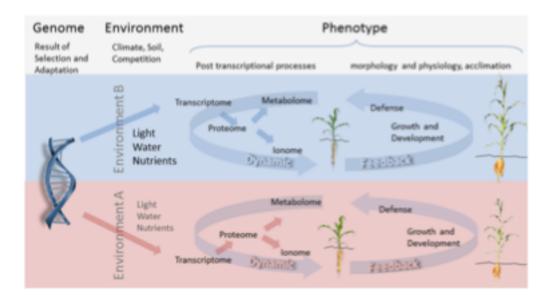

Transcriptome:

is the **complete set of RNA molecules** produced by a cell, tissue or organism. It includes mRNA, rRNA, tRNA and other non-coding RNAs, although in many cases the mRNA profile is the most sought after because it corresponds to the expression of protein-encoding genes. The transcriptome depends on gene expression and therefore changes qualitatively and quantitatively according to cell type, developmental stage and in response to external conditions or physiological states. The **dynamic** nature of the transcriptome is **highly informative**.

✓ **direct analysis:** procedures involving nucleotide sequencing and fragment sizing (EST sequencing, SAGE, MPSS, SSH and cDNA-AFLP)

✓ indirect analysis: cDNA microarray and oligo-chip (Affymetrix, Combimatrix, NimbleGen, Agilent...)


 ✓ the word transcriptome was used for the first time in the 1990s (Velculescu *et al.,* 1997; Piétu *et al.,* 1999)

Plant phenotyping:

is the quantitative appraisal of traits from a given plant genotype in a give environment and experiment, which range from scalar (e.g. plant height), multi-value (chemical and transcriptional) to image-based (pictures) and includes both direct measured attributes and those derived from analysis (*e.g.* leaf area from shoot images; Bolger *et al.*, 2017).

Heterogeneous data: are a problem for the analysis but also for a long-term access

Phenomics NL

Walter et al., 2015

Arabidopsis thaliana

- ✓ sequence of the entire plant genome: 2000 (Nature **48**: 796-815)
- ✓ develop of microarray platform: 2003 (Yamada *et al.,* 2003)
- ✓ first transcriptome report by next generation sequencing (NGS): 2007 (Weber *et a*l., 2007)

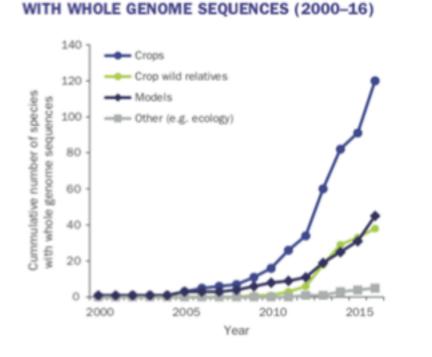
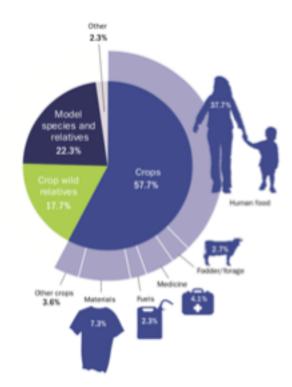
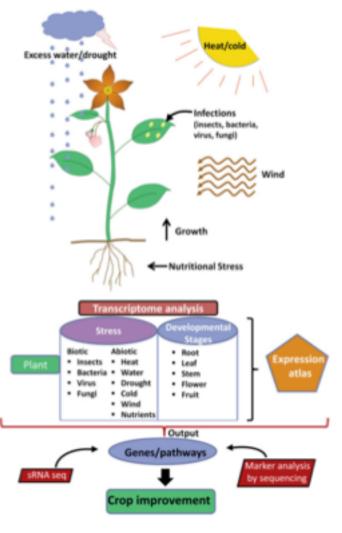
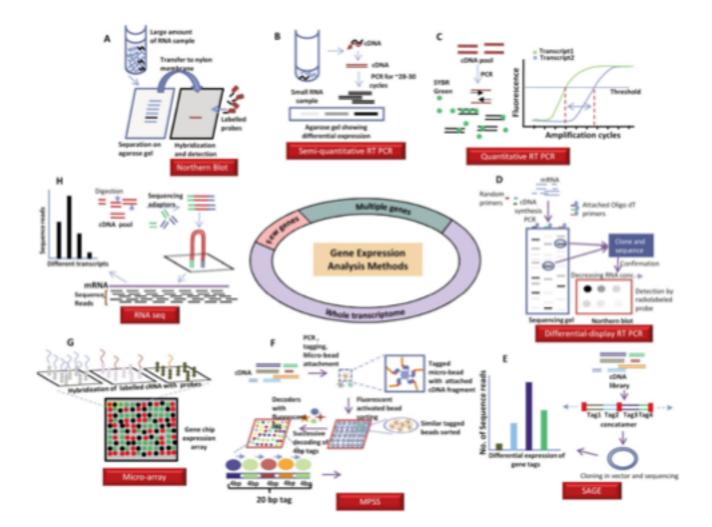
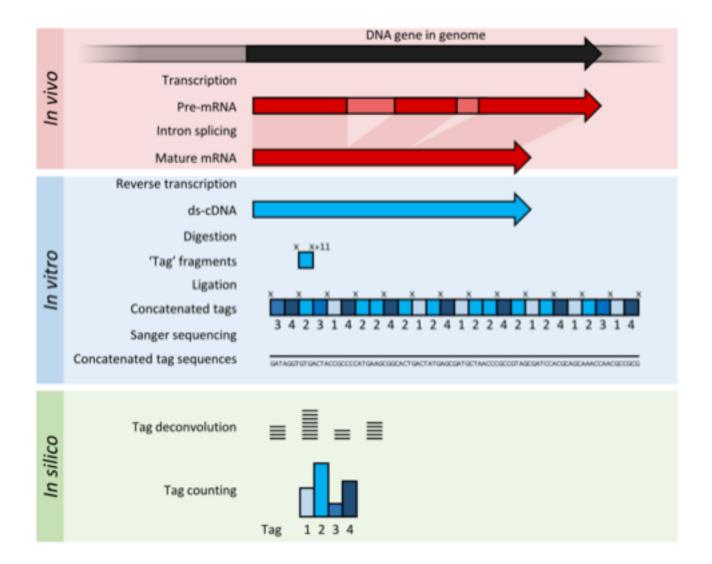




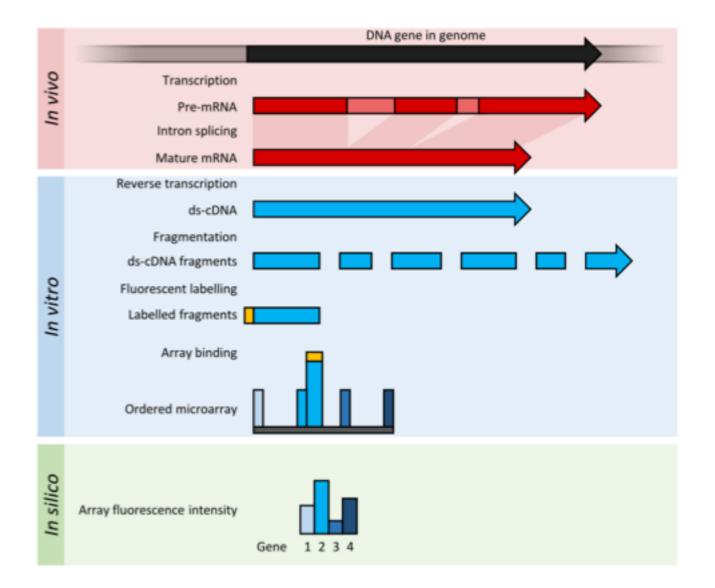
FIGURE 1: CUMULATIVE NUMBER OF SPECIES


Applications of transcriptomics:

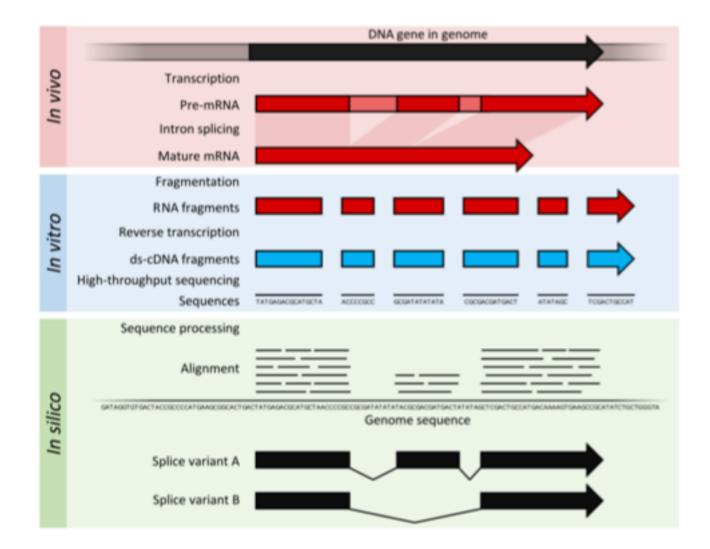
- ✓ identification of development and stressedassociated genes and pathways
- ✓ development of molecular markers
- ✓ insight about downstream genes (plants with altered expression of genes of interest)
- ✓ expression atlas: it spans the complete range of tissues and developmental stages; it presents the snapshot of the mRNA profile of the entire lifecycle of plants
- ✓ transcriptome analysis is an essential component of functional genomics

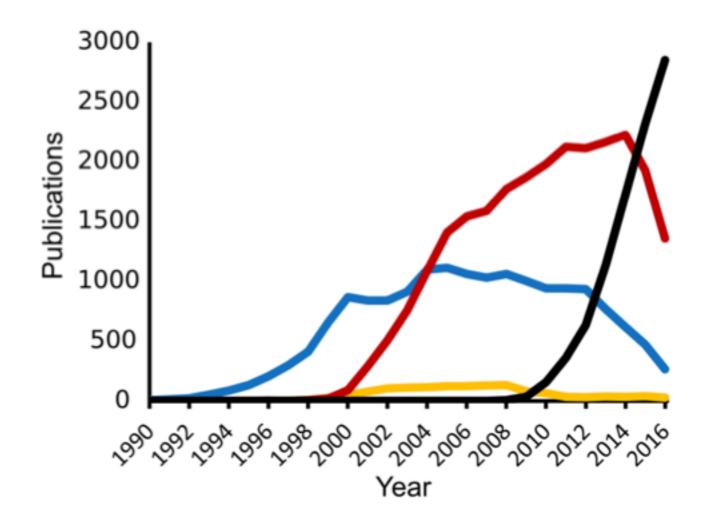

Agarwal et al., 2014

Progress in methods for gene expression analysis:



Agarwal et al., 2014


Serial analysis of gene expression (SAGE)



DNA microarray

RNA sequencing

Lowe et al., 2017

DNA Microarray: an orderly arrangement of DNA sequences on a small solid support, usually a membrane or glass slide, used to quickly survey the simultaneous expression of many genes. A sample containing DNA or RNA is placed in contact with the gene chip. Complementary base pairing between the sample and the gene sequences on the chip produces light that is measured.

