

lim←−
n

Ext1
M(G,G′)⊗ Zl/lnZl −→ lim←−

n

Ext1
R(TlG, TlG

′)⊗ Zl/lnZl.

It follows that the canonical morphism Ext1
M(G,G′) ⊗ Zl → Ext1

R(TlG, TlG
′) is

injective.

Theorem IV.17. Theorem IV.2 is true for M = G,M ′ = G′.

Proof. The short exact sequence 0→ T → G→ A→ 0 gives a commutative diagram

with exact rows

0 // HomM(A, T ′)⊗ Zl //

��

HomM(G, T ′)⊗ Zl //

(1)

��

HomM(T, T ′)⊗ Zl
(2)

��

0 // HomR(TlA, TlT
′) // HomR(TlG, TlT

′) // HomR(TlT, TlT
′)

// Ext1
M(A, T ′)⊗ Zl

(3)
��

// Ext1
M(G, T ′)⊗ Zl

��

// Ext1
R(TlA, TlT

′) // Ext1
R(TlG, TlT

′).

Both groups HomM(A, T ′) and HomR(TlA, TlT
′) are zero, the map (2) is an iso-

morphism by lemma IV.15 (b), and the map (3) is injective by theorem IV.16,
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hence the map (1) is an isomorphism by the five lemma. The short exact sequence

0→ T ′ → G′ → A′ → 0 gives another commutative diagram with exact rows

0 // HomM(G, T ′)⊗ Zl //

(1)

��

HomM(G,G′)⊗ Zl //

(4)

��

HomM(G,A′)⊗ Zl
(5)

��

0 // HomR(TlG, TlT
′) // HomR(TlG, TlG

′) // HomR(TlG, TlA
′)

// Ext1
M(G, T ′)⊗ Zl

(6)
��

// Ext1
M(G,G′)⊗ Zl

��

// Ext1
R(TlG, TlT

′) // Ext1
R(TlG, TlG

′).

The map (5) are an isomorphisms by lemma IV.15 (a), the map (6) is injective by

theorem IV.16, hence the map (4) is an isomorphism by the five lemma.

4.5 Proof of IV.2 and IV.3

After a long preparation, now we come to the final proofs of theorem IV.2 and

theorem IV.3.

Proof of IV.2 and IV.3: The canonical exact sequence 0 → G′ → M ′ → L′[1] → 0

in M gives the following commutative diagram with exact rows

0 // HomM(L[1], G′)⊗ Zl //

(1)

��

HomM(L[1],M ′)⊗ Zl //

(2)

��

HomM(L[1], L′[1])⊗ Zl
(3)

��

0 // HomR(TlL[1], TlG
′) // HomR(TlL[1], TlM

′) // HomR(TlL[1], TlL
′[1])

// Ext1
M(L[1], G′)⊗ Zl

(4)
��

// Ext1
M(L[1],M ′)⊗ Zl //

(5)
��

Ext1
M(L[1], L′[1])⊗ Zl

(6)
��

// Ext1
R(TlL[1], TlG

′) // Ext1
R(TlL[1], TlM

′) // Ext1
R(TlL[1], TlL

′[1]).

The map (1) and the map (3) are isomorphisms by theorem IV.9 and theorem IV.8,

respectively. And the map (4) and the map (6) are injective by theorem IV.12 and

theorem IV.8, respectively. Hence by the five lemma, we have that the map (2) is

an isomorphism, and the map (5) is injective.
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The short exact sequence 0 → G′ → M ′ → L′[1] → 0 in M also gives another

commutative diagram with exact rows

0 // HomM(G,G′)⊗ Zl //

(7)

��

HomM(G,M ′)⊗ Zl //

(8)

��

HomM(G,L′[1])⊗ Zl
(9)

��

0 // HomR(TlG, TlG
′) // HomR(TlG, TlM

′) // HomR(TlG, TlL
′[1])

// Ext1
M(G,G′)⊗ Zl

(10)
��

// Ext1
M(G,M ′)⊗ Zl //

(11)
��

Ext1
M(G,L′[1])⊗ Zl

(12)
��

// Ext1
R(TlG, TlG

′) // Ext1
R(TlG, TlM

′) // Ext1
R(TlG, TlL

′[1]).

