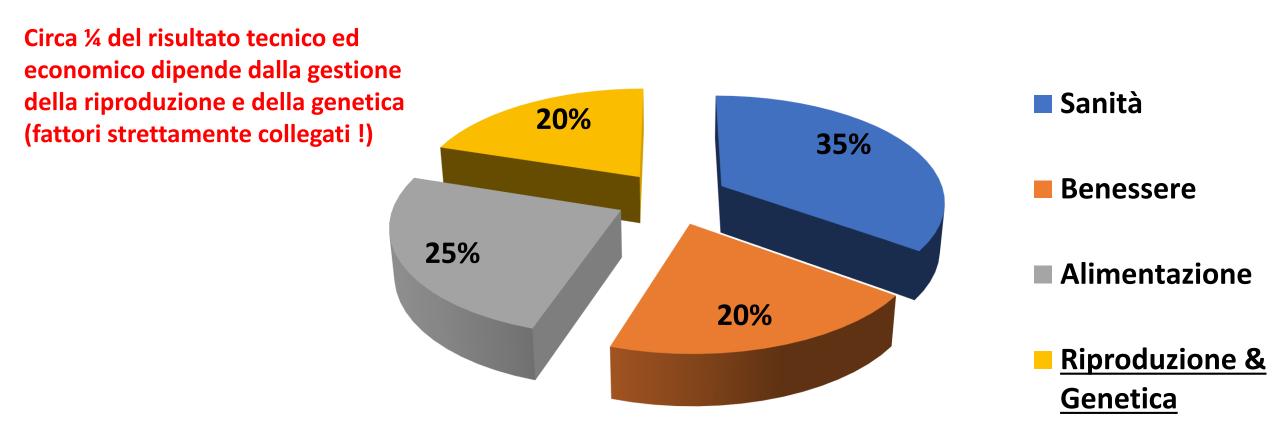
Scuola in stalla:

La riproduzione e la genetica nell'allevamento della capra da latte

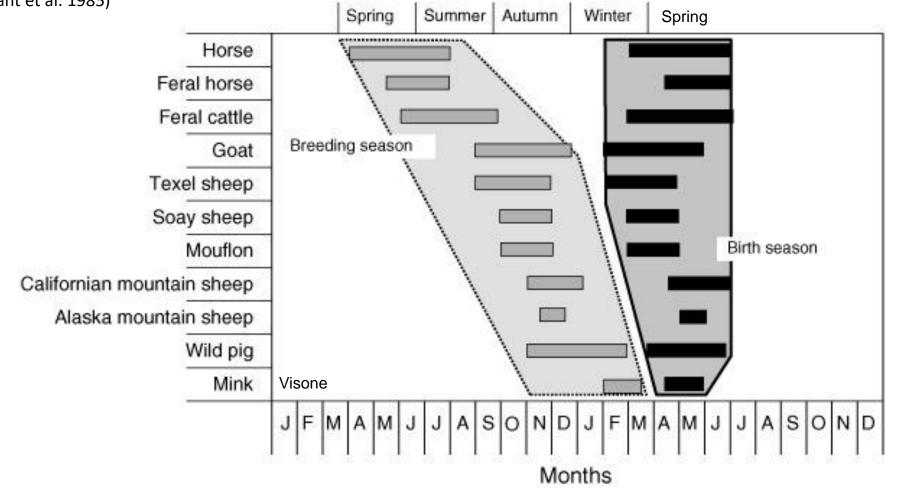

Azienda «L'Alba» di Francesca Borrini – San Michele in Bosco (MN)

Mercoledì 6 Novembre 2019

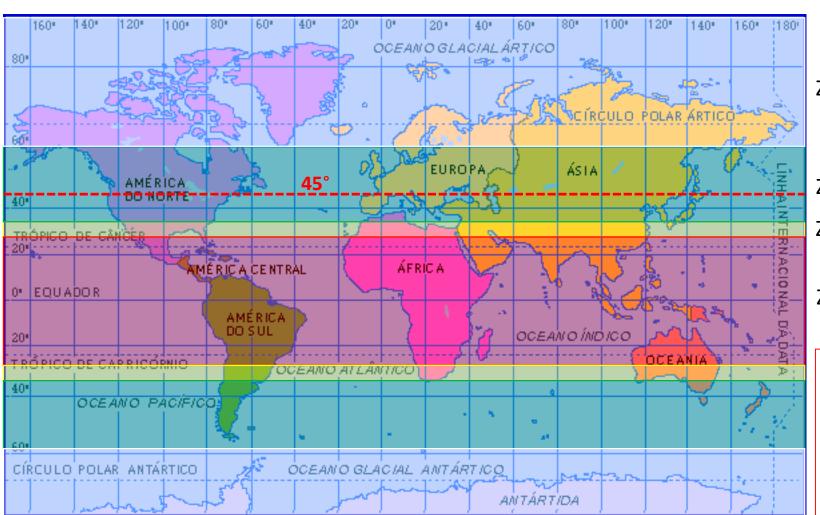
Guido Bruni: Responsabile tecnico Contratto Genetico Caprino - ARAL

I 4 FATTORI CHIAVE DELLA RIUSCITA TECNICA ED ECONOMICA DELL'ALLEVAMENTO CAPRINO CON VENDITA LATTE

Principali fattori di variazione delle performance produttive (quantità latte) nell'allevamento caprino e loro peso relativo (fonte: studio réseau d'élevages CCPA Groupe)



1° PARTE - LA RIPRODUZIONE


La stagionalità riproduttiva una particolarità di molte specie domestiche e selvatiche

Timing of the annual reproductive cycle of some seasonal species.

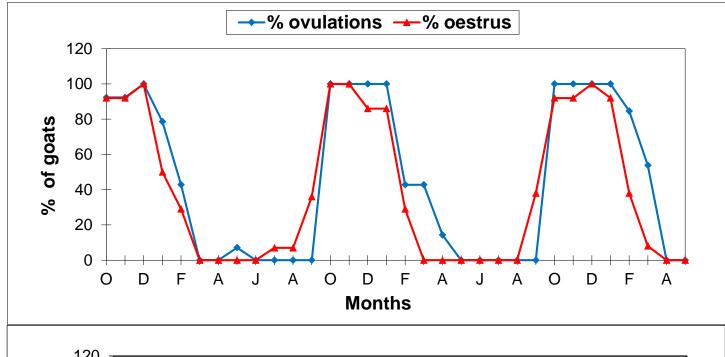
Breeding period (grey box) takes place at different season from spring to winter, according to the length of gestation (horse: 11 months, cattle: 9 months, goat and sheep: 5 months, wild pig: 4 months, mink: 40-74 days). For theses species, birth period (black box) always take place during spring or at the end of the winter. (adapted from Ortavant et al. 1985)

Latitudine e stagionalità riproduttiva dei piccoli ruminanti

Zona artica: latitudine > 60°

Zona temperata: latitudine 35 – 60°

Zona subtropicale: latitudine 25 - 35°


Zona tropicale : latitudine < 25°

Fotoperiodo naturale:

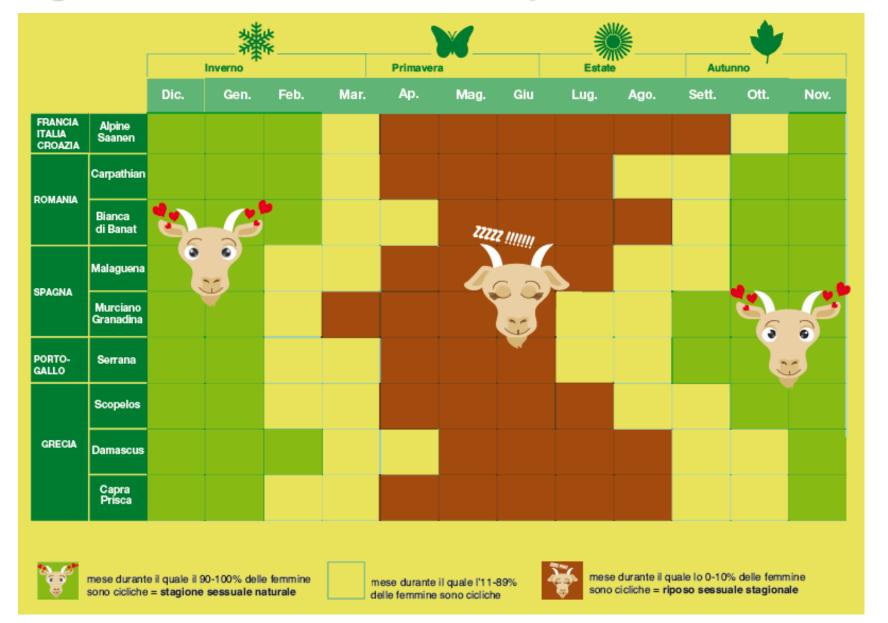
45° L (nord Italia) = 16 ore luce e 8 ore buio (solstizio d'estate); 8 ore luce e 16 ore buio (solstizio d'inverno).

0° L (equatore) = 12 ore luce e 12 ore buio (costante tutto l'anno).

Variazione stagionale del comportamento sessuale e delle ovulazioni nella capra

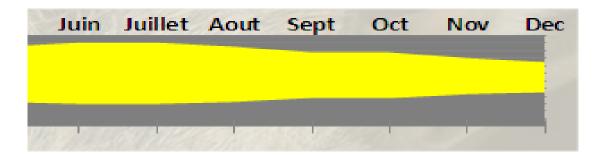
Alpine goats in temperate latitude (France 45° NL)

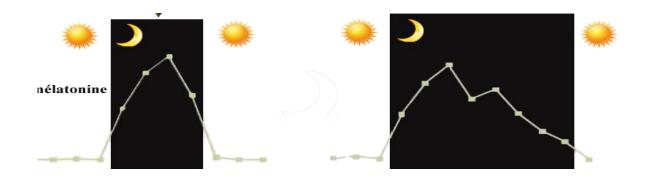
120
100
80
60
40
20
J F M A M J J A S O N D J F M A M J J A S O N D


Months

Creole goats in tropical latitude (Guadeloupe 15° NL)

(adaptet from Leboeuf et al. 2009)


La stagionalità nella razze caprine del Sud Europa

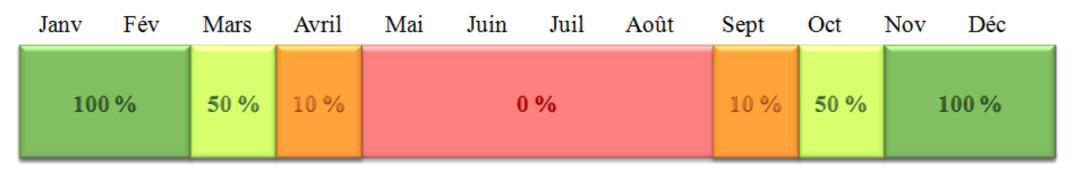


Richiami sulla stagionalità nella specie caprina

Fotoperiodo

 Secrezione di melatonina

 Azione sulla riproduzione


Richiami sulla stagionalità nella specie caprina

- La stagionalità è dovuta alla variazione di fotoperiodo e all'alternanza di giorni corti (GC) e giorni lunghi (GL).
- Il passato fotoperiodico condiziona la risposta degli animali allo stimolo luminoso (es. protocollo luminoso: max 210 giorni di GL e max 100 giorni di GC).
- Alpine e Saanen presentano un anaestro profondo quindi sono fortemente influenzate dal fotoperiodo.

Richiami sulla stagionalità nelle razze Alpine e Saanen

• La stagionalità: % capre in estro e ovulazione

(Fonte : stalla sperimentale di sole femmine Alpine INRA Bourges, 2009).

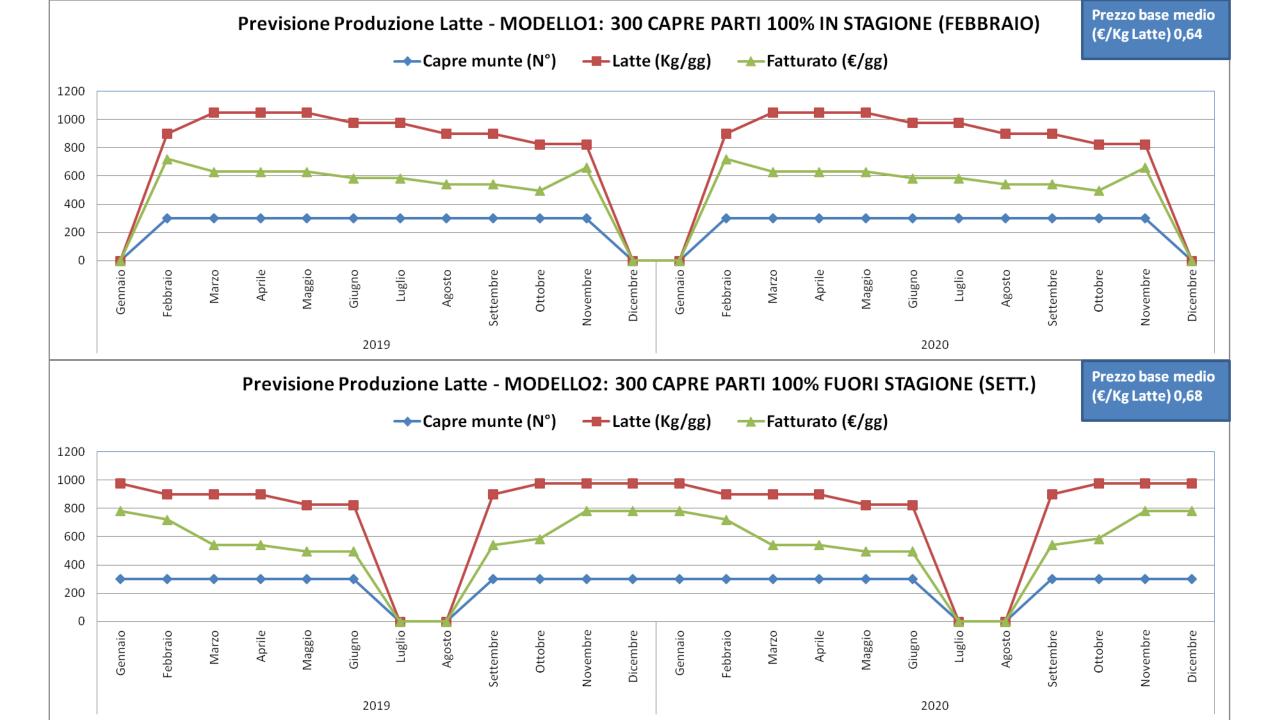
- A 45° di latitudine (Italia del Nord e Francia):
 - ✓ Stagione sessuale (estro) = da Novembre a Febbraio
 - ✓ Contro stagione (anaestro) = da Maggio ad Agosto.
 - ✓ Transizione (estro => anaestro) = Marzo-Aprile.
 - ✓ Transizione (anaestro => estro) = Settembre-Ottobre.
- Negli anni si osserva un progressivo ritardo della stagione riproduttiva (mutamenti e imprevedibilità climatica) !!!!