✓ glass DNA microarray: micro-spotting of pre-fabricated cDNA fragments on a glass slide

✓ high-density oligonucleotide microarray ("chip"): in situ oligonucleotide synthesis

Different technologies: Affymetrix, Combimatrix, NimbleGen, Agilent, OpArray

Microarray: transcriptional profiling, copy-number variation, SNP genotyping and DNA-protein interaction

RNAseq: deep sequencing of RNA (RNASeq) reverse-transcribed to complementary DNA for measuring RNA expression and detecting changes in RNA structure (Goldman and Domschke, 2014).

RNAseq: measuring gene expression

differential expression

novel transcripts

splicing junction analysis

de novo assembly

SNP analysis

allele specific expression

Table 2. Sequencing technology platforms commonly used for RNA-Seq [72][73]

RNA editing

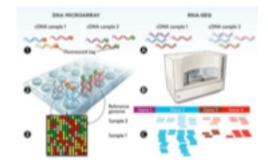
small/microRNAs

Platform (Manufacturer)	Commercial release	Typical read length	Maximum throughput per run	Single read accuracy	RNA-Seq runs deposited in the NCBI SRA (Oct 2016) [74]
454 (Roche, Basel, Switzerland)	2005	700 bp	0.7 Gbp	99.9%	3548
Ilumina (Illumina, San Diego, CA, USA)	2006	50-300 bp	900 Gbp	99.9%	362903
SOLD (Thermo Fisher Scientific, Waltham, MA, USA)	2008	50 bp	320 Gbp	99.9%	7032
on Torrent (Thermo Fisher Scientific, Waltham, MA, USA)	2010	400 bp	30 Gbp	98%	1953
PacBio (Pacbio, Menio Park, CA, USA)	2011	10,000bp	2 Gbp	87%	160

NCBI, National Center for Biotechnology Information; SRA, Sequence Read Archive; RNA-Seq, RNA sequencing.

https://doi.org/10.1371/journal.pcbi.1005457.t002

Microarray vs RNAseq


2014: 54,000 samples analyzed through microarray were deposited into the Gene Expression Omnibus (GEO) database, compared to data from just around 9,000 samples analyzed using RNA-seq (Su *et al.*, 2014).

RNAseq advantages:

- \checkmark very low background signal
- \checkmark higher dynamic range of expression level
- \checkmark more accurate in term of fold change values
- ✓ can reveal previously uncharacterized transcripts,
- \checkmark gene fusions and genetic polymorphisms

but....

Microrrays allow analyzing large numbers of samples rapidily and methods for data analysis are fully mature straightforward (Su *et al.*, 2014).

Method	RNA-Seq	Microarray
Throughput	High [10]	Higher [10]
Input RNA amount	Low ~ 1 ng total RNA [25]	High ~ 1 µg mRNA [26]
Labour intensity	High (sample preparation and data analysis) [10][23]	Low [10][23]
Prior knowledge	None required, though genome sequence useful [23]	Reference transcripts required for probes [23]
Quantitation accuracy	~90% (limited by sequence coverage) [27]	>90% (limited by fluorescence detection accuracy) [27]
Sequence resolution	Can detect SNPs and splice variants (limited by sequencing accuracy of ~99%) [27]	Dedicated arrays can detect splice variants (limited by probe design and cross-hybridisation) [27]
Sensitivity	10 ⁻⁶ (limited by sequence coverage) [27]	10 ⁻³ (limited by fluorescence detection) [27]
Dynamic range	>10 ⁵ (limited by sequence coverage) [28]	10 ³ -10 ⁴ (limited by fluorescence saturation) [28]
Technical reproducibility	>99% [29][30]	>99% [31][32]

Microarray vs RNAseq

Which technology?

- ✓ number of gene evaluated
- ✓ accuracy
- ✓ sensitivity
- ✓ data interpretation

The concord

data depend

abundance

Charles Wang^{1,27}, Binsh

Joshua Xu², Hong Fang⁴

Haiging Li7, Pawel P Lal

✓ cost

RESEARCH

Regenera et al AMC Genomics 2013, 18439 http://www.biomedicanted.com/1471-2144/15429

RESEARCH ARTICLE

RNA-seq and microarray

in transcriptome profilir

Sunitha Kogenaru, Yan Qing, Yinping Guo and Nan I

biotechnology

Comparison of RNA-Seq and Microarray in Transcriptome

Eliptions Pharmacelege and Nonselves, Januare Newarch & Development, U.C. San Olego, California, United States of America, 20mmunology, Januare Newarch &

Destigment, U.C. fan Dege, California, United States of America, BCREA/to Integrative Spaters Biology, Januari Research & Destigment, U.C. fan Dege, California,

Shanrong Zhao¹⁺, Wai-Ping Fung-Leung², Anton Bittner³, Karen Ngo³, Xuejun Liu¹⁺

Open Access

An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era

Zhengiang Su^{12*}, Hong Fang¹, Hukiao Hong¹, Leming Shi^{3kd}, Wengian Zhang¹, Wenwei Zhang⁸, Yanyan Zhang⁸, Zirui Dong^{12*}, Lee J Lancashire¹, Marina Besarabova¹, Xi Yang¹, Bahang Ning¹, Binsheng Gong¹, Ice Meehan¹, Joshua Ku¹, Weigong Ge¹, Roger Perkins¹, Mathias Fischer^{ar} and Weida Tong¹⁴

Nucleic Acids Research Advance Access published June 30, 2015

Nucleic Acide Research, 2015 I doi: 10.1093/nar/gk=636

A nested parallel experiment demonstrates differences in intensity-dependence between RNA-seq and microarrays

David G. Robinson¹, Jean Y. Wang¹ and John D. Storey^{1,3,3,*}

*Lexis-Spin Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA *Center for Statistics and Machine Lawreng, Princeton University, Princeton, NJ 08544, USA and *Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA

Received Wards 12, 2015; Revised Way 5, 2015; Accepted June 8, 2015

Comparative RNA-Seq and Microarray Analysis of Gene Expression Changes in B-Cell Lymphomas of *Canis*

Review

PLOS -

Cell

-

paring microarrays and nexteration sequencing technologies nicrobial ecology research

ioon Roh¹, Guy C.J. Abell², Kyoung-Ho Kim¹, Young-Do Nam¹ and Bae¹

-pepartment of Life and Nanopharmacoutisal Sciences and Department of Biology, Kyung Hee University, HoeGi Gong 1, DengDeeMan Gu, Seed 100-701, Republic of Korea (SSRD, Marcus and Amousher) Research and Wealth from Oceans, National Research Flagahio, Hobart, Tasmania, Australia

Jos Kleinjane¹⁰, Andrea. 2019/1999.4 August Lee I Lascashire¹⁰, Marina Besaarabera¹⁰, Yari Nkablay¹⁰, Cenare Fusianella¹¹, Marco Chienial¹⁰, Davide Albanese^{11,10}, Giuseppe Jarman¹⁷, Samarha Riccadonna^{17,10}, Michele Filosi¹⁷, Raberto Visionainar¹⁰, Ke K Zhang¹⁰, Banying Li^{1,20}, Jui Haa Hideb¹¹, Daniel L Svoboda¹², James C Fuscor²⁰, Yonging Deng¹⁰, Leming Shi^{1,10}, Richard S Punler¹⁰, Scott S Auerbach¹¹ & Wold Tong¹

Profiling of Activated T Cells

OPEN @ ACCESS Preaty available online

...a more comprehensive picture of a transcriptome applying multiple profiling methods.....

The choice of technology depends on the aim

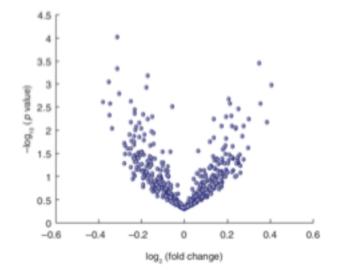
Public databases

Four main categories

✓ primary archives: data obtained from different high-throughput technologies (ArrayExpress and GEO)

✓ added-val	Table 5. Transcriptomi	c databases.			n user-
based inte	Name	Host	Data	Description	
✓ topical da	Gene Expression Omnibus [142]	NCBI	Microarray RNA-Seq	First transcriptomics database to accept data from any source. Introduced MIAME and MINSEQE community standards that define necessary experiment metadata to ensure effective interpretation and repeatability [143][144].	
✓ integrativ	ArrayExpress [145]	ENA	Microamay	Imports datasets from the Gene Expression Omnibus and accepts direct submissions. Processed data and experiment metadata are stored at Array Express, while the raw sequence reads are held at the ENA. Complies with MIAME and MINSEQE standards [144] [145].	otation,
pathways	Expression Atlas [146]	EBI	Microarray RNA-Seq	Tissue-specific gene expression database for animals and plants. Displays secondary analyses and visualisation, such as functional enrichment of Gene Ontology terms, InterPro domains, or pathways. Links to protein abundance data where available.	Jution,
	Genevestigator [147]	Privately curated	Microamay RNA-Seq	Contains manual curations of public transcriptome datasets, focusing on medical and plant biology data. Individual experiments are normalised across the full database, to allow comparison of gene expression across diverse experiments. Full functionality requires licence purchase, with free access to a limited functionality.	
Data analys	RefEx [148]	DDBJ	All	Human, mouse, and rat transcriptomes from 40 different organs. Gene expression visualised as heatmaps projected onto 3D representations of anatomical structures.	
·	NONCODE [149]	noncode.org	RNA-Seq	ncRNAs excluding IRNA and rRNA.	
 ✓ data analy provide th 	Microarray Experiment; I	MINSEQE, Minin	num Information a	atics Institute; ENA, European Nucleotide Archive; MIAME, Minimum Information About a about a high-throughput nucleotide SEQuencing Experiment; NCBI, National Center for IA-Seq, RNA sequencing.	ntial to
	··· ··· ··· ···				

✓ the quality of data influences the quality of the outcome but it also true that the best quality of data in unlikely surrender insights without appropriate data analysis


Data analysis

To assess the statistical significance of the results, multiple biological replicates for each cell type or treatment are needed.

ma>> *mb* (transcript up-regulated) or *ma*<< *mb* (down-regulated)

The pertinent question: "how confidently can this transcript be called differentially expressed?"