The map (7) and the map (9) are isomorphisms by theorem IV.17 and theorem IV.13

respectively, and the map (10) and the map (12) are injective by theorem IV.16 and

theorem IV.14, hence the map (8) is an isomorphism by the five lemma, and the map

(11) is injective.

Now consider another short exact sequence 0 → G → M → L[1] → 0 in M, we

get the following commutative diagram with exact rows

0 // HomM(L[1],M ′)⊗ Zl //

(2)

��

HomM(M,M ′)⊗ Zl //

(13)

��

HomM(G,M ′)⊗ Zl
(8)

��

0 // HomR(TlL[1], TlM
′) // HomR(TlM,TlM

′) // HomR(TlG, TlM
′)

// Ext1
M(L[1],M ′)⊗ Zl

(5)
��

// Ext1
M(M,M ′)⊗ Zl //

(14)
��

Ext1
M(G,M ′)⊗ Zl

(11)
��

// Ext1
R(TlL[1], TlM

′) // Ext1
R(TlM,TlM

′) // Ext1
R(TlG, TlM

′).

Then the map (13) being an isomorphism and the injectivity of the map (14) are

just easy consequences of the five lemma.

4.6 The image of Tl over a finite field

Through out this section, k will be a finite field.

Theorem IV.3 tells us that the map Tl : Ext1
M(M,M ′) ⊗ Zl → Ext1

R(TlM,TlM
′)

is injective over both finite fields and number fields. In general the arithmetic over

finite fields is much easier than the arithmetic over number fields. So it’s natural
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to ask what else can be read off beyond theorem IV.3 over finite fields. We have

proven that the group Ext1
M(M,M ′) is a finite group over finite fields, but the group

Ext1
R(TlM,TlM

′) is not necessary a finite group (actually it may not even be a

torsion group). However we may expect the image of Tl to be the torsion subgroup

of Ext1
R(TlM,TlM

′).

Theorem IV.18. The image of the natural map

Tl : Ext1
M(M,M ′)⊗ Zl → Ext1

R(TlM,TlM
′)

is the torsion subgroup Ext1
R(TlM,TlM

′)tor of Ext1
R(TlM,TlM

′).

As usual, before going to the proof of theorem IV.18, we first deal with some

special cases.

Lemma IV.19. Suppose M ′ is torsion-free, then the canonical map

Tl : Ext1
M(M,M ′)⊗ Zl → Ext1

R(TlM,TlM
′)tor

is an isomorphism.

Proof. Firstly the group Ext1
M(M,M ′) is torsion by theorem III.21, hence the im-

age of Tl lies in Ext1
R(TlM,TlM

′)tor. The map Tl is injective by theorem IV.3,

so it is left to show that Tl has image Ext1
R(TlM,TlM

′)tor. Given any element

α ∈ Ext1
R(TlM,TlM

′)tor, we need to find a preimage of α. Let r be some posi-

tive integer such that lr ·α equals zero. Since M ′ is torsion-free, we have a canonical

short exact sequence 0→M ′ lr−→M ′ → L′r[1]→ 0 inM, where L′r is a finite k-group

scheme such that M ′/lr is L′r[1]. Then we have a commutative diagram with exact

rows

HomM(M,L′r[1])⊗ Zl u //

Tl
��

Ext1
M(M,M ′)⊗ Zl

Tl
��

lr // Ext1
M(M,M ′)⊗ Zl

��

HomR(TlM,TlL
′
r[1]) v // Ext1

R(TlM,TlM
′) lr // Ext1

R(TlM,TlM
′).

The fact lrα = 0 implies α = v(β) for some β ∈ HomR(TlM,TlL
′
r). The map Tl

on the left hand side is an isomorphism by theorem IV.2, so there exists a δ ∈
HomM(M,L′r[1])⊗Zl such that Tl(δ) equals β. It follows that we have α = Tl(u(δ)).
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Lemma IV.20. Let X ′ be a finite étale k-group scheme, then the following two

canonical maps

Tl : Ext1
M(M,X ′[1])⊗ Zl → Ext1

R(TlM,X ′ ⊗ Zl)

and

Tl : Ext2
M(M,X ′[1])⊗ Zl → Ext2

R(TlM,X ′ ⊗ Zl)

are both isomorphisms.

Proof. Without loss of generality, we can assume lr · X ′ = 0, with r some positive

integer. We have the canonical short exact sequence 0 → X[1] → M → Mtf → 0

associated to M , where X is a finite étale k-group scheme satisfying Mtor = X[1].