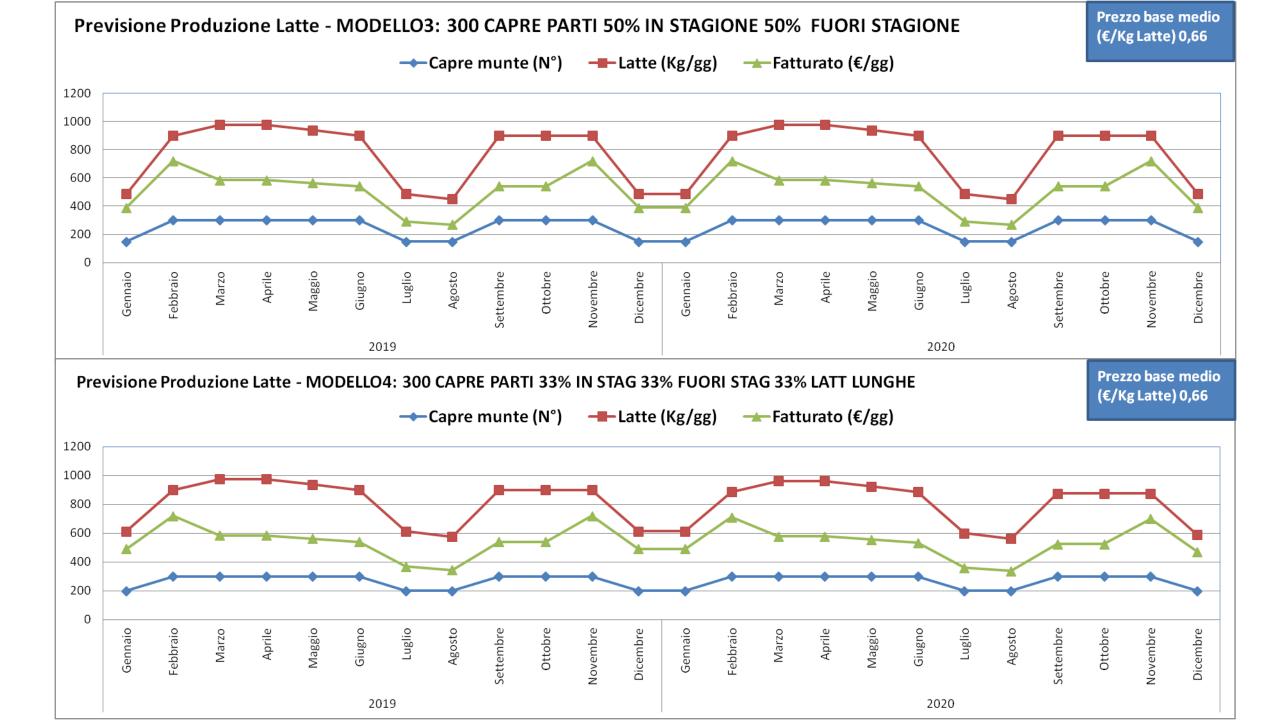
Perché gestire la stagionalità riproduttiva ?

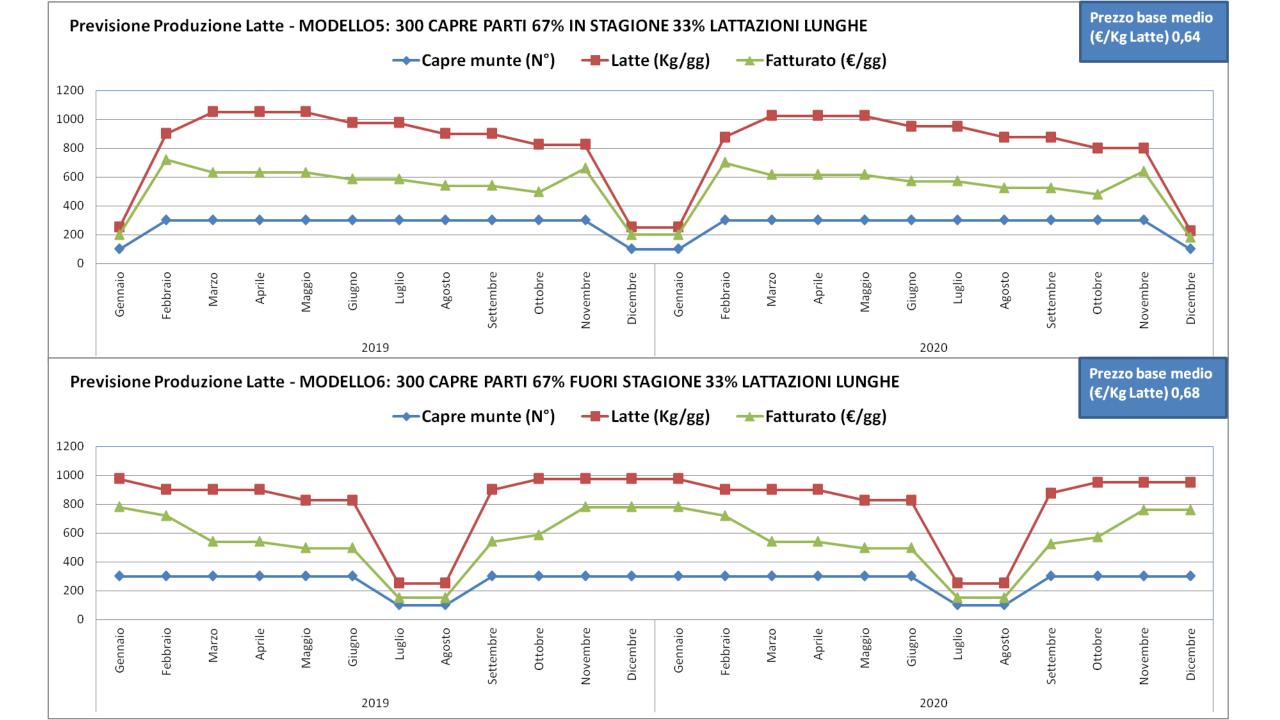
La gestione della stagionalità riproduttiva è strategica per:

- Scegliere il periodo dei parti e programmare la produzione di latte o di formaggio in funzione delle richieste del mercato (industria, consumatori) per massimizzare i ricavi.
- Raggruppare il periodo dei parti, semplificando la transizione alimentare delle adulte e allevamento dei giovani da rimonta.
- Facilitare l'organizzazione del lavoro e ottimizzare l'utilizzo delle strutture (sala mungitura e capretteria).
- Garantire il progresso genetico (associando i protocolli di gestione della riproduzione all'IA).