- ✓ Student's t-test (normal distribution)
- ✓ Wilcoxon rank sum test or the SAM (Significance Analysis of Microarrays; Tusher *et al.,* 2001)

Hung and Weng, 2017

Data analysis

✓ multiple testing correction: statistical methods for correcting statistical confidence estimates based on the number of tests performed

✓ these test control the false discovery rate (FDR): the percentage of prediction that are false positive

✓ multivariate analyses: principal component analysis (PCA) and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA)

Data analysis

 \checkmark RNA-sequencing data take the form of counts, so model based on the Gaussian distribution are unsuitable

 \checkmark normalization is challenging because different sequencing experiments may generate quite different total number of reads

 \checkmark quality control (*e.g.* analysis of sequence quality, GC content, the presence of adaptors, overrepresented *k*-mers and duplicated reads in order to detect sequencing errors, PCR artefacts or contaminations)

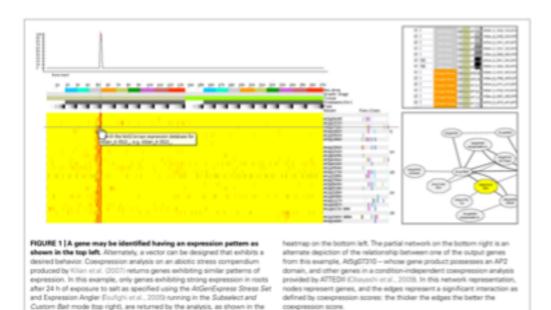
 ✓ read alignment (mapping quality parameters: percentage of mapped reads and uniformity of read coverage on exons and the mapped strand)

✓ metrics for gene and transcript expression: RPKM (reads per kilobase of exon model per million reads);
 is a within-sample normalization method removing the effects of feature-length and library size

✓ identification of differentially expressed transcripts: Poisson distribution and negative binomial distribution (discrete probability distributions)

Gene coexpression networks

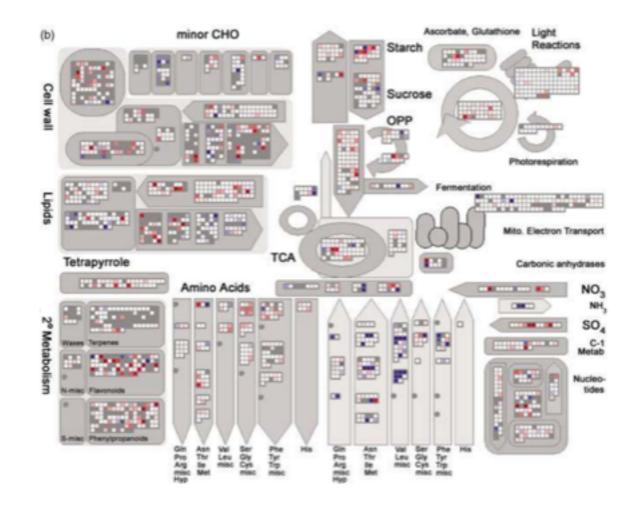
✓ the correlation in expression pattern between pairs of genes is measured, and those exhibiting strong correlations are "joined" in a graphical representation to create a network, which can be visualized with graph network viewers


 cross-level correlation is an area that will become more important as genome wide association studies (GWAS) could be used to link genotype to environmental factors or perturbations through changes in the transcriptome, epigenome, or other 'omes of a plant

 ✓ 4 components are necessary for co-expression analysis: collection of gene expression profile from different samples and/or different perturbation, a method for computing expression pattern similarity, a way for assessing the degree of significance of expression pattern similarity and a tool to visualize and analyze statistically significant coexpression patterns

✓ metrics: Pearson's correlation coefficient (PCC) and Spearman's (Rank) correlation coefficient

Gene coexpression networks


	UPL and commants
Correlation network DB	
ATTED# (Chapterly et al., 2003)	Higs (Jedand ga), explane condition independent compression reduce/s for up to 100 genes in Anabidopain using the Network/Deaver tool: Compression analyses may also be performed for rice.
CressExpress	Mgs.30vessepress.org.generate condition-independent
Eriniassasinagendis etal., 2008	compression analyses or custom condition-dependent compression analyses for Anabitipais with up to 30 genes. Results are easily imported into Catoscape for visualization.
Parket Distant statis 2013	Mp (Isranet mpimp-pain-mpg de), see this tool to explore condition-independent coexpression networks in seven plant species. Networks are displayed as static SVS images, but networks may also be downloaded for easy viewing and further manipulation in Cytoscope or Pajek.
CSB.DB Elimititation et al., 20240	Mg, itolds mping-goin mpg del, use this tool to explore both condition-independent or condition-dependent coexpression networks in Arabidgasis for up to 60 penes. Networks may be immediately viewed as images, o downloaded for further manipulation into the visualization tools below.
GeneANNIA Ditoctutori et al., 2020	Http://genemaria.org/, this tool allows functional network generation in Arabidgesis based on user-selected o default expression data sets, protein-protein interactions, subcelular localization, shared protein-domains, etc. Results are setsfy visualized via an embedded Cutocoage Web-Europe stud. 2010 application.
SeedPiet (Decord et al., 2010)	http://www.cs.not.ac.uk/wakidopsis/_explore condition specific E.e., seed-expressed gene networks hon Arabidgesis in a custom network explore.
Andriet Los et al., 2010	http://www.functionalmet.org/aramet/. IAia GaneAAAAA this tool allows functional metwork gameration in Anabidgenia: Results may be visualized via activation of Cytoscope Web.
Network visualization tools	
Cytoscape Eliternon et al., 2003; Kohl et al., 2013	http://www.optinstape.org/, use this powerful open-source deaktop tool to visualize compression and other networks, such as those generated by potein-protein interaction studies. Nodes and edges may be appended with additional, use-defined information.
Bolynz Preocharidis et al., 2009	http://bioleyout.org/.the.cument iteration of this devisitop tool, Bioleyout Express ²⁰ , permitts visualization of conceptession and other networks in three dimensional space. Cytoscope "sd?" Nes may be imported into the tool.
Pajek (Datape), and Miver, 1000	Mgs (Spajak, inclus, s) doku php

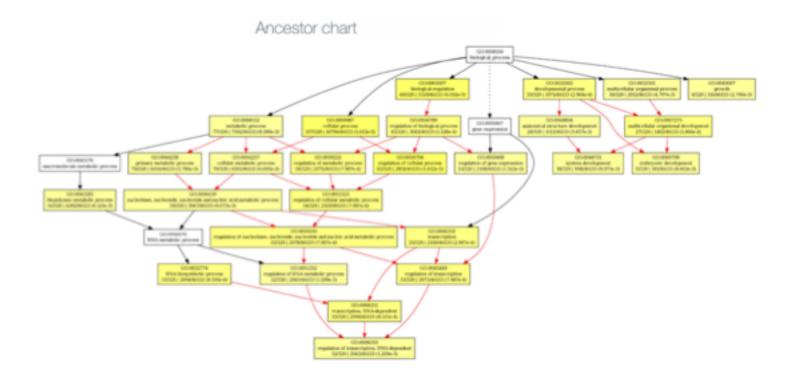
Provat et al., 2012

Data visualization

✓ MapMan: for displaying omics data onto diagrams of metabolic pathways or other processes.

Thimm et al., 2004

Gene Ontology (GO)


 ✓ GO project provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products

✓ Gene Ontology: provides the logical structure of the biological functions ('terms') and their relationships to one another, manifested as a directed acyclic graph

✓ the corpus of **GO annotations**, evidence-based statements relating a specific gene product to a specific ontology term

✓ GO: classifies functions along three aspects a) **molecular function** (molecular activities of gene products) b) **cellular component** (where gene products are active) c) **biological process** (pathways and larger processes made up of the activities of multiple gene products)

Gene Ontology (GO)

GO enrichment analysis: analysis performed using a gene set; this analysis allow to identify GO terms over-represented or under-represented using the annotation for that gene set (p-value)

http://www.geneontology.org/

Responses to biotic stresses

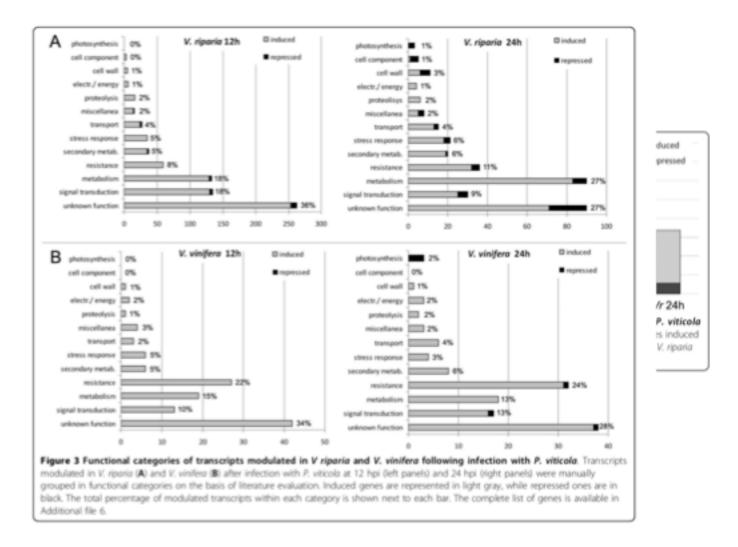
Polesani et al. BMC Genomics 2010, 11:117 http://www.biomedicentral.com/1471-2164/11/117

RESEARCH ARTICLE

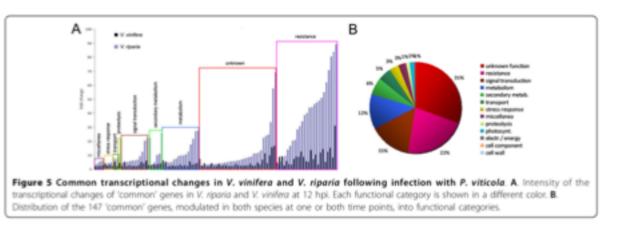
Open Access

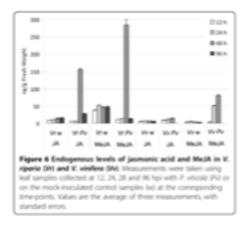
General and species-specific transcriptional responses to downy mildew infection in a susceptible (*Vitis vinifera*) and a resistant (*V. riparia*) grapevine species

Marianna Polesani¹, Luisa Botesi¹, Alberto Ferrarini¹, Anita Zamboni¹, Marianna Fasoli¹, Claudia Zadra², Arianna Lovato¹, Mario Pezzotti¹, Massimo Delledonne¹, Annalisa Polverari¹⁴



Combimatrix chip


24,571 transcripts, *Vitis vinifera* Gene Index release 5.0 (19062 probes) + genomic sequences produced by the International Grape Genome Project that were not already represented by the tentative consensus Probe: 35-40 nt (3 probe for each transcript)