Consider the short exact sequence 0→Mtf
lr−→Mtf → Lr[1]→ 0, where Lr is a finite

étale k-group scheme such that Mtf/l
r = Lr[1], then we get a commutative diagram

with exact rows

// HomM(Mtf , X
′[1])⊗ Zl lr //

��

HomM(Mtf , X
′[1])⊗ Zl //

(1)

��

Ext1
M(Lr[1], X ′[1])⊗ Zl

(2)
��

// HomR(TlMtf , TlX
′[1]) lr // HomR(TlMtf , TlX

′[1]) // Ext1
R(TlLr[1], TlX

′[1])

// Ext1
M(Mtf , X

′[1])⊗ Zl
(3)
��

lr // Ext1
M(Mtf , X

′[1])⊗ Zl //

(4)
��

Ext2
M(Lr[1], X ′[1])⊗ Zl

(5)
��

// Ext1
R(TlMtf , TlX

′[1]) lr // Ext1
R(TlMtf , TlX

′[1]) // Ext2
R(TlLr[1], TlX

′[1])

// Ext2
M(Mtf , X

′[1])⊗ Zl

��

lr // Ext2
M(Mtf , X

′[1])⊗ Zl

��

// Ext3
M(Lr[1], X ′[1])⊗ Zl

��

// Ext2
R(TlMtf , TlX

′[1]) lr // Ext2
R(TlMtf , TlX

′[1]) // Ext3
R(TlLr[1], TlX

′[1]).

Since X ′ is killed by lr, all the multiplication-by-lr maps in the diagram are zero.

So the rows break down into short exact sequences. The maps (1) and (2) are

isomorphisms by theorem IV.2 and proposition IV.7 (a), respectively, so is the

map (3) and hence so is the map (4). The groups Ext3
M(Lr[1], X ′[1]) ⊗ Zl and

Ext3
R(TlLr[1], TlX

′[1]) are zero by theorem III.21 and corollary II.36, respectively,

so we conclude that the groups Ext2
M(Mtf , X

′[1])⊗ Zl and Ext2
R(TlMtf , TlX

′[1]) are
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both zero. Then the map (4) being an isomorphism implies that the map (5) is an

isomorphism.

Now we turn to consider the short exact sequence 0 → X[1] → M → Mtf → 0,

and we get a commutative diagram with exact rows

// HomM(M,X ′[1])⊗ Zl //

��

HomM(X[1], X ′[1])⊗ Zl //

(6)

��

Ext1
M(Mtf , X

′[1])⊗ Zl
(3)
��

// HomR(TlM,TlX
′[1]) // HomR(TlX[1], TlX

′[1]) // Ext1
R(TlMtf , TlX

′[1])

// Ext1
M(M,X ′[1])⊗ Zl

(7)
��

// Ext1
M(X[1], X ′[1])⊗ Zl //

(8)
��

Ext2
M(Mtf , X

′[1])⊗ Zl

��

// Ext1
R(TlM,TlX

′[1]) // Ext1
R(TlX[1], TlX

′[1]) // Ext2
R(TlMtf , TlX

′[1])

// Ext2
M(M,X ′[1])⊗ Zl

(9)
��

// Ext2
M(X[1], X ′[1])⊗ Zl

(10)
��

// Ext3
M(Mtf , X

′[1])⊗ Zl

��

// Ext2
R(TlM,TlX

′[1]) // Ext2
R(TlX[1], TlX

′[1]) // Ext3
R(TlMtf , TlX

′[1]).

The maps (6) and (8) are isomorphisms by theorem IV.2 and proposition IV.7 (a),

respectively. We already know the map (3) is an isomorphism, and the groups

Ext2
M(Mtf , X

′[1]) ⊗ Zl and Ext2
R(TlMtf , TlX

′[1]) are zero, hence the map (7) is an

isomorphism by the five lemma. Both the group Ext3
M(Mtf , X

′[1]) and the group

Ext3
R(TlMtf , TlX

′[1]) are zero by the same reasons as in the above diagram. Then

the map (9) is an isomorphism if and only if the map (10) is an isomorphism, and

the latter is given by lemma IV.21.