Come gestire la stagionalità riproduttiva?


Principali metodi o protocolli per la gestione riproduttiva nei piccoli ruminanti:


- 1. L'<u>effetto maschio</u> (se ben gestito permette la destagionalizzazione nelle razze meno stagionali es. Murciana).
- 2. Il <u>trattamento luminoso</u> (indispensabile nelle razze marcatamente stagionali es. Alpine e Saanen).
- 3. Il <u>trattamento ormonale</u> (associabile all'IA per miglioramento genetico).
- 4. Le <u>lattazioni lunghe</u> (pratica "non riproduttiva" ma "produttiva", realizzabile in razze caprine selezionate per la persistenza lattea).


Impatto economico della destagionalizzazione

Ipotesi:

- Allevamento intensivo con vendita latte.
- 300 capre in lattazione (2 Unità Lavorative).
- Produzione media 1.000 kg li latte in 300 giorni di lattazione.
- Profili di curve di lattazione differenti per parti in stagione, fuori stagione e lattazioni lunghe (Algoritmi Software PreviLat).
- Prezzo base latte (IVA e Premi Qualità esclusi): 0,60 €/Kg Latte da Marzo a Ottobre (8 mesi) e 0,80 €/Kg Latte da Novembre a Febbraio (4 mesi).
- Confronto tra 6 Modelli di Previsione della Produzione Latte su 2 anni (Software PreviLat) con differenti combinazioni di periodi di parto in stagione, fuori stagione e lattazioni lunghe => Prezzo base latte medio.

Impatto economico della destagionalizzazione

Conclusioni:

- I modelli 1 (100% IS) e 5 (67% IS + 33% LL) si equivalgono in termini di valorizzazione del latte (0,64 €/Kg Latte).
- I modelli 3 (50% IS + 50% FS) e 4 (33% IS + 33% FS + 33% LL) si equivalgono in termini di valorizzazione del latte (0,66 €/Kg Latte).
- I modelli 2 (100% FS) e 6 (67% FS + 33% LL) si equivalgono in termini di valorizzazione del latte (0,68 €/Kg Latte).
- Destinare 1/3 di capre in Lattazione Lunga (Mod. 4, 5 e 6) non accresce la valorizzazione del latte, serve solo a ridurre il numero dei parti e dei relativi prodotti se scarsamente valorizzati.
- Con la griglia di pagamento del latte di capra ipotizzata (+33% del prezzo base estivo nei 4 mesi invernali) l'unico sistema per meglio valorizzare il latte é destagionalizzare i parti.

2° PARTE - LA GENETICA

Alcuni PRINCIPI base:

- I caratteri obiettivo di selezione (latte, titoli, morfologia, cellule) per gli allevatori di piccoli ruminanti sono poco ereditabili, ereditabilità (h2) parte del carattere misurabile (fenotipo) che dipende dal genoma dell'animale (genotipo) il resto dipende dall'ambiente (fenotipo = ambiente + genotipo).
- 2. La scelta dei riproduttori (rimonta) "solo" sui genitori è già qualcosa, ma non mette al riparo da cattive sorprese, la prova di progenie "anche" sulla discendenza garantisce risultati certi in termini di obiettivi di selezione (solo 1 becco nato da MN su 15 ha la probabilità di mantenere le promesse dei genitori).
- 3. La genomica (verificare direttamente sul DNA la "bontà" di un riproduttore senza attendere la discendenza) nei piccoli ruminanti sembrava in ritardo, ma negli ultimi anni è esplosa nelle razze ovine (Lacaune, Sarda) e caprine (Alpine e Saanen) i becchi genomici sono disponibili dal 2018.
- 4. L'IA (Inseminazione Artificiale) pur essendo un metodo riproduttivo è LA BASE del progresso genetico (prove di progenie, connessione tra aziende, attendibilità indici genetici, paternità certa).
- 5. Difficoltà tecnologiche (congelabilità seme di becco) e tecniche (anatomia pecora che vincola all'uso di seme fresco) che limitano la diffusione dell'IA nei piccoli ruminanti, tuttavia il FRENO principale dell'allevatore è la riuscita all'IA => obiettivo fertilità all'ecografia 67% (2/3 gravide)!

Esempi di ereditabilità di alcuni caratteri nella razza Alpine

Caractères laitiers: *Bélichon et al., 2000 (race alpine)

	Lait*	MP*	MG*	TP*	TB*
h ²	0,34	0,36	0,37	0,58	0,58

Caractères fonctionnels:

	PRM ¹	PLA ¹	AAR ¹	AVP ¹	ORT ¹		Vitesse traite ³	Longé- vité ³
h ²	0,37	0,31	0,27	0,32	0,32	0,20	0,30	0,20

PRM : profil de la mamelle

PLA: hauteur du plancher

AAR : qualité de l'attache-arrière

AVP: avant-pis

ORT: orientation des trayons

CCS: comptage de cellules somatiques

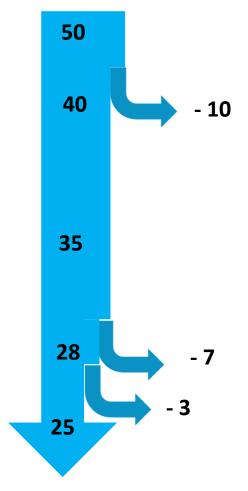
¹ Clément et al., 2006(race alpine)

² Rupp et al., 2011 (race alpine)

³ Ilahi et al., 2000 (caprins)

⁴ Ducrocq, 1997 (bovins)

L'importanza dell'IA nella specie caprina


I MOTIVI per fare l'Inseminazione Artificiale (IA) nella specie caprina:

- **1. SANITA':** il seme è prodotto in centri genetici abilitati a livello UE con protocolli sanitari rigorosi (allevamento d'origine, madre del becco, quarantena) che danno le massime garanzie sanitarie al seme prodotto, l'IA evita anche eventuali malattie veneree trasmesse con la monta naturale.
- 2. VARIABILITA' GENETICA: <u>fare poche IA</u> (10% delle capre il lattazione) per rinnovare il parco becchi per evitare la consanguineità senza ricorrere ad acquisti esterni di genetica ma anche di malattie.
- 3. ORGANIZZAZIONE DELLA RIPRODUZIONE: cantieri di IA importanti per garantire la concentrazione dei parti (semplificazione dell'alimentazione e della gestione della capre in transizione e delle caprette da rimonta) e la programmazione della stagione dei parti e della produzione di latte (IA associata a protocolli di destagionalizzazione).
- 4. GARANTIRE IL PROGRESSO GENETICO: <u>fare tante IA</u> (30-50% delle capre in lattazione) per ottenere la maggior parte o la totalità delle caprette da rimonta nate da IA (con paternità certa e provata), questo consente di massimizzare il progresso genetico rispetto agli obiettivi di ogni allevatore (quantità latte, titoli, mammella, cellule, ...).