- ✓ downy mildew is a destructive grapevine disease caused by *Plasmopara viticola* (Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments
- ✓ Plasmopara viticola is an obligate pathogen that obtains nutrients from infected plant cells through specialized structures known as haustoria
- ✓ signals and effectors involved in resistance in this important crop species were not well understood
- early transcriptional changes associated with *Plasmopara viticola* infection in susceptible *Vitis vinifera* and resistant *Vitis riparia* plants were analyzed

Responses to biotic stresses

✓ data strongly support the view that resistance in *Vitis riparia* is a post-infection phenomenon, characterized by a rapid wave of signal transduction (12 hpi) followed by a shift in primary and secondary metabolism (24 hpi) to implement a defense mode

 ✓ early transcriptional changes in *Vitis vinifera* indicate a weak and abortive defense response and do not provide information about the possible downregulation of resistance mechanisms by pathogen effectors, which might occur later on

 \checkmark basal levels of defense gene expression in the two species do not seem to be responsible for the different infection outcomes

✓ the upregulation of genes involved in jasmonic acid biosynthesis and the increase in jasmonate levels indicate that this hormone may play a role in *Vitis riparia* resistance against *Plasmopara viticola*

Essential elements for plant growth: for higher plants, the essentiality of 14 elements is now well established, although the requirement for the micronutrients Cl and Ni is as yet restricted to a limited number of plant species

three criteria to be an essential elements:

a) given plant must be unable to complete its lifecycle in the absence of the element

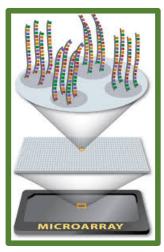
b) the function of the element must not be replaceable by another element

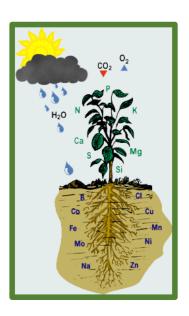
c) the element must be directly involved in plant metabolism – for example, as a component of an essential plant constituent such as an enzyme – or it must be required for a distinct metabolic step such as an enzyme reaction

Classification in 4 group

Nutrient	Uptake	Biochemical functions
Group 1		
с, H, O, N, S	as CO ₂ , HCO ₃ ⁻ , H ₂ O, O ₂ , NO ₃ ⁻ , NH ₄ ⁺ , N ₂ , SO ₄ ²⁻ , SO ₂ ions from the soil solution, gases from the atmosphere	Major constituents of organic material. Essential elements of atomic groups involved in enzymatic processes. Assimilation by oxidation-reduction reactions.
iroup 2		
?, B, Si	as phosphates, boric acid or borate, silic acid from the soil solution	Esterification with alcohol groups. Phosphate esters involved in energy transfer reactions.
Group 3		
(, Na, Ca, Mg, Mn, Cl	as ions from the soil solution	Non-specific functions establishing osmotic potential. More specific functions for optimal confirmation of enzymes (enzyme activation). Bridging of reaction partners. Balancing anions. Controlling membrane permeability and electrochemical potentials.
Group 4		
e, Cu, in, Mo	as ions or chelates from the soil solution	In chelated form in prosthetic groups of enzymes. Enable electron transport by valency change.

Element	Chemical symbol	µmol g ⁻¹ dw	mg kg ⁻¹
Molybdenum	Мо	0.001	0.1
Nickel	Ni	0.001	0.1
Copper	Cu	0.1	6
Zinc	Zn	0.3	20
Manganese	Mn	1.0	50
Iron	Fe	2.0	100
Boron	В	2.0	20
Chlorine	Cl	3.0	100
Sulphur	S	30	1,000
Phosphorus	Р	60	2,000
Magnesium	Mg	80	2,000
Calcium	Ca	125	5,000
Potassium	K	250	10,000
Nitrogen	N	1,000	15,000

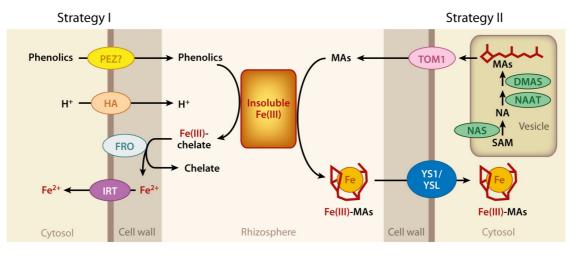

Normally, these minerals are taken up by plant roots from the soil solution in ionic form with the metal Ca²⁺, Mg²⁺ and K⁺ present as free cations, P and S as $H_2PO_4^{-}/HPO_4^{2-}$ and sulfate (SO₄²⁻) and N as anionic nitrate (NO₃⁻) or cation ammonium (NH₄⁺).


Microarray and plant nutrition

NEWS FEATURE FOOD

In the last ten years high-throughput gene expression analyses (in particular microarray) have been applied in order to have a picture of molecular changes in response to a nutritional condition.

Tomato Array 2.0


(25,789 transcripts, DFCI Tomato Gene Index, Release 12.0) Probe: 35-40 nt (3 probes for each transcript)

Fe and plants

- ✓ Fe is an essential nutrient for plants, which catalyzes crucial cellular functions such as chlorophyll synthesis, chloroplast development, and antioxidative cell protection
- ✓ despite being abundant in soils, Fe mainly exists as the insoluble, not available to plants, ferric Fe(III) form; solubility of Fe is, however, extremely low, especially in aerated alkaline soils. In aerated systems in the physiological pH range, the concentrations of ionic Fe(III) and Fe(II) are below 10⁻¹⁵ M due to formation of Fe hydroxides, oxyhydroxides and oxides
- ✓ plants have developed two separate strategies to acquire Fe(III) from soils

R Kobayashi T, Nishizawa NK. 2012. Annu. Rev. Plant Biol. 63:131–52

RESEARCH ARTICLE

Open Access

Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency

Anita Zamboni¹¹, Laura Zanin²⁴, Nicola Tomasi², Mario Pezzotti¹, Roberto Pinton², Zeno Varanini¹⁴ and Stefano Cesco³

Table 1 Leaf SPAD index values and root $\mbox{Fe}^{\rm ss}\mbox{-chelate}$ reductase activity

Sample	SPAD index*	Fe ^{III} -chelate reductase (mol g ⁻¹ root FW h ⁻¹) ^b
Fe- sufficient	295 ± 0.3	0.37 ± 0.04
Fe- deficient	16.8 ± 0.6	1.41 ± 0.06

SPAD index value of fully expanded young leaves was determined using a SPAD-502 meter (Minota, Osaka, Japan); mean and SD using data of the three biological replicates.

¹Mean and SD of three biological replicates.

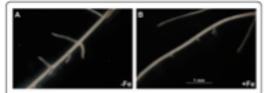


Figure 2 Root apparatus of tomato plants grown under different Fe-supply condition. Detail of root apparatus of A) Fedeficient and B) Fe-sufficient plants.

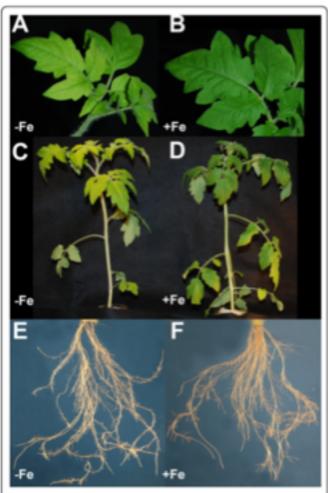


Figure 1 Shoot and root apparatus of tomato plants grown under different Fe-supply conditions. Leaf detail of Fe-deficient (A) and Fe-sufficient (B) plants. Shoot (C) and roots (E) of Fedeficient plants and shoot (D) and roots (E) of Fe-sufficient plants.

Fe-deficient vs Fe-sufficient

75 up- (\uparrow) and **22** (\downarrow) down-regulated transcripts in roots (LIMMA, adjusted p-value \leq 0.05; $|FC| \geq 2$)

Our transcriptional results suggested that....

- ✓ tomato roots respond to Fe deficiency by modulating the expression of a number of transcripts similar to the model plant Arabidopsis thaliana
- ✓ tomato roots modulate transcripts involved in homeostasis of Fe and heavy metal cations (*e.g.* IRT, NRAMP, MTP, ferritin) and others cation (*e.g.* AMT)
- ✓ tomato, as Arabidopsis, requires the up-regulation of transcripts related to glycolysis (e.g. PFK) and methionine cycle (e.g. MTK), the latter pathway being putatively linked to NA biosynthesis in response to Fe deficiency
- tomato roots seem to be more characterized by root morphological adaptation, mainly linked to hair root production, as suggested by the strong up-regulation of extensin transcripts
- flavonoid biosynthesis and root morphological changes are revealed as specific tomato responses to Fe shortage

Response to supply with different natural Fe-chelates

Zamboni et al. BMC Genomics (2016) 17:35 DOI 10.1186/s12864-015-2331-5

BMC Genomics

Open Access

RESEARCH ARTICLE

Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent

Anita Zamboni¹, Laura Zanin², Nicola Tomasi², Linda Avesani¹, Roberto Pinton², Zeno Varanini^{1*} and Stefano Cesco³

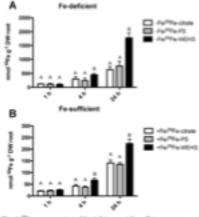


Fig. 1 ^{III}Ye concentration of Re-deficient and Re-sufficient tomato plants in response to Fe supply. Re-deficient (He, all and Re-sufficient (He) by plants were transferred up to 24 hinto: a scalability of containing ¹Me obtaite, ¹Me PS or ¹Me-INDPS at final Re-concentration 1 µA. Data are means a 50 of these independent experiments. Capital learns is to be infer to staticically significant differences (Holm-Sobal method ANDVA, P < DOS)

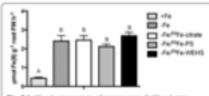
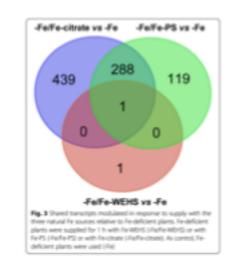



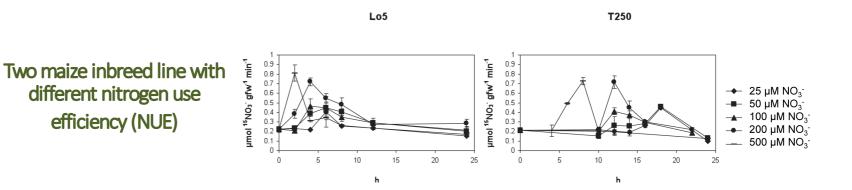
Fig. 2 FeBII-reduction activity of tomato roots. FeBII-reduction activity of imact Re-deficient formato plants supplied for 1 h with 1 Juli Fie an Featurate, Fe-9 for FeBIII-Field as a control, Fe deficient plants not treated with any Fe sources (Fe) or plants treated with 100 Juli Fie (F-Fie), were also utilized. Data are means a 5D of three independent experiments. Capital letters (a to b) refer to statistically significant differences 9-bitm-Sidak method AJOVA, P < COSI Table 1 Number of differentially expressed transcripts resulted by transcriptional profile comparisons of Fe-deficient plants supplied with the three natural sources of Fe and Fe-deficient plants