Lemma IV.21. Let X,X ′ be two finite étale group schemes over k, then the canon-

ical map

Tl : Ext2
M(X[1], X ′[1])⊗ Zl → Ext2

R(X ⊗ Zl, X ′ ⊗ Zl)

is an isomorphism.

Proof. Without loss of generality, we can assume both X and X ′ are killed by lr for

some positive integer r.

Claim. Any element in Ext2
R(X,X ′) can be represented by a 2-extension with all

terms finite étale group schemes.
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Indeed, let

0→ X ′ → Y1
α−→ Y2 → X → 0

be a 2-extension in R. Since Y1 is finitely generated over Zl, we have lmY1 ∩X ′ = 0

for some positive integer m big enough. We have the following commutative diagram

with exact rows and column:

lmY1� _

��

0 // X ′ // Y1
α //

��

Y2
//

��

X // 0

0 // X ′ // Y1/l
mY1

ᾱ // Y2/α(lmY1) // X // 0.

Then the 2-extension

0→ X ′ → Y1/l
mY1

α−→ Y2/α(lmY1)→ X → 0

is equivalent to the original one and has all terms finite. This shows the claim.

The surjectivity follows from the claim.

Now we prove the injectivity. A similar argument shows that any element of the

group Ext2
M(X[1], X ′[1]) can be represented by a 2-extension

0→ X ′ → Z1
β−→ Z2 → X → 0

with Z1, Z2 finite l-groups. This 2-extension is the splicing of the following two

1-extensions:

E 0→ X ′ → Z1
β̄−→ im(β)→ 0 0→ im(β)

i−→ Z2 → X → 0 F .

If this 2-extension represents the trivial element of Ext2
R(X,X ′), then by [23, chap.

VII, lem. 4.1] the 1-extension F is the pushout of some 1-extension F ′ ∈ Ext1
R(X,Z1)

along the morphism β̄. Since any 1-extension of X by Z1 inR also lies in the category

of finite étale group schemes, it follows that the original 2-extension also represents

the trivial element of Ext2
M(X[1], X ′[1]). This shows the injectivity.

After some preparation, we can go to the proof of theorem IV.18, which is just

an easy consequence of the five lemma.
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Proof of IV.18. Let’s consider the short exact sequence

0→ X ′[1]→M ′ →M ′
tf → 0.

We get the following commutative diagram with exact rows

(4.1)

// HomM(M,M ′)⊗ Zl //

��

HomM(M,M ′
tf)⊗ Zl //

(1)

��

Ext1
M(M,X ′[1])⊗ Zl

(2)
��

// HomR(TlM,TlM
′) // HomR(TlM,TlM

′
tf)

// Ext1
R(TlM,TlX

′[1])

// Ext1
M(M,M ′)⊗ Zl

(3)
��

// Ext1
M(M,M ′

tf)⊗ Zl u //

(4)
��

Ext2
M(M,X ′[1])⊗ Zl

(5)
��

// Ext1
R(TlM,TlM

′) v // Ext1
R(TlM,TlM

′
tf)

// Ext2
R(TlM,TlX

′[1]).

Since the group Ext1
R(TlM,TlX

′[1]) is torsion, the map v restricted to the free part

of Ext1
R(TlM,TlM

′) has to be injective. It follows that the map v can be expressed

as v = vtor ⊕ vfr, with

vtor : Ext1
R(TlM,TlM

′)tor → Ext1
R(TlM,TlM

′
tf)tor

vfr : Ext1
R(TlM,TlM

′)fr → Ext1
R(TlM,TlM

′
tf)fr,

where Ext1
R(TlM,TlM

′)tor (resp. Ext1
R(TlM,TlM

′)fr) denotes the torsion (resp. free)

subgroup of Ext1
R(TlM,TlM

′), and Ext1
R(TlM,TlM

′
tf)tor (resp. Ext1

R(TlM,TlM
′
tf)fr)

denotes the torsion (resp. free) subgroup of Ext1
R(TlM,TlM

′
tf). We know the map

(4) maps Ext1
M(M,M ′

tf) ⊗ Zl bijectively to Ext1
R(TlM,TlM

′
tf)tor, hence the group

im(u) goes to the group coker(vtor) under the map (5). The torsionness of the groups

