Degree Formula for Lagrangian Fibrations

Jonas Ehrhard

Johannes Gutenberg-Universität Mainz

What could be the discriminant divisor?

Let M be an irreducible holomorphic symplectic manifold of complex dimension $2n$, and suppose

 $f: M \to \mathbb{P}^n$

is a Lagrangian fibrations. The *discriminant locus* is the set $\Delta = \{ b \in \mathbb{P}^n : f^{-1}(b) \text{ is singular} \}.$

Hwang and Oguiso proved that Δ has codimension one[1]. One may wonder if this is the support of a somewhat natural divisor. In other words, what is a natural way to assign weights $w_i \in \mathbb{N}$ to the irreducible components $\Delta_i \subset \Delta$?

It is noteworthy that dualizing reproduces the ΩT -complex up to a sign in the isomorphism $\Omega_M \cong T_M$. This can be exploited to prove

The Ω**-complex**

The ΩT -complex associated to f is the cochain complex

$$
f^*\Omega_{\mathbb{P}^n} \to (\Omega_M \cong T_M) \to f^*T_{\mathbb{P}^n}.\tag{QT}
$$

The first map is injective, so there are two cohomology sheaves

where $N = f^{-1}(\ell)$ is the preimage of a general line $\ell \subset \mathbb{P}^n$ which contains $f(F_i)$. Following techniques of Sawon[4], C. Lehn proved in his PhD thesis[2]

$$
H^1(\Omega T)
$$
 and $H^2(\Omega T)$,

which are supported on $f^{-1}(\Delta)$.

Note that the polarisation type $(d_1, ..., d_n)$ does not depend on the choice of ω . This is due to a theorem of Voisin[5], combined with Matsushita's result that Lagrangian fibrations deform in codimension one[3].

$$
H^{1}(\Omega T) \cong \mathcal{E}xt_{M}^{1}(H^{2}(\Omega T), \mathcal{O}_{M}). \tag{1}
$$

Theorem 1. Let $F \subset M$ be a smooth fiber. Then the restriction *map*

Local analysis of the $\dot{\mathcal{I}}$ (ΩT)

The definition of weights

Choose a Kähler class $\omega \in H^2(M,\mathbb{C})$, which restricts to an integral, non-divisible cohomology class of type (d_1,\ldots,d_n) on the smooth fibers. Let F_i be a general singular fiber over the component $\Delta_i \subset \Delta$, and define

$$
w_i = n(d_1 \cdots d_n)^{-1} \int_N (c_2(H^1(\Omega T|_{F_i})) - c_2(H^2(\Omega T|_{F_i}))) \omega^{n-1},
$$

The sheaf $H^2(\Omega T|_{F_i})$ is the cokernel of the differential map $T_N \to f^*T_\ell$. Since f^*T_ℓ is trivial in a neighbourhood of F_i , $H^2(\Omega T|_{F_i})$ is the structure sheaf of its support. Using the local picture of Hwang and Oguiso one can then fully describe its second Chern class in N. Combining this with (1) , one obtains Theorem 2.

The singular locus $Sing(F_i)_{\text{red}}$ is a disjoint union of $(n-1)$ dimensional tori Z_{i1}, \ldots, Z_{ir} . The tori Z_{ik} are called *singular tori*. Let μ_k be the Milnor number of the curve singularity at Z_k .

Theorem 2. The weight w_i associated to F_i satisfies

$$
\sum_{i} w_i \deg(\Delta_i) = 24 \left(\frac{n! \int_M \sqrt{\hat{A}(M)}}{d_1 \cdots d_n} \right)^{\frac{1}{n}}.
$$

Main Problem

Does this definition depend on the choice of ω ?

Independence for smooth fibers

By the theorem on implicit functions, there is for each period $\lambda \in \Lambda$ a map of germs $\tilde{\lambda} : (D, p) \to (\mathbb{C}^{n-1}, \lambda)$, such that $\Phi(\tilde{\lambda}(q), q) \in D$ for each $q \in D$. This induces an isomorphism

$$
H^2(M, \mathbb{Q}) \to H^2(F, \mathbb{Q})
$$

has rank one.

which preserves the fibers of f . On local rings one gets an isomorphism

Hwang and Oguiso also proved that a general singular fiber looks locally like a $(n - 1)$ -dimensional complex disc times one of the four curve singularities depicted in the following table[1].

The next step is to write down a homotopy $H_t(x, y)$ from $H_0 = \hat{\lambda}^*$ to $H_1 = id$. Before this can be done, one has to replace λ by a multiple, because $\hat{\lambda}$ could act non-trivially on the connected components of the fiber in D . For example the coordinate change $x \mapsto y$, $y \mapsto x$ cannot be deformed to the identity while preserving fibers of f . In the case of type I singularities, one can define the first half of the homotopy $H_t = (\xi_t, \eta_t)$ for $0 \le t \le \frac{1}{2}$ 2 by

 $\xi_t =$ Then

Let X_1, \ldots, X_{n-1} be the Hamiltonian vector fields in a neighbourhood N_i of F_i , which give a flow

$$
w_i = \left(d_1 \cdots d_n\right)^{-1} \cdot n \cdot \sum_{k=1}^r a_k \int_{Z_{ik}} \omega^{n-1},
$$