Comparison	Upregulated transcript	Downregulated transcripts
Fe/Fe-citrate vs -Fe	260	468
-Fe/Fe-PS vs -Fe	91	317
Fe/Fe-WEHS vs -Fe	1	1

Differentially expressed transcripts were identified by each transcriptional profile comparison through LIMMA analysis (adjusted p-value ≤ 0.05 ; $|Log_2(R)| \geq 1$; -Fe: Fe-deficient; -Fe/Fe-citrate, -Fe/Fe-PS or -Fe/Fe-WEHS: Fe-deficient plants supplied for 1 h with Fe citrate, Fe-PS or Fe-WEHS, respectively

Response to supply with different natural Fe-chelates

Differentially expressed transcripts suggest:


- ✓ the root transcriptional response to Fe supply depends on the nature of the ligand (WEHS, citrate and PS)
- ✓ Fe-WEHS did not cause relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation
- ✓ the responses to supply with Fe-citrate and Fe-PS are fast and based on a back regulation of molecular mechanisms modulated under Fe deficiency
- citrate is also adsorbed by roots causing a negative regulation of the TCA cycle and influencing mainly cell wall metabolism and the response to stress
- ✓ Fe-PS specific responses seem to be mainly based on a negative regulation of lipid metabolism and phospholipid-based signal that control ROS responses in the presence of heavy metals

N (NO₃-)

- ✓ N is the element required in largest amounts by plants; the major sources of N taken up by the roots of higher plants are NO3⁻ and NH4⁺
- ✓ plants cope with this rapid changes of NO3⁻ concentration in soil solution increasing its uptake rate following the exposure of the roots to this anion; this type of response is known as "induction"
- ✓ roots possess at least three, kinetically distinct, NO3⁻ transport systems (cHATS, iHATS and LATS); iHATS appears to play the key role in induction and NO3⁻ uptake rates.

59,756 transcripts predicted from the ZmB73 reference genome (Release 5b) Probe: 60 nt

Article

Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line

Anita Zamboni¹, Stefania Astolfi², Sabrina Zuchi², Youry Pil³, Katia Guardini^{1†}, Paola Tononi¹ and Zeno Varanini^{1*}

¹Department of Biotechnology, University of Verona, 33734, Verona, Italy, ¹Department of Agriculture, Forests, Nature and Energy (DAFNE), University of Tuscia, 01100, Viterbo, Italy, ³Faculty of Science and Technology (FaST), Free University of Bozen-Bolzano, 39100, Bolzano, Italy, ¹Present address: Unione Italiana Vini, viale del Lavoro 8, 33735 Verona, Italy *Correspondence: zeno.varanini@univr.it

Differentially expressed transcripts

Parametric Analyis of Gene Set Enrichment (PAGE): AgriGO

		GO Information					СМ		1	h			2h		94	h	
No	🗆 GO Term	Onto	Numbe	er	Description		1	2 3	Z-score	Mean	FDRnbsp	; Z-scor	e Mear	FDRnbsp	Z-score	Mean	FDRnbsp
1	GO:004426	7 P	496	cell	lular protein metabolic process				6.7	0.34	7.3e-10	-8.4	-0.4	2.9e-16	9.3	0.28	0
2	GO:001953	8 Р	564	pro	tein metabolic process				6.5	0.32	1.5e-09	-8.4	-0.37	4.5e-16	8.7	0.24	0
3	GO:000998	7 Р	1443	cell	lular process				6	0.23	3e-08	-9.9	-0.26	1.3e-21	7.9	0.13	3.3e-14
	GO:004423		1140	cell	lular metabolic process				5.5	0.23	4.2e-07	-8.6	-0.25		7.3	0.14	1.6e-12
5	CO-004426		046	Coll	lular macromoloculo motabolic process				17	0.22	2.60-05	-71	-0.22	5 70-13	7 7	0.15	2 20-12
					GO Information	(CM			5h			🗆 11h			. 12	h
No	GO Term	Or	nto Nur	mber	Description	1	2 3	Z-scor	e Mear	FDR	nbsp; Z-s	score M	tean I	FDRnbsp; 2	-score	Mean	FDRnbs
1	GO:00068	807 I	P 2	206	nitrogen compound metabolic process			3.4	0.029	0.	029	2.7 0	.038	0.048	1.7	-0.09	0.27
2	GO:00442	49	P 2	200	cellular biosynthetic process			3	0.012	2 0.	029	2.1 -0	0.017	0.17	1	-0.15	0.6
3	GO:00065	519	P 4	48	cellular amino acid and derivative metabolic process			2.9	0.15	0.	029	3 (0.37	0.022	2.3	0.2	0.074
4	GO:00060	91	P 1	11	generation of precursor metabolites and energy			2.8	0.43	0.	029 4	4.5	1.6	0.00025	4.2	1.5	0.0007
5	GO:00195	38	P 1	60	protein metabolic process			-2.8	-0.27	0.	029 -		0.54	0.022	-3.6	-0.64	0.0032
6	GO:00064	64	P 1	11	protein modification process			-2.9	-0.3	0.	029 -	3.3 -	0.64	0.016	-4.2	-0.79	0.0007
7	GO:00434		P 1	12	macromolecule modification			-2.9	-0.31	0.	029 -	3.3 -	0.63	0.016	-4	-0.77	0.0008
8	GO:00442	38	P 4	152	primary metabolic process			-0.34	-0.14	0	.79 -	1.3	-0.3	0.49	-2.7	-0.42	0.036
9	GO:00442		P 2	278	cellular macromolecule metabolic process			-0.18	-0.13	0			0.35	0.28	-2.8	-0.48	0.033
-	_		_	29	cellular protein metabolic process			-2.2	-0.26	-			-0.5	0.1	-3.1	-0.62	0.012
	GO:00081		_	561	metabolic process			-0.63	-0.14		.64		0.32	0.17	-3.3	-0.43	0.006
	GO:00431		_	819	macromolecule metabolic process			-0.85	-0.16				0.41	0.064	-3.5	-0.52	0.004
12	00.0043				macromolecule metabolic process			0.05	0.10		.04	2.0	0.41	0.004	5.5	0.52	0.004
23	GO:000681) р	260	trar	nsport				-0.36	0.097	0.88	-4.4	-0.27	2.8e-05	0.94	0.028	0.5
24	GO:0051179	P	268	loca	alization				-0.091	0.11	0.97	-4.5	-0.27	2.2e-05	0.92	0.027	0.5
25	GO:001046	7 P	573	gen	ne expression		- 6		1.3	0.15	0.54	-4.7	-0.17	9.9e-06	7.8	0.21	7.3e-14
26	GO:0006464	1 P	214	pro	tein modification process				0.5	0.14	0.88	-5	-0.35	2.5e-06	1.4	0.054	0.29
27	GO:004341	2 P	222	ma	cromolecule modification				0.83	0.15	0.74	-5.2	-0.36	7.3e-07	1.8	0.071	0.17
28	GO:0044249	P	678	cell	lular biosynthetic process				2.1	0.17	0.12	-5.5	-0.19	2e-07	7.8	0.19	5.9e-14
29	GO:0009058	3 P	704	bio	synthetic process				2.1	0.17	0.12	-5.6	-0.19	8.5e-08	7.6	0.19	1.7e-13
30	GO:0006259	P	36	DN	A metabolic process				0.55	0.18	0.86	-2.1	-0.37	0.058	3.5	0.39	0.0014