Ext1
M(M,M ′) and Ext1

R(TlM,TlX
′[1]) implies that the map (3) and s have their

images lying in Ext1
R(TlM,TlM

′)tor, where s denotes the map

Ext1
R(TlM,TlX

′[1])→ Ext1
R(TlM,TlM

′).
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So we get a new commutative diagram with exact rows out of the above diagram

// HomM(M,M ′)⊗ Zl //

��

HomM(M,M ′
tf)⊗ Zl //

(1)

��

Ext1
M(M,X ′[1])⊗ Zl

(2)
��

// HomR(TlM,TlM
′) // HomR(TlM,TlM

′
tf)

// Ext1
R(TlM,TlX

′[1])

// Ext1
M(M,M ′)⊗ Zl

(3)′

��

// Ext1
M(M,M ′

tf)⊗ Zl //

(4)′

��

im(u)

(5)′

��

// Ext1
R(TlM,TlM

′)tor
vtor // Ext1

R(TlM,TlM
′
tf)tor

// coker(vtor).

The injectivity of the map (5) implies the map (5)′ is injective, the maps (1), (2) and

(4)′ are isomorphisms by IV.2, IV.20 and IV.19 respectively, then the map (3)′ is an

isomorphism by the five lemma.

Next, we are going to give description to the map Tl for Ext2 groups.

Theorem IV.22. Suppose k is a finite field, M ′ is torsion-free, and g denotes the

rank of the Zl-module Ext1
R(TlM,TlM

′). Then the canonical map

Tl : Ext2
M(M,M ′)⊗ Zl → Ext2

R(TlM,TlM
′)

is an epimorphism and has kernel isomorphic to (Ql/Zl)g.

Proof. Notations as in IV.19. Let r be a positive integer such that lr kills the group

Ext1
M(M,M ′)⊗Zl. We enlarge the same commutative diagram with exact rows used
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in the proof of IV.19

// HomM(M,L′r[1])⊗ Zl //

��

Ext1
M(M,M ′)⊗ Zl

��

lr // Ext1
M(M,M ′)⊗ Zl

��

// HomR(TlM,TlL
′
r[1]) // Ext1

R(TlM,TlM
′) lr // Ext1

R(TlM,TlM
′)

// Ext1
M(M,L′r[1])⊗ Zl

��

// Ext2
M(M,M ′)⊗ Zl

��

lr // Ext2
M(M,M ′)⊗ Zl

��

// Ext1
R(TlM,TlL

′
r[1]) // Ext2

R(TlM,TlM
′) lr // Ext2

R(TlM,TlM
′)

// Ext2
M(M,L′r[1])⊗ Zl

��

// 0

// Ext2
R(TlM,TlL

′
r[1]) // 0.

We have the multiplication-by-lr map in the first row is zero, and by lemma IV.19

we have

Ext1
R(TlM,TlM

′) ∼= (Ext1
M(M,M ′)⊗ Zl)⊕ Zgl .

Then we get two commutative diagrams with exact rows

Ext1
M(M,M ′)⊗ Zl �

�
//

(1)
��

Ext1
M(M,L′r[1])⊗ Zl // //

(2)
��

lrExt2
M(M,M ′)

(3)
��

Ext1
R(TlM,TlM

′)⊗ Z/lr � � // Ext1
R(TlM,TlL

′
r[1]) // //

lrExt2
R(TlM,TlM

′).

and

0 // Ext2
M(M,M ′)⊗ Z/lr //

(4)
��

Ext2
M(M,L′r[1])⊗ Zl //

(5)
��

0

0 // Ext2
R(TlM,TlM

′)⊗ Z/lr // Ext2
R(TlM,TlL

′
r[1]) // 0.

Write

Ext2
M(M,M ′)⊗ Zl ∼= (Ql/Zl)s ⊕ S

and

Ext2
R(TlM,TlM

′) ∼= Zdl ⊕ (Ql/Zl)t ⊕ T,

where (Ql/Zl)t and Zdl are the l-divisible subgroup and the torsion-free subgroup of

Ext2
R(TlM,TlM

′), respectively, (Ql/Zl)s is the l-divisible subgroup of Ext2
M(M,M ′)⊗
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Zl, and S, T are two finite groups. The map (2) is an isomorphism by lemma IV.20,

and the cokernel of the map (1) is isomorphic to Zgl ⊗Z/lr = (Z/lr)g, then the snake

lemma gives a short exact sequence

0→ (Z/lr)g → lrExt2
M(M,M ′)→ lrExt2

R(TlM,TlM
′)→ 0.