The main ingredients here are of course the classification of characteristic cycles and the fact that singular tori Z have numerically trivial normal bundle in the components of F_i .

where

$$
a_k = \begin{cases} 1 + \frac{(a-b)^2}{ab} & \text{if } Z_k \text{ is an intersection of type } I \text{ with local} \\ multiplicities a, b \\ \mu_k & \text{if } Z_k \text{ is of type } II, III \text{ or } IV. \end{cases}
$$

Moving singular tori to smooth fibers

Theorem 2 allows us to solve the Main Problem, by proving: **Theorem 3.** The restriction map $H^2(M, \mathbb{Q}) \to H^2(Z, \mathbb{Q})$ has *rank one.* The strategy is to write down a homotopy which moves Z into a smooth fiber. Then Theorem 1 implies 3.

$$
\Phi: \ \mathbb{C}^{n-1} \times N_i \to N_i.
$$

Pick a base point $p \in Z$, to get the universal covering $\nu: \mathbb{C}^{n-1} \to Z$, and the *period lattice*

$$
\Lambda = \nu^{-1}(p) \subset \mathbb{C}^{n-1}
$$

Choose a complex two-dimensional disc $D = D^2 \subset N$, centered at p and transverse to Z .

.

$$
y = 0
$$

$$
\hat{\lambda}: (D, p) \to (D, p),
$$

serverves the fibers of *f*. On local rings or

$$
\hat{\lambda}^* : \mathbb{C}\{x, y\} \to \mathbb{C}\{x, y\}, \quad x \mapsto \xi, y \mapsto \eta
$$

which satisfies $f(x, y) = f(\xi, \zeta)$. For example if Z has type I,

then

$$
\xi^k \eta^\ell = x^k y^\ell.
$$

$$
= \frac{\xi((1-2t)x,(1-2t)y)}{1-2t}, \quad \eta_t = \frac{\eta((1-2t)x,(1-2t)y)}{1-2t}.
$$

 $\xi_0 = \xi, \eta_0 = \eta$, and $(\xi_{1/2}, \eta_{1/2}) = (ax, by)$

where $a, b \in \mathbb{C}$ satisfy $a^k b^l = 1$. Since $\hat{\lambda}$ preserves the connected components of $\{x^k y^\ell = 1\}$, the pair (a, b) is in the same component as $(1, 1)$. A path from (a, b) to $(1, 1)$ inside $\{x^k y^\ell = 1\}$ completes the homotopy.

Moving cycles to smooth fibers cont'd

Using the homotopy H one can easily move 1-cycles from Z to a smooth fiber. Each 1-cycle in Z corresponds to a period $\lambda \in \Lambda$. Assume λ admits a homotopy H as before. Consider the path $y(t) = (t, t)$, in D, which starts at p and moves into a smooth fiber $F_{\rm sm}$. The singular square

 $\sigma:\, [0,1]$

then moves λ into $F_{\rm sm}$.

$$
[12 \rightarrow M, \sigma(s, t) = \begin{cases} \Phi(2t\tilde{\lambda}(\gamma(s)), \gamma(s)) & \text{for } t \leq \frac{1}{2} \\ H_{2t-1}(\hat{\lambda}(\gamma(s))) & \text{for } t \geq \frac{1}{2} \end{cases}
$$

Theorem 4. If the characteristic cycle Θ_i of F_i is compact, then $\chi(\Theta_i)$

Using more complicated higher-dimensional singular cubes one can also move higher-dimensional cycles which are obtained by combining multiple periods.

Weights via the characteristic cycle

$$
w_i = \frac{\lambda}{\int_{\Theta_i} \omega}.
$$

References

- [1] Jun-Muk Hwang and Keiji Oguiso. "Characteristic foliation on the discriminant hypersurface of a holomorphic Lagrangian fibration". In: Amer. J. Math. 131.4 (2009), pp. 981-1007. ISSN: 0002-9327. DOI: 10. 1353/ajm.0.0062. url: https://doi.org/10.1353/ajm.0.0062. hannes Gutenberg-Universität Mainz, 2011. DOI: http://doi.org/ 10.25358/openscience-3153.
- [2] Christian Lehn. "Symplectic Lagrangian Fibrations". PhD thesis. Jo-
- [3] Daisuke Matsushita. "On Deformations of Lagrangian Fibrations". In: *K3 Surfaces and Their Moduli* (Jan. 2016). DOI: 10.1007/978-3-319-29959-4_9. url: http://dx.doi.org/10.1007/978-3-319- 29959-4_9.
- [4] Justin Sawon. "On the discriminant locus of a Lagrangian fibration". In: *Mathematische Annalen* 341.1 (2008), pp. 201–221. issn: 0025-5831. DOI: 10.1007/s00208-007-0189-9.
- [5] Claire Voisin. "Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes". In: *Complex projective geometry (Trieste, 1989/Bergen, 1989)*. Vol. 179. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 1992, pp. 294-303. DOI: 10. 1017/CBO9780511662652.022.