Differentially expressed transcripts

43	0 line							60 GRMZM2G091656_T01	C5Y560	Putative uncharacterized protein Sb05g003820	-1.98	-1.58	-2.05
								61 GRMZM2G093705 T01	C5X9H9	Putative uncharacterized protein	-1.03	-1.23	-1.12
¥	Probe_ID	UniProtID	Description) Log ₂ (+N/-N) 11 h	Log2(+N/-N) 12 h	y	_		Sb02g002880 Glutamine synthetase.			
5	AC191113 2 FGT002	I1J2F1	Uncharacterized protein	<u>5 h</u> 1.45	2.07	1.72		62 GRMZM2G098290_T03	B4FMX4	chloroplastic	1.67	3.74	3.19
	AC198414 2 FGT001		no hits found	1.25	2.11	1.70		63 GRMZM2G098925_T01	C5XZ31	Putative uncharacterized protein Sb09g023310	-1.32	-2.06	-2.33
	AC210731 3 FGT002	C5YVI5	Putative uncharacterized protein	1.27	1.62	2.42		64 GRMZM2G102959 T01	P17847	Ferredoxinnitrite reductase.	1.57	3.55	3.28
	GRMZM2G000739 T01	B4F7W3	Sb09g028370 Putative uncharacterized protein	1.16	2.34	1.75		—	Dearea	chloroplastic Uroporphyrinogen III			
	GRMZM2G000739_T02	B4F7W3	Putative uncharacterized protein	1.29	3.25	1.73		5 GRMZM2G105604_T01	P93628	methyltransferase	2.19	5.30	4.79
	GRMZM2G001205 T01	B6TTL8	ZFP16-1	1.00	0.10			1ZM2G105604 T02	P93628	Uroporphyrinogen III methyltransferase	1.20	1.92	2.10
	GRMZM2G002498 T01		no hits found							Ferredoxin-6. chloroplastic	1.38	2.42	2.38
2	GRMZM2G004161_T03	B4F8C0	Putative uncharacterized protein							Putative uncharacterized protein	-1.13	-1.45	-1.14
3	GRMZM2G004161_T05	B4F8C0	Putative uncharacterized protein							Sb09g023310 Putative uncharacterized protein	-1.11	1.02	1.05
4	GRMZM2G007546_T02	B4FZR3	Putative uncharacterized protein							\$b02g025240		-1.02	-1.05
5	GRMZM2G009223 T01	B6SRN7	Glucose-6-phosphate/phosphate							stative uncharacterized protein	-1.84	-2.19	-1.05
6	GRMZM2G016462 T01	B6STD0	translocator 2 Putative uncharacterized protei							ochrome P450 CYP71Y10	-1.20	-1.13	-1.19
	-		LOB domain protein 40.							factor	1.38	2.13	2.00
	GRMZM2G017319_T01	Q75HN5	putative, expressed							terized protein	1.29	1.38	1.22
8	GRMZM2G020423_T02	B6SJJ4	Jasmonate-indu							crizes protein	-1.06	-1.47	-1.11
	GRMZM2G020508_T01	B8A130	Putative	Tran	ecrin	te mo	Julator	d in T250	lin	otein	1.51	3.42	3.51
2	GRMZM2G022538_T04	B6THF0	Putati								-1.21	-1.27	-1.16
1	GRMZM2G022538_T05	B6THF0	Putativ	in re	snor	nco to		re in line	varit!	h			
2	GRMZM2G026532_T01	C5XBH7	Sb02g03	11110	spoi	150 10			WILI		-1.07	-1.90	-1.22
3	GRMZM2G035370_T04	C5Y9Z6	Putative u Sb06g0319				• • • •	1.1		nosphate	1.59	4.18	3.43
ş	GRMZM2G041980 T01	Q9ATN4	Aquaporin N	resp	onse	es prev	VIOUSIV	identifie	II D	nospilate	-2.43	-2.48	-1.90
5	GRMZM2G041980 T02	Q9ATN4	Aquaporin NI								1.72	3.72	3.58
	GRMZM2G041980 T03	Q9ATN4	Aquaporin NI	othe	ar nla	int spe	sios			(P72A124	-1.44	-2.02	-2.30
7	GRMZM2G041980_T04	Q9ATN4	Aquaporin N	ULIK	si pia	iiit spe	162				-1.84	-1.71	-1.06
8	GRMZM2G041980_T05	Q9ATN4	Aquaporin	10 0		o⁻ untak	o and	assimilati	on)	SIZI	-1.26	-1.15	-1.18
9	GRMZM2G041980_T06	Q9ATN4	Aquapori	(C.y.	. 1103	, uptar		assiinati			-1.38	-1.79	-1.34
9	GRMZM2G046601_T01	B6UDS5	Glutami										
,	GRMZM2G046601 T02	B6UDS5	isozym Glutar								1.13	3.32	3.32
	-		isozy								1.07	1.47	1.31
	GRMZM2G046601_T03	B6UDS5	Glutamine Glutamine synt								1.32	1.63	1.50
3	GRMZM2G046601_T04	B6UDS5	isozyme 5								1.50	2.65	2.56
4	GRMZM2G047835_T01	Q2QM58	Cation/hydrogen exchange putative, expressed							ne hydroxylase	1.07	3.00	2.22
5	GRMZM2G056975 T02	Q9FXZ7	1-deoxy-D-xylulose 5-phosphal							ygenase	-1.89	-2.38	-2.08
	-		reductoisomerase							ative uncharacterized protein	1.71	1.00	1.14
6	GRMZM2G065655_T04	B4FZ50	Serine/threonine protein kinase							utative uncharacterized protein	-1.17	-1.43	-1.21
	GRMZM2G067402_T01	Q9M593	Non-symbiotic hemoglobin Putative uncharacterized protein							Sb02g022270 1-deoxy-D-xylulose 5-phosphate			
8	GRMZM2G071704_T01	C5Y9Q9	Sb06g018650							reductoisomerase	-1.98	-1.78	-1.63
	GRMZM2G076075_T01	C0PAU7	Glucose-6-phosphate isomerase							Putative uncharacterized protein	1.19	1.63	1.22
	GRMZM2G076075_T02	C0PAU7	Glucose-6-phosphate isomerase							Putative uncharacterized protein	1.13	1.71	1.14
	GRMZM2G079381_T01	B6SY01	Ferredoxinnitrite reductase	2.15	4.11	3.96		JRMZM5G828229_T01	B4FQK0	Putative uncharacterized protein	1.27	3.38	2.41
2	GRMZM2G079381_T02	B6SY01	Ferredoxinnitrite reductase	2.20	3.78	3.96		97 GRMZM5G830545_T03	C5XRD6	Putative uncharacterized protein Sb03g041580	1.10	1.73	1.78
	GRMZM2G079381_T03	B6SY01	Ferredoxinnitrite reductase	1.99	4.11	3.91		98 GRMZM5G856297_T01	B4FEU2	Putative uncharacterized protein	1.73	2.61	1.97
	GRMZM2G079381_T04	B6SY01	Ferredoxinnitrite reductase	2.29	4.53	3.82		99 GRMZM5G856297_T02	B4FEU2	Putative uncharacterized protein	1.62	2.78	2.17
5	GRMZM2G079381_T05	B6SY01	Ferredoxinnitrite reductase Putative uncharacterized protein	1.88	3.53	3.34		100 GRMZM5G878558_T01	C5XTG6	Nitrate reductase	1.31	3.52	2.77
	GRMZM2G080871_T02	C5XG72	Sb03g043700	-1.36	-1.13	-1.98				ween treated (+N; +NO3) and a	control (-N;	-NO3) samp	les in T250 inbred line
5													
6 7	GRMZM2G081554_T01	Q41771	Kaurene synthase A	-1.98	-1.32	-1.36	(4	adjusted p-value ≤0.05; Le	og ₂ (+N/-N)	(≥ 1) .			

Transcripts involved in NO₃- uptake and assimilation

			Lo5	
Probe ID	Description	Log ₂ (+N/-N) 1 h	Log ₂ (+N/-N) 2 h	Log ₂ (+N/-N) 4 h
GRMZM2G010280_T01	ZmNRT2.1	0.23	0.30	-0.03
GRMZM2G010251_T01	ZmNRT2.2	0.55	0.41	0.05
GRMZM2G163866_T01	ZmNRT2.3	1.17	0.45	1.24
GRMZM2G455124_T01	ZmNRT2.5	-0.55	1.06	-0.64
GRMZM2G179294_T01	ZmNRT3.1A	0.13	0.60	0.03
GRMZM2G163494_T01	ZmNRT3.1B	-0.19	-0.55	-0.21
GRMZM2G568636_T01	nitrate reductase1	0.20	0.27	0.10
GRMZM5G878558_T01	nitrate reductase	0.56	0.37	0.53
GRMZM2G079381_T01	nitrite reductase	0.70	1.23	0.61
GRMZM2G098290_T01	glutamine synthetase1	0.52	0.30	0.20
GRMZM5G872068_T01	glutamine synthetase4	-0.30	-0.49	-0.27
GRMZM2G036464_T01	glutamine synthetase5	-0.19	-0.49	-0.33
GRMZM2G046601_T01	glutamine synthetase	0.39	-0.02	0.58
GRMZM2G050514_T03	glutamine synthetase	0.05	1.44	-0.20
GRMZM2G024104_T01	glutamine synthetase2	0.02	0.79	-0.23
GRMZM2G036609_T02	Ferredoxin-dependent glutamate synthase, chloroplastic	0.32	-0.26	0.04
			T250	
Probe ID	Description	Log ₂ (+N/-N) 5 h	Log ₂ (+N/-N) 11 h	Log ₂ (+N/-N) 12 h
GRMZM2G010280_T01	ZmNRT2.1	-0.35	2.35	1.70
GRMZM2G010251_T01	ZmNRT2.2	0.32	3.38	3.01
GRMZM2G163866_T01	ZmNRT2.3	0.58	0.67	1.46
GRMZM2G455124_T01	ZmNRT2.5	-0.61	0.37	0.18
GRMZM2G179294_T01	ZmNRT3.1A	-0.06	1.84	1.56
GRMZM2G163494_T01	ZmNRT3.1B	0.00	-0.43	-1.17
GRMZM2G568636_T01	nitrate reductase1	0.67	1.99	1.89
GRMZM5G878558_T01	nitrate reductase	1.31	3.52	2.77
GRMZM2G079381_T01	nitrite reductase	2.15	4.11	3.96

GRMZM2G098290_T01 glutamine synthetase1

GRMZM5G872068 T01 glutamine synthetase4

GRMZM2G036464_T01 glutamine synthetase5

GRMZM2G046601_T01 glutamine synthetase

GRMZM2G050514 T03 glutamine synthetase

GRMZM2G024104_T01 glutamine synthetase2

GRMZM2G036609_T02 Ferredoxin-dependent glutamate synthase.

chloroplastic

Log₂(+N/-N) values at each sampling time points for transcripts involved in NO₃⁻ uptake and first steps of its assimilation recorded for Lo5 and T250 inbred lines

> Results were confirmed by Realtime RT-PCR experiments

Transcripts related to NO₃- uptake and assimilation are more greatly expressed and modulated in response to treatment in T250 than Lo5.

The differentially transcripts (adjusted p-value ≤ 0.05 ; $|Log_2(+N/-N)| \geq 1$) between treated (+N; +NO₃) and control (-N; -NO₃) samples were in bold for each sampling time point.

0.52

-0.61

-0.47

2.09

0.85

0.62

0.48

1.44

-0.92

-0.36

5.36

1.22

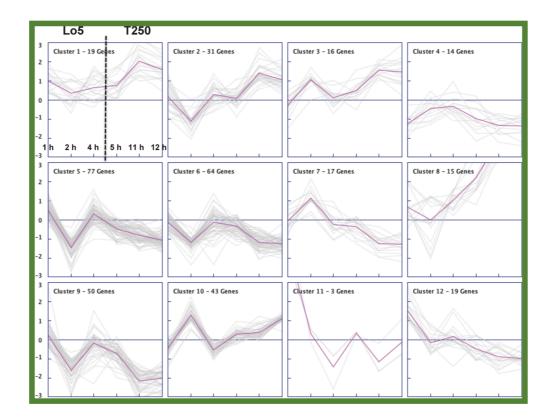
0.94

1.67

1.21

-0.79

-0.38


3.94

1.74

0.61

1.17

Common NO₃-modulated transcripts

- ✓ NO3⁻ has an opposite effect on the modulation of some transcripts in two inbred lines (clusters 2,4,7,8,11 and 12)
- ✓ clusters 1,3,10 and 5,6,9 grouped transcripts from both inbred lines, respectively, positively and negatively affected by NO3⁻ in at least one sampling-point

Transcripts with a different transcriptional behaviour between the two inbred lines:

- ✓ transcripts encoding transcription factors
- ✓ transcripts encoding protein kinases and phosphatases
- transcript encoding CBL protein positively modulated at 1h in Lo5 and down-regulated at 5h in T250 that can interact with CIPK Ser/Thr kinases; CIPKs are involved in the signalling system associated with NRT1.1 in Arabidopsis thaliana (Ho et al., 2009; Hu et al., 2009)
- ✓ transcripts related to ethylene synthesis down-regulated in T250 and up-regulated in Lo5 could be involved into the positive modulation of NRT2 transcripts only in T250
- ✓ transcripts encoding heat-shock proteins and heat-shock factors are strongly up-regulated at 1h in Lo5
- ✓ transcripts encoding aquaporin (*ZmTIP4.1* and *ZmNIP1.1*) were positively affected by NO3⁻ in T250

Transcripts with a similar transcriptional behaviour in both inbred lines:

confirm the involvement of metabolic pathways previously described in *Arabidopsis* (Wang *et al.*, 2000; Wang *et al.*, 2003; Scheible *et al.*, 2004), tomato (Wang *et al.*, 2001) and maize (Liu *et al.*, 2008) in response to NO₃⁻ supply, such as trehalose metabolism, NO₃⁻ assimilation, phenylpropanoid metabolism, cytokinin homeostasis and cell expansion.