Taking the direct limit, we get

0→ (Ql/Zl)g → (Ql/Zl)s ⊕ S → (Ql/Zl)t ⊕ T → 0.

Hence we have s = t + g and S ∼= T under the map Tl. We also know the map (5)

is an isomorphism by III.20, hence so is the map (4). Then we conclude d = 0, and

this finishes the proof.

Theorem IV.23. Let

0→ X ′[1]→M ′ →M ′
tf → 0

be the canonical short exact sequence associated to the 1-motive M ′, with X ′[1] the

torsion part and M ′
tf the torsion-free part. Consider the diagram 4.1

// HomM(M,M ′)⊗ Zl //

��

HomM(M,M ′
tf)⊗ Zl //

(1) ∼=
��

Ext1
M(M,X ′[1])⊗ Zl

(2) ∼=
��

// HomR(TlM,TlM
′) // HomR(TlM,TlM

′
tf)

// Ext1
R(TlM,TlX

′[1])

// Ext1
M(M,M ′)⊗ Zl� _

(3)
��

// Ext1
M(M,M ′

tf)⊗ Zl //
� _

(4)
��

Ext2
M(M,X ′[1])⊗ Zl

(5) ∼=
��

// Ext1
R(TlM,TlM

′) // Ext1
R(TlM,TlM

′
tf)

// Ext2
R(TlM,TlX

′[1])

// Ext2
M(M,M ′)⊗ Zl

(6)
��

// Ext2
M(M,M ′

tf)⊗ Zl
(7)
����

// 0

// Ext2
R(TlM,TlM

′) // Ext2
R(TlM,TlM

′
tf)

// 0,

then the canonical map

Tl = (6) : Ext2
M(M,M ′)⊗ Zl → Ext2

R(TlM,TlM
′)

is surjective and its kernel fits into the exact sequence

0→ coker(3)→ coker(4)→ ker(6)→ ker(7)→ 0.
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Moreover, we have coker(3) ∼= coker(4) ∼= Zgl and ker(7) ∼= (Ql/Zl)g, with g being the

rank of the Zl-module Ext1
R(TlM,TlM

′
tf).

Proof. First, we know the maps (1), (2), and (5) are isomorphisms by theorem IV.2

and lemma IV.20, the maps (3) and (4) are injective by theorem IV.18, and the map

(7) is surjective by theorem IV.22. Then the map (6) is surjective by the five lemma.

Cut the above diagram into the following five small diagrams with exact rows

I : // − //

(1) ∼=
��

− //

(2) ∼=
��

− //

(2.5)

��

0

// − // − // − // 0

II : 0 // − //

(2.5)

��

− //
� _

(3)

��

− //

(3.5)

��

0

0 // − // − // − // 0

III : 0 // − //

(3.5)

��

− //
� _

(4)

��

− //

(4.5)

��

0

0 // − // − // − // 0

IV : 0 // − //

(4.5)

��

− //

(5) ∼=
��

− //

(5.5)

��

0

0 // − // − // − // 0

V : 0 // − //

(5.5)

��

− //

(6)
����

− //

(7)
����

0

0 // − // − // − // 0.

In these diamgram, we just use the symbol ”-” to indicate objects which can be read

off from the maps, and the maps (n.5) are the maps coming from cutting the original

diagram along the horizontal arrows between map (n) and map (n+1). From diagram

I, we conclude that the map (2.5) is an isomorphism. From diagram II, we conclude

that the map (3.5) is injective, and get coker(3) ∼= coker(3.5). From diagram IV, we

conclude the maps (4.5) and (5.5) are injective and surjective respectively, and get

ker(5.5) ∼= coker(4.5). From diagram III, we get an short exact sequence

0→ coker(3.5)→ coker(4)→ coker(4.5)→ 0.

From diagram V, we get a short exact sequence

0→ ker(5.5)→ ker(6)→ ker(7)→ 0.

To sum up, we get an exact sequence

0→ coker(3)→ coker(4)→ ker(6)→ ker(7)→ 0.

We have coker(4) ∼= Zgl by the definition of g, hence we get coker(3) ∼= Zgl . We also

have ker(7) ∼= (Ql/Zl)g by theorem IV.22.
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