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What could be the discriminant
divisor?
Let 𝑀 be an irreducible holomorphic symplectic manifold of
complex dimension 2𝑛, and suppose

𝑓 ∶ 𝑀 → ℙ𝑛

is a Lagrangian fibrations. The discriminant locus is the set

Δ = { 𝑏 ∈ ℙ𝑛 ∶ 𝑓 −1(𝑏) is singular }.
Hwang and Oguiso proved that Δ has codimension one[1].
One may wonder if this is the support of a somewhat natu-
ral divisor. In other words, what is a natural way to assign
weights 𝑤𝑖 ∈ ℕ to the irreducible components Δ𝑖 ⊂ Δ?

The Ω𝑇-complex
The Ω𝑇-complex associated to 𝑓 is the cochain complex

𝑓 ∗Ωℙ𝑛 → (Ω𝑀 ≅ 𝑇𝑀) → 𝑓 ∗𝑇ℙ𝑛 . (Ω𝑇)
The first map is injective, so there are two cohomology sheaves

𝐻 1(Ω𝑇 ) and 𝐻 2(Ω𝑇 ),
which are supported on 𝑓 −1(Δ).

It is noteworthy that dualizing reproduces the Ω𝑇-complex up
to a sign in the isomorphism Ω𝑀 ≅ 𝑇𝑀. This can be exploited
to prove

𝐻 1(Ω𝑇 ) ≅ ℰ𝓍𝓉1𝑀(𝐻 2(Ω𝑇 ), 𝒪𝑀). (1)

The definition of weights
Choose a Kähler class 𝜔 ∈ 𝐻 2(𝑀, ℂ), which restricts to an
integral, non-divisible cohomology class of type (𝑑1, … , 𝑑𝑛) on
the smooth fibers. Let 𝐹𝑖 be a general singular fiber over the
component Δ𝑖 ⊂ Δ, and define

𝑤𝑖 = 𝑛(𝑑1⋯𝑑𝑛)−1∫
𝑁
(𝑐2(𝐻 1(Ω𝑇 |𝐹𝑖)) − 𝑐2(𝐻 2(Ω𝑇 |𝐹𝑖)))𝜔

𝑛−1,

where 𝑁 = 𝑓 −1(ℓ) is the preimage of a general line ℓ ⊂ ℙ𝑛

which contains 𝑓 (𝐹𝑖). Following techniques of Sawon[4],
C. Lehn proved in his PhD thesis[2]

∑
𝑖
𝑤𝑖 deg(Δ𝑖) = 24(

𝑛!∫𝑀 √�̂�(𝑀)
𝑑1⋯𝑑𝑛

)

1
𝑛