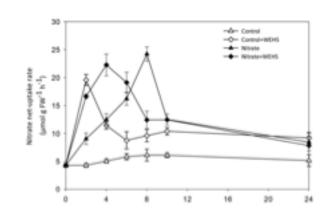
✓ different timing in the response to the changes in the solution bathing the roots (*e.g.* contact with NO3⁻ and subsequent increase in its uptake rates) are mirrored by a different transcriptional behaviour during the induction stage (0-4 h and 0-12 h in Lo5 and T250, respectively)

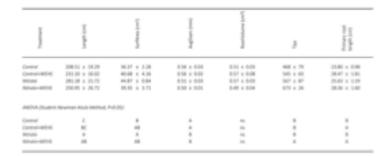
✓ the two inbred lines differed extensively both in the number of modulated transcript during the NO^{3−} induction (10% vs 3.5% of the maize transcriptome)

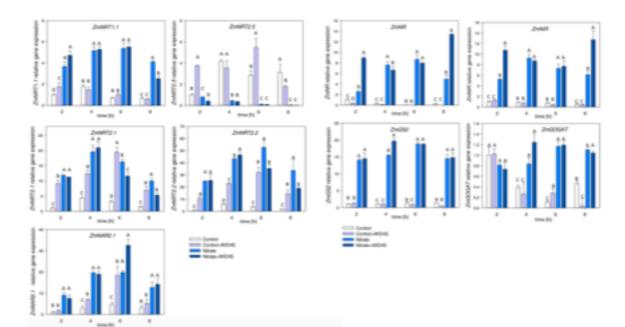
 ✓ our results suggested that the two maize inbred lines seem to have developed different strategies to respond to NO3⁻ changes in the environment

N (NO₃-) and water-extractable humic substances (WEHS)

.


Install.



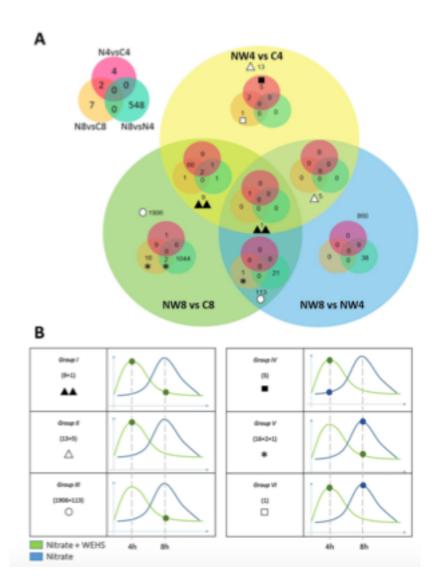


Water-extractable humic substances speed up transcriptional response of maize roots to nitrate

Laura Zanin^{1,1}, Nicola Tomasi¹, Anita Zamboni¹, Davide Sega¹, Zeno Varanin¹, Roberto Pinton¹ ¹Devines d laura Applications, Automatic Advant, Davide Collection, and David Sci. 2009 (2006). http: ¹Devines d laura Applications, Collegal 1, Sendar G 2009 (2006). http: ¹Devines d laura Applications, Collegal 1, Sendar G 2009 (2016).

N (NO₃-) and water-extractable humic substances (WEHS)

Table 1


Number of differentially expressed transcripts comparing the following transcriptomic profiles of maize roots: C4, Control roots at 4 h; C8, Control roots at 8 h; N4, Nirrate roots at 4 h; N8, Nirrate roots at 8 h; NW4, Nirrate + WEERS roots at 4 h; NW8, Nirrate + WEERS roots at 8 h (PC \approx |2.00|, n = 3, adjunted P-value \leq 0.05).

Comparison	Total transcript	Up-regulated	Down-regulated
N4 vs C4	96	+93	-3
N8 vs C8	104	+95	-9
N8 15 N4	1657	+1061	- 596
NW4 15 C4	111	+98	-13
NW8 15 C8	3198	+1354	-1844
NW8 15 NW4	1040	+836	- 204

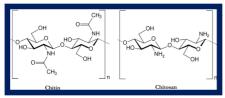
Venn diagram: **6** clusters of transcripts correlating to physiological changes in plants

- \checkmark / (9+1): modulated only by NW at 4 and 8h
- ✓ // (13+5): modulated only by NW at 4h
- ✓ *III* (1906+113): modulated only by NW at 8h

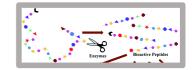
✓ *IV* (5): modulated by NW and N only at 4h
✓ *V* (16+2+1): modulated by NW and N only at 8h
✓ *VI* (1): modulated by NW and N at 4 and 8h

N (NO₃-) and water-extractable humic substances (WEHS)

✓ NW affects transcripts involved into hormonal metabolism (Groups / and //)


- ✓ NW affects transcripts involved into N-metabolism (Group III); ZmNR and ZmNiR are strongly upregulated in N+WEHS vs N explaining the observed physiological pattern; at 8h are strongly upregulated the transcripts involved into the following step of N assimilation (e.g. ZmGS1, ZmGS2, ZmGOGAT, ZmCNX and ZmASN) promoting the de-induction of HATS
- ✓ NW and N upregulate at 8h (Group V) the ZmNRT1.1 that could play a role in NO3⁻ uptake, N translocation and in the expression of NO3⁻-responsive genes (Hu et al., 2015)
- ✓ NW and N downregulate at 8h (Group V) the ZmNRT2.5 suggesting an adequate availability of N; this pattern of the expression could be explained by the upregulation of the transcript encoding the LBD37 transcription factors which functions as repressor of some NO3⁻ transporter including NRT2.5 (Kiba and Krapp, 2016; Rubin et al., 2009; Konishi and Yanagisawa, 2013; Sawaki et al., 2013)

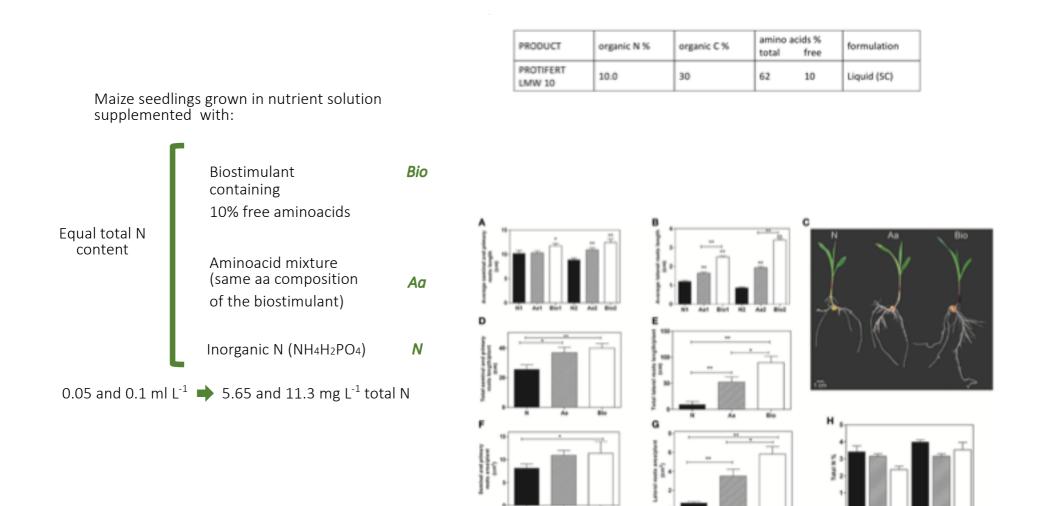
Biostimulants (protein hydrolysates e and free amino acids)



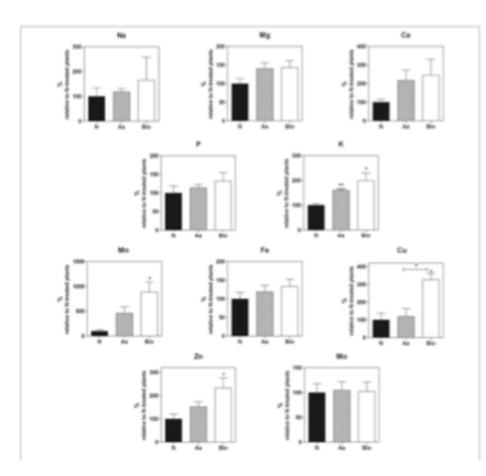
HUMIC ACI

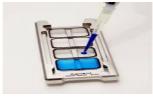
FULVIC ACID

	Filatov, 1991b	Berina and Kolbin, 2004	Kauffman et al., 3907	Du-Jardin, 2012	Calvo et al., 2014	Halpers et al., 2016	Du Janlin, 2015	Torm et al., 2016
•	Carboxylic fatty acids (peaks acid and success acid)	Motorganisms (bacteria, tang)	Humit substances	Harric substances	Moobial incolants	Hank: substances	Humic and full-ic acids	Hamic substances
2	Carbonylic fatty hydroxy acids (malic anotisefanic acids)	Part nutrials (and, Instructor and marke)	Homore containing products (seaweed extracts)	Complex organic materials	Hamic acids	Polisin hydrolysalis and amine acid formulations	Protein/hydrolysates and other Ni containing compounds	Seaweed extracts
3	Unsaturated faily acits, aconatic and phenolic acids (primamic acids, hydroxycimiamic acids, counter()	Sau shaffah, animala, basa	Animo acid containing products	Beneficial chemical elements	Fulse acets	Saarand orbited	Saaroo Lorbachi and botanicali	Hydrolyand proteins and anniho acids
*	Pranole anomale acids containing several barurane rings linked via carbon atomo (humic acida)	Humas-and Numue-containing substances		tropping saits (such as prospring	Protein hydrolysales and amino acida	Part-positi pronoting microorganisms (including mycomical tung)	Orlosan and offer bogolymes	irogeni; sals
5		improte on		Snawned in druchs	Served erhads		trorganic compounds	Moroorganismu
		Network minarahi		Onlin and childran denighes			Beneficial tangi	
P		Wate (activated, departed, thatma)		Anthongicants			Beneficial bacteria	
*		Pasirs		Free arrivo acids and other to containing substances				
		Other raise matterials (of and petroleum fractions, shale autoriance)						



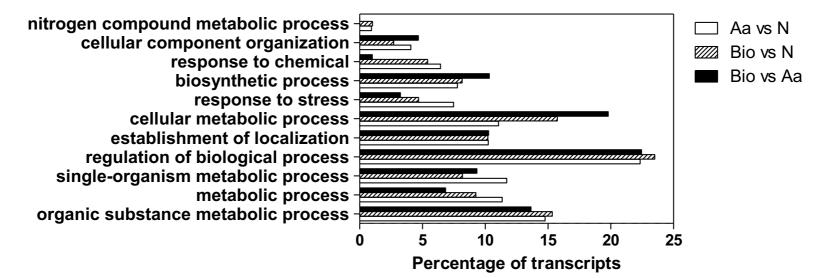
Yakhin et al., 2017


- ✓ free amino acid mixtures or protein hydrolysates constituted by short peptides and free amino acids in different proportions are marketed as crop biostimulant
- these products are obtained by the hydrolysis of proteins from plant, animal, and microbial sources, but also from industrial and agricultural residues


Biostimulants (protein hydrolysates e and free amino acids)

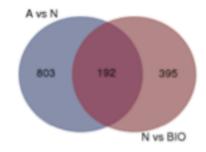
The protein hydrolysates used in this project are a mixture of amino acids and peptides of different length, that derive from animal origin by-products (collagen) (SICIT 2000).