La scelta dei riproduttori (femmine madri di rimonta)

Esempio allevamento con il 25% rimonta (25 primipare su 100 animali in lattazione):

N° Madri rimonta femminile	50
Fertilità IA+Ritorni	80%
N° Parti	40
Prolificità	175%
N° Nati	70
Rapporto sessi nascita	50%
N° Femmine Nate	35
Mortalità Nascita -1 ^a Monta	10%
Scarto x tare	10%
N° femmine alla riproduzione	28
Mortalità e scarti in Gravidanza	10%
N° femmine alla 1ª lattazione	25

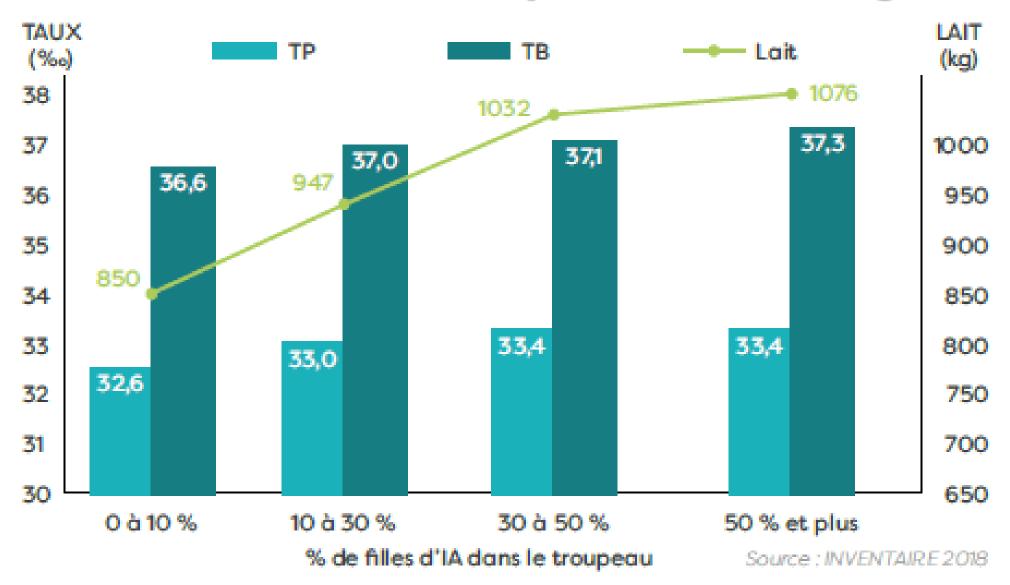
COME SCEGLIERE IL MIGLIOR 50% DELLE FEMMINE PRESENTI IN ALLEVAMENTO?

Le recenti novità nella selezione genetica delle razze Alpine e Saanen in Francia:

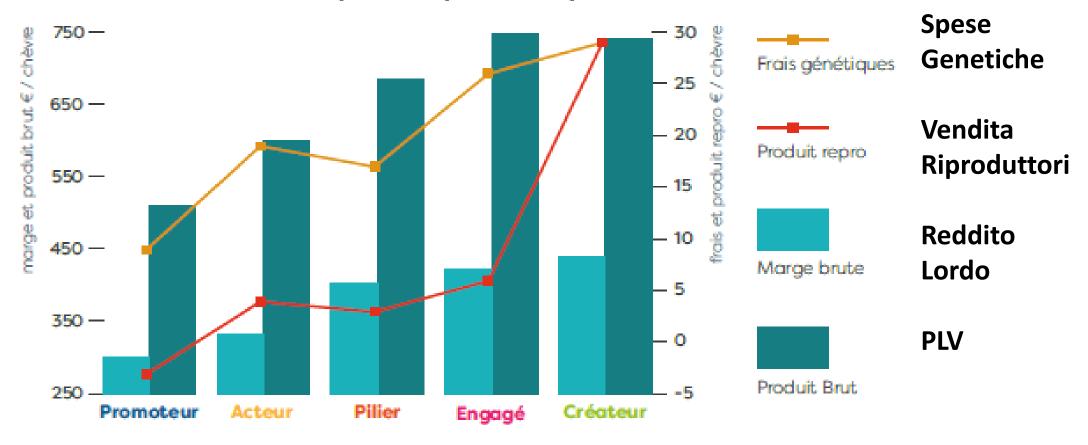
2017: avvio del programma di selezione Genès Avenir

2018: arrivo della **Genomica** nello schema di selezione

2017 : Capgènes fa evolvere il <u>Contratto Gènes+</u> nel Programma <u>Gènes Avenir</u>



Ripartizione degli allevamenti in funzione dell'adesione ai SERVIZI e del livello di CONNESSIONE:


Adesione Servizi Livello Connessione	Controlli Funzionali Ufficiali + Punteggio	Controlli Funzionali Ufficiali	Controlli Funzionali Semplificati	Nessun servizio							
Allevamenti CONNESSI (*)	CREATORI	PILASTRI	PIONIERI	CONTRIBUTORI							
Allevamenti NON CONNESSI	COINVOLTI	ATTORI	PROMOTORI	CONTRIBUTORI							
(*) un allevamento è CONNESSO quando:	CD di Connessione ≥ 0,40 e la filiazione paterna ≥ 30% OPPURE 0,20 ≤ CD di Connessione ≤ 0,40 e la filiazione paterna ≥ 60%										

Impatto economico della genetica: performance produttive in funzione della percentuale di figlie di IA

Impatto economico della genetica: risultati tecnico economici (155 diagnosi CAPT€C realizzate nel 2017)

Résultats technico-economiques en € par chèvre pour les éleveurs laitiers

Chez les éleveurs laitiers, la marge brute progresse avec le niveau d'investissement dans Gènes Avenir par + de lait, + de taux, + de vente de reproducteurs.

1€ investito (Controlli Funzionali + Capgènes + TO + IA) = + 7€ di reddito lordo

Le tappe della genomica nei caprini:

1988: Schema di selezione basato sul testaggio in allevamento dei becchi d'IA.

1996: Utilizzazione delle prime informazioni molecolari (gene della caseina α s1).

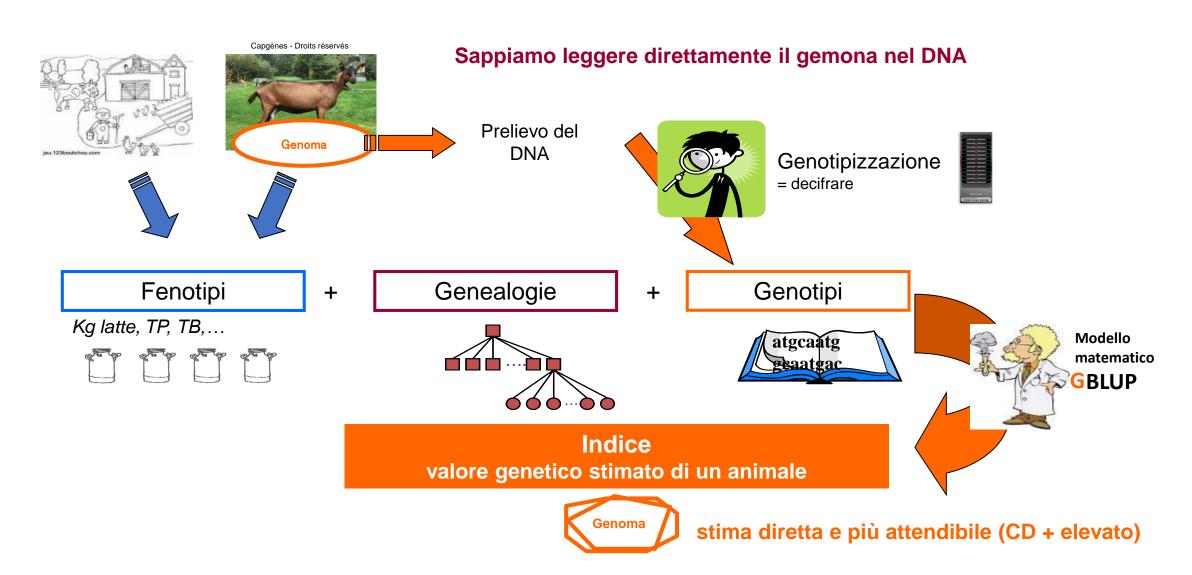
2010: Sequenzaggio del genoma caprino in Cina, creazione del Consorzio Internazionale del Genoma Caprino.

2011: creazione del chip SNP caprino internazionale 54.000 SNP, utilizzazione del gene di resistenza alla Scrapie nella scelta dei becchi d'IA.

2012: Creazione di una prima popolazione di riferimento: genotipizzazione di 850 becchi d'IA.

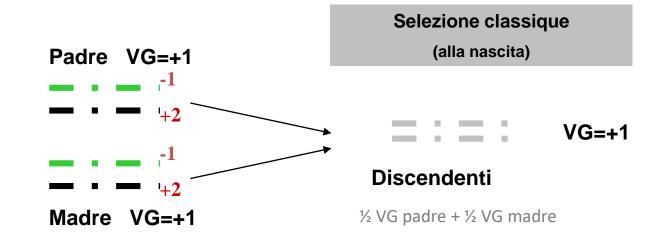
2014: Ricerca del QTL e dei geni d'interesse per la filiera caprina.

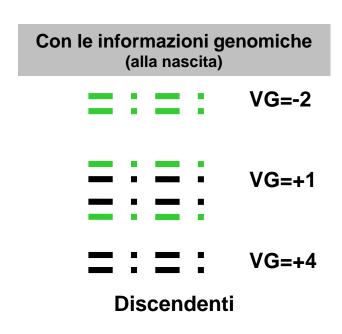
2015: Genotipizzazione di ulteriori 250 becchi d'IA.


2017: Validazione del modello d'indicizzazione genomica caprina (Single Steg GBLUP)

2018: 1° indicizzazione genomica ufficiale per lo schema caprino, popolazione di riferimento: circa 1.200 becchi d'IA.

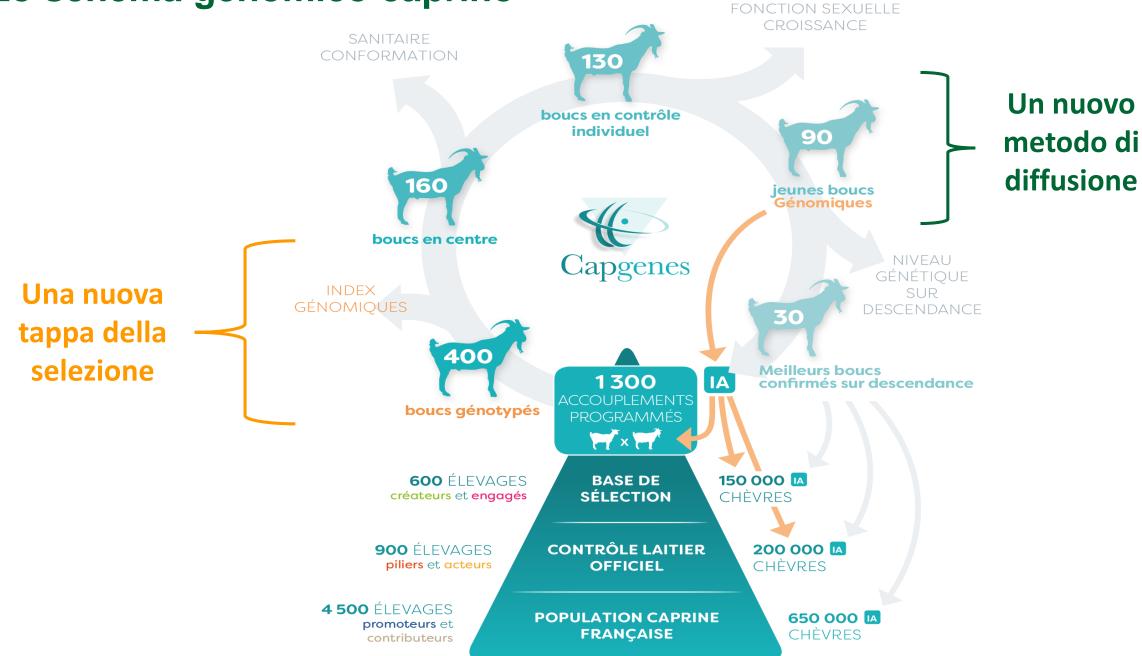
2019: Pubblicazione degli indici dei Giovani Becchi Genomici (GBG).


Prima (selezione «classica»)


Con la genomica ...

Un punto forte della genomica

Dalla nascita, sappiamo quale frammento cromosomico un discendente ha ricevuto dai suoi parenti (aleatorietà della meiosi)



Stima più attendibile del valore genetico degli animale poco dopo la loro nascita

(permette inoltre di individuare degli animali « buoni » nati da famiglie « medie »)

Lo schema genomico caprino

Qualche informazioni sulle performance delle Alpine e Saanen francesi:

Performance medie delle 200.000 capre in Controllo Funzionale (dati 2018 FCEL):

	Quantità Latte	Tasso Proteico	Tasso Butirrico
Alpine	942 kg	33,5 g/kg	37,8 g/kg
Saanen	1 010 kg	32,4 g/kg	36,2 g/kg

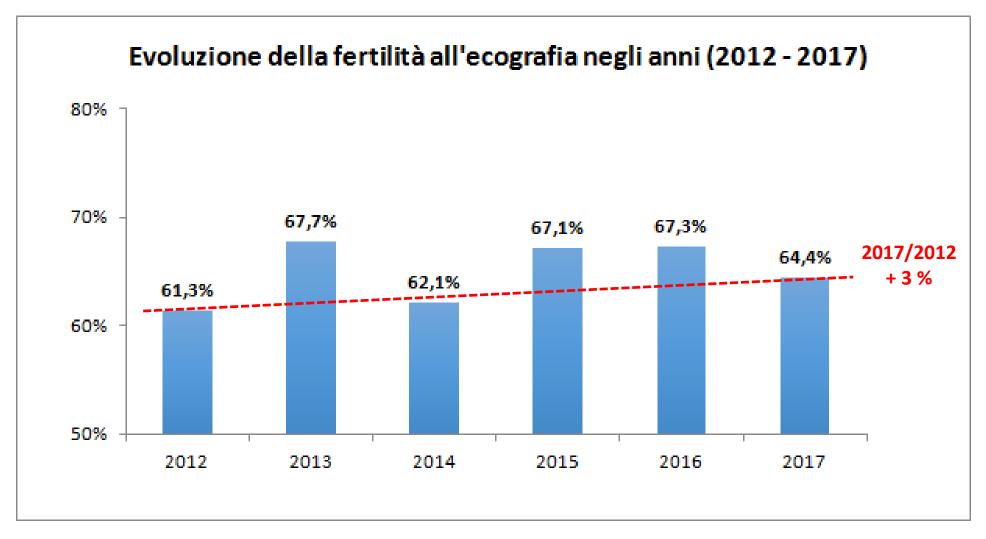
Performance medie delle 1.300 capre madri di becco (dati 2018 Capgènes):