Biostimulants (protein hydrolysates e and free amino acids)

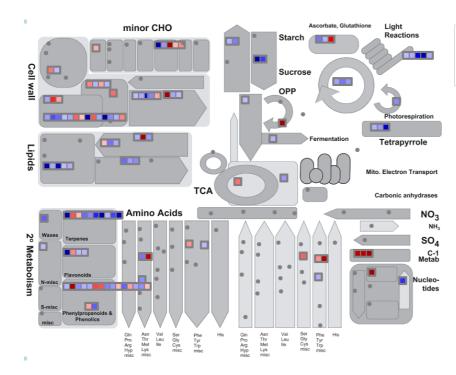


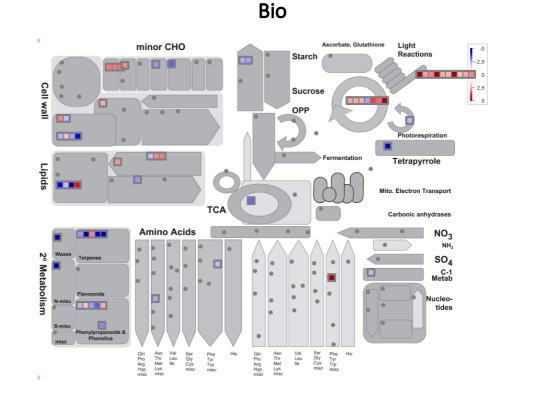
Agilent chip

39,372 of transcripts predicted from the ZmB73 reference genome (Release 5b) Probe: 60 nt


Differentially expressed transcripts Fold-change ≥ 2.0 or ≤ 2.0							
BIO vs N	BIO vs Aa	Aa vs N					
282 🛧	333 🛧	385 🛧					
305 🗸	98 🗸	610 🗸					
587 tot	431 tot	995 tot					

Differentially regulated transcripts





Aa vs N and Bio vs N

Aa

Common responses of maize roots to free amino acids and protein hydrolysate

- ✓ modulation of transcripts encoding transcription factors related to nutrient stress and involved in root growth and metabolism (NAC, MYB, WRKY, bHLH, AP2-EREB)
- \checkmark modulation of genes involved in cell wall remodeling that can regulate root growth and lateral root formation
- ✓ modulation of transcripts involved into transport processes (transport of Fe chelates and other divalent cations, peptides and amino acids, nitrate and ammonium)
- transcripts involved into gibberellin metabolism and auxin signalling and transport are induced by both biostimulants
- \checkmark higher potassium accumulation

Aa-specific responses

- ✓ stress-related transcripts modulation (mostly peroxidases)
- ✓ active uptake of amino acids (induction of amino acids permease transcripts)
- \checkmark positive modulation of transcripts involved in the synthesis of metal chelators

Bio-specific responses

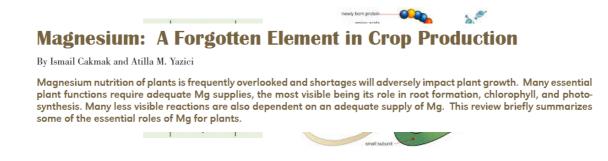
- ✓ modulation of transcripts encoding specific peptide transporters
- modulation of transcripts involved into cytokinin and jasmonate metabolism
- ✓ higher micro-nutrients accumulation

Transcriptomics coupled with phenotypic and ionomic analyses are useful tools to highlight the mechanisms of action of biostimulants

Mg deficiency in grapevine

- \checkmark only field observations
- \checkmark no physiological and molecular characterization of grapevine responses to Mg deficiency

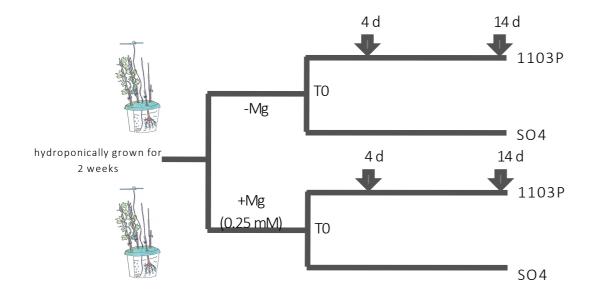
- ✓ interveinal chlorosis and necrosis (old leaves)
- \checkmark early leaf fall
- \checkmark bunch stem necrosis

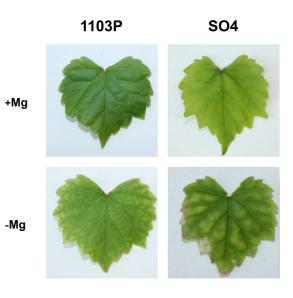


✓ Mg is the 4th element mainly adsorbed by plants

 \checkmark Mg²⁺ is the most abundant free divalent cation in the plant cytosol

✓ Mg concentration in soil solution is commonly quite high (3-4 mM) and its uptake by plant roots is negatively influenced by competition with other cations (K⁺, NH4⁺, Ca²⁺, Mn²⁺, H⁺ e Al³⁺)



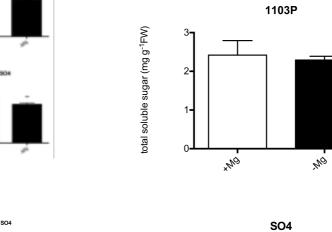

Physiological and molecular characterization of rootstocks responses to Mg deficiency

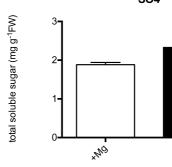
1103P: tolerant

SO4: susceptible

Physiological and molecular characterization of rootstocks responses to Mg deficiency

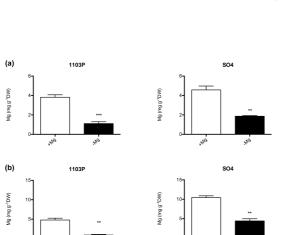
504


(a)


(b)

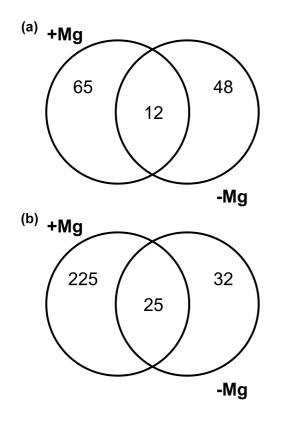
5

11000



*

Mg



-18

5

Physiological and molecular characterization of rootstocks responses to Mg deficiency

Root metabolite analysis (UPLC-MS and GC-MS)

4 days

- ✓ higher levels of carotenoids in 1103P roots
- ✓ monosaccharides (*e.g.* α -L-arabinopyranosio, α -Larabinofuranose, α -D-xylose, β -D-xylose) involved into the synthesis of constituents of the cell wall xyloglucans and pectins (Harris and Stone, 2008)

14 days

✓ higher levels of metabolites involved into responses to biotic and abiotc stresses in the susceptible rootstocks

Microarray analysis

NimbleGen chip:

29,549 predicted grapevine transcripts (98.6% of the genes predicted from the V1 annotation of the 12x grapevine genome) Probe: 60 nt (4 probes for each transcripts)

^(a) +Mg 199	572	219 -Mg
^(b) +Mg	$\overline{}$	入
255	338	361
		-Mg

	4 days	
	1103P +Mg vs SO4 +Mg	1103P - Mg vs SO4 - Mg
up-regulated	412	421
down-regulated	359	370
	14 days	
	1103P +Mg vs SO4 +Mg	1103P -Mg vs SO4 -Mg
up-regulated	183	247
down-regulated	410	452

1103P vs SO4 (-Mg)

4 days

14 days

Singular Enrichment Analysis (SEA); AgriGO

- ✓ the tolerant rootstock exhibits a lower oxidative stress in the first phase of the response to Mg deficiency (*e.g.* 4 days; down-regulation of transcripts encoding Respiratory burst oxidase protein D and a peroxisomal biogenesis factor 11)
- ✓ the tolerant rootstock produce lower levels of phenolic compounds (transcripts involved in this process are down-regulated)
- ✓ the tolerant rootstock respond to Mg deficiency changing cell wall structure through a decrease in a cellulose content and its stiffness through an increase in pectin with a lower level of methyesterification and a higher quantity of arabinose-containing polysaccharides putatively tightly linked to the cell wall (up-regulation of cellulose synthase, endo-1,3;1,4-beta-D-glucanase, pectinesterese and polygalacturonase)
- ✓ the higher level of a HKT2 transcript in roots of 1103P relative to SO4 under 4-day Mg deficiency suggests that this transporter could be involved into Mg uptake

In conclusion

 ✓ microarray analyses give a genome-wide picture of transcript levels in relationship to different biotic and abiotic stresses

 ✓ microarray analysis allow us comparing the transcriptional profiles of different genotypes in response to a treatment (e.g. root NO3⁻ exposure) or stress (*e.g.* Mg deficiency)

✓ we can correlate the physiological responses to a nutrient deficiency with changes in transcriptome

✓ we can obtain a list of transcripts for further functional analyses

✓ we can obtain a list of putative biomarkers for genotype selection

Acknowledgements

Dept. Biotechnology, University of Verona

Prof. Annalisa Polverari Prof. Tiziana Pandolfini

Agricultural Chemistry Lab, Dept. Biotechnology

Dr. Sonia Livigni Dr. Davide Sega Prof. Zeno Varanini

DI4A, University of Udine

Prof. Roberto Pinton Prof. Nicola Tomasi Dr. Laura Zanini

Free University of Bozen

Prof. Stefano Cesco

DiSTAS, Università Cattolica del Sacro Cuore

Dr. Luigi Lucini