	Quantità Latte	Tasso Proteico	Tasso Butirrico
Alpine	1 261 kg	35,2 g/kg	39,8 g/kg
Saanen	1 334 kg	33,5 g/kg	36,4 g/kg

L'impatto della genomica sulla redditività

RES GÉNÉTIQUE RESERVATION DU PROGRÈS GÉNÉTIQUE L'analisi tecnico economica OSIRIS ha misurato l'effetto dell'ICC (Indice Combinato Caprino) sul Intervalle reddito netto de génération réduit + 1 punto d'ICC = + 15€/capra/anno (in media) Meilleure ⇒ Il progresso genetico previsto a seguito della realizzazione précision des index dello Schema Genomico equivale quindi a: + 2,45€/capra/annno

+ 600€ di reddito netto per anno per una stalla di 250 capre


Le recenti novità nella selezione genetica delle razze Alpine e Saanen in Italia:

2012: nasce il Contratto Genetico Caprino CGC, servizio riproduttivo (fertilità all'IA 65%) e genetico (punteggiatura e accoppiamenti per obiettivi dell'allevatore minimizzando la consaguineità).

2016: flessibilità nei vincoli del CGC con aumento adesioni ed IA.

2019 un anno di importanti novità per il CGC: Possibilità per la 1° volta in assoluto di utilizzare i Giovani Becchi Genomici (ex. testaggio nati nel 2018).

RISULTATI CGC: LA FERTILITA'

Evoluzione % Fertilità alle ecografie : trend positivo su 6 anni (+ 3% nel 2017 in confronto al 2012)

Le chiavi di riuscita del Contratto " fare squadra" : Allevatore + Zootecnico + Veterinario

• L'allevatore:

- ✓ Gestire al meglio le capre 1 mese prima e dopo l'IA (no stress, no cambiamenti gestionali e alimentari, no interventi sanitari).
- ✓ Estrazione spugne (G 11).

• Lo Zootecnico (2 visite nella carta del servizio CGC):

- ✓ Scelta delle capre (prima per fisiologia: <u>età</u>, <u>giorni dal parto</u>, <u>riuscita IA anno precedente</u> / poi per genetica: <u>quantità latte</u>, <u>titoli</u>, <u>morfologia</u>) 1 mese prima dell'IA.
- ✓ Rilevamento calori il giorno prima del'IA (G 12).

• Il Veterinario (4 visite nella carta del servizio CGC):

- ✓ Ecografia per diagnosi pseudo e inserimento spugne (G 0).
- ✓ Iniezioni PMSG e Cloprostenolo (G 9).
- ✓ Cantiere d'IA (G 13).
- ✓ Diagnosi ecografiche gravidanza (a 50 giorni dall'IA)

Offrendo agli allevatori un servizio riproduttivo e genetico "chiavi in mano"

Il Catalogo Becchi CGC 2019

REGOLE RIPARTIZIONE DOSI 2019:

ALLEVATORI CREATORI (LIVELLO A)

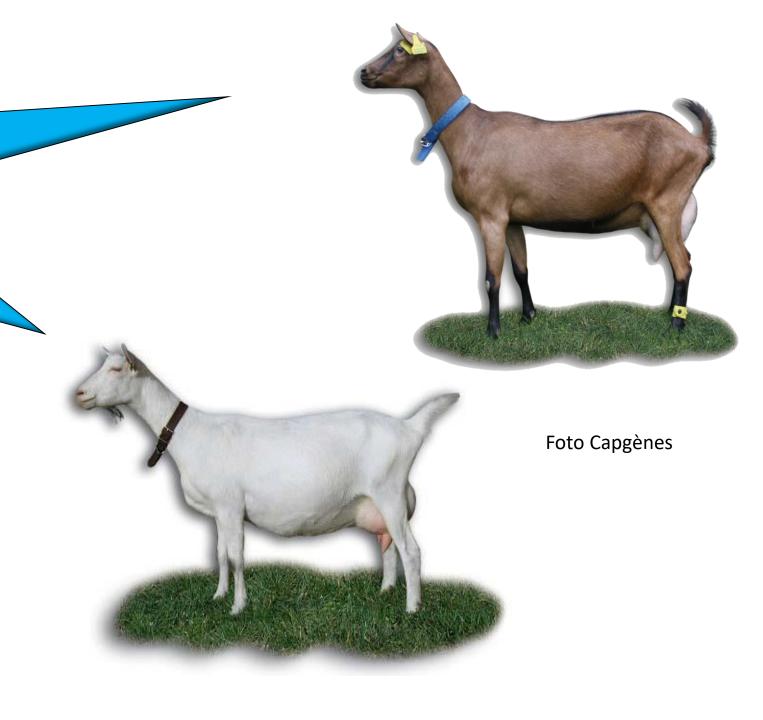
- IMPEGNO TRIENNALE (NUOVA OFFERTA)
- SI GIOVANI BECCHI GENOMICI (GBG)
- 25% GA, 25% GBG, 50% P, 0% S

ALLEVATORI DIFFUSORI (LIVELLO B)

- IMPEGNO ANNUALE (OFFERTA INVARIATA)
- NO GIOVANI BECCHI GENOMICI (GBG)
- 25% GA, 0% GBG, 50% P, 25% S

Il Catalogo Becchi CGC 2019: Razza Saanen

CODICE IA	NOME	MATRICOLA	CAT.	FIGLIE	ALLEVAMENTI	CD	ILATTE	IMP	IMG	ITP	ITB	ICELL	IPC	IMC	ICC	CAS.	ORIENTAZIONE
J532	JOHO	FR57027340205	GA	46	35	87	129	5,8	5,4	2,1	1,3	109	178	110	9,3	C++	BILANCIA
L101	LABARBE	FR53642050106	GA	84	43	89	47	4,7	3	3,9	2	105	170	107	8,1	C++	FORMAGGIO
L102	LURON	FR57002250116	GA	51	32	85	95	3,1	4,6	0/2	1,6	107	142	113	6,1		MAMMELLA
L109	LYNX	FR30053650020	GA	59	40	86	97	3,8	4,3	0,9	0,5	110	151	111	6,7	C++	MAMMELLA
L176	LONCHAMP	FR55178450561	GA	46	32	83	285	6,4	9/	-2,9	-1	112	171	1/5	8,1		BIDONE LATTE
O107	OTIS	FR53642081116	GBG	-	-	49	151	4,8	6,8	0,3	2,2	105	165	99	6,5		BIDONE LATTE
O109	OBAMA	FR53642081119	GBG	-	-	50	117		4,4	0,5	0,8	110	157	101	5,4		BIDONE LATTE
0129	ORIANDO	FR24040018009	GBG	-	-	46	46	3,6	5	2,5	3,5	109	7	105	6,8		MAMMELLA
O160	OPERCULE	FR16230181633	GBG	-	-	50		3,7	5,8	0,9	3	103	6	102	6,0		FORMAGGIO
O507	OCTUOR	FR53681481017	GBG	-	-	46	1	2,6	6	-0,1	3,7	109	_42	107	5,2		MAMMELLA
F186	FLUOR	FR57027300147	P	734	225		145	4,7	3,7	0,4	-1,3		155	98	5,4	C+	BIDONE LATTE
G101	GAMIN	FR29513611005	P	552	216	کر	138	3,9	7	-0,2	2,6	7	155	101	5,8	C+	BIDONE LATTE
G567	GAZETTE	FR22643811283	Р	362	155	97	97	3,1	2,2	0,1	-1	مَ	135	104	4,1	C++	BIDONE LATTE
H123	HELEXIR	FR53632020253	P	201		95	142	3,8	2,9	-0,6	7	05	139	101	4,1	C+	BIDONE LATTE
1306	IMPARFAIT	FR57510930026	P	70		91	19	2,6	1,2	2,3		108	139	103	4,4	C++	FORMAGGIO
1530	IMALDI	FR19568830119	Р	79	A	92	224	5,8	4,1	-/		101	158	96	5,4		BIDONE LATTE
J161	JADORE	FR5365		10		89	Obie	ettiv	o di	sele	zion	e	128	114	4,8	C+	MAMMELLA
L122	LAFI	11/3303			elezione	84				abile			129	110	4,3	C++	MAMMELLA
L134	LITTLE	FR3601 per	sona	lizzab	oile per	86	•						138	110	5,2		MAMMELLA
L145	LORIN	FR1623	ogni a	alleva	rore	84	Og			arore			145	109	5,8	C+	MAMMELLA
1158	IMPOT	FR53725				92		Frar	ncia	(ICC)		94	124	2,6	C+	MAMMELLA
J127	JOY	FR53696040121	S	54	37	88	58	2,5	2,8	0,7	0,8	103	134	99	3,3	C+	BILANCIA
J547	JAQUOU	FR32007340119	S	54	39	87	53	1	2,6	-1	0,8	106	112	110	2,6		MAMMELLA
L144	LIN	FR53725650405	S	60	38	86	55	0,9	0,2	-0,9	-2,1	111	104	118	2,8		MAMMELLA
L581	LEYTON	FR22643815217	S	46	26	83	49	1,9	1	0,6	-0,4	101	123	103	2,8	C+	BILANCIA


Il Catalogo Becchi CGC 2019: Razza Camosciata

CODICE IA	NOME	MATRICOLA	CAT.	FIGLIE	ALLEVAMENTI	CD	ILATTE	IMP	IMG	ITP	ITB	ICELL	IPC	IMC	ICC	CAS.	ORIENTAZIONE
1505	ISOETE	FR16012230003	GA	145	72	95	206	5,2	7,2	-1,1	0,2	114	163	111	7,4	C++	BIDONE LATTE
L146	LORD	FR16225950100	GA	88	58	90	48	3,4	2,9	2,3,	1,2	103	151	117	6,8	C++	FORMAGGIO
L148	LONGO	FR16079250527	GA	103	61	91	142	4,9	4,7	0,6	-0,6	98	160	113	7,3	C++	MAMMELLA
L552	LENTO	FR39072605166	GA	95	59	90	178	5,4	2,3	-0,1	-4,7	106	154	123	7,7	C++	BIDONE LATTE
L560	LEONIDAS	FR53674550308	GA	96	58	91	244	7,0	1/4	-0,5	0,4	100	186	9	8,1	C++	BIDONE LATTE
O159	ONAGUY	FR32072581090	GBG	-	-	48	101	4,7	4,9	1,1	1,5	103	159	10	6,9		BILANCIA
0161	ORIOU	FR16079281603	GBG	-	-	48	117	3	4,8	0,6	1,4	102	159	105	6,1		BILANCIA
0171	OGGY	FR29532118042	GBG	-	-	50	10°	4,6	5,6	1,3	1,6	100	7 /	109	7,3		BILANCIA
0173	OHE	FR29532118050	GBG	•	-	49		3,1	3,4	1,6	1,4	107	/ j	115	6,1		MAMMELLA
0561	OBSTINE	FR36046818429	GBG	•	1	45	.35	4,4	5,8	0,2	1,3	10/	58	108	6,6		BILANCIA
H187	HOBBIO	FR53632520066	P	465	223	Γ .	110	3,3	5,5	-0,2	1,8	7	145	107	5,2	C++	BILANCIA
H198	HAPERO	FR36170812240	Р	362	191	1	183	3,5	4,7	-2,2	-2,4	7	133	112	4,5	C++	BIDONE LATTE
H562	HUFFMAN	FR51530912004	P	382	20	97	167	4,7	2,2	-0,6	-/	م	145	110	5,5	C++	BIDONE LATTE
I103	IRIS	FR53522830231	P	141		95	233	4,4	6,6	-2,6	7	6لر	145	108	5,3	C++	BIDONE LATTE
1552	ILFY	FR36126913090	P	140		95	120	4,5	2,5	0,9		116	151	103	5,4	C++	BIDONE LATTE
J171	JOSS	FR57773640887	D	72	4	91	5	2.7	4	7	1	123	148	115	6,3	C++	MAMMELLA
J182	JHOERY	FR3619	.++io	di co	loziono	90	Obi	ettiv	o di	sele	zior	ie 🗋	141	122	6,3	C++	MAMMELLA
J195	JUSCOU	FR3603			lezione –	91	pe	rson	aliz	zabil	e ad		162	102	6,4	C++	FORMAGGIO
L123	LION	FR5376 per	sona	lizzab	ile per	92	•			aror			147	104	5,1	C++	BIDONE LATTE
L184	LEELOU	FR5375 C	gni a	illeva	rore	87	U						153	106	5,9	C++	BIDONE LATTE
1533	IMPAIR	FR5150				94		Fra	ncıa	(ICC	-)		125	106	3,1	C+	MAMMELLA
J501	JOFFREY	FR36104204147	S	84	57	91	52	2	-1,5	0,5	-3,2	103	116	114	3	C+	MAMMELLA
L524	LUDO	FR36126915197	S	71	45	88	56	1,8	2,1	0,1	0,1	104	123	106	2,9	C++	MAMMELLA
L543	LORGNON	FR57037350026	S	83	47	89	75	1,9	2	-0,7	-1,2	107	119	112	3,1	C++	MAMMELLA
L562	LUIS	FR53674550320	S	79	42	89	99	2,1	3,7	-0,8	0,3	99	125	105	3,0	C++	BIDONE LATTE

Prospettive future del CGC:

- Possibilità per la 1° volta in assoluto di utilizzare i Giovani Becchi Genomici: 2019 IA con GBG, 2020 nascita figlie GBG, 2021 prima lattazione figlie GBG (performance da inviare in Francia).
- Accordo quadro tra AssoNaPa ed ARAL per la gestione del CGC per una sua promozione e diffusione a livello nazionale.
- Alleanza caprina Italo Francese: passaggio da una logica di "acquisto" della genetica (dosi) a quella di "adesione" ad uno schema collettivo internazionale.
- Progetto SMARTER: interscambio dati per prova genetica (BLUP) e genomica (GBLUP) a livello internazionale (Italia, Francia, Svizzera, Regno Unito, Canada) il cosiddetto "InterBuck".

Grazie per l'attenzione agli studenti della scuola in stalla di DEMOCAPRA!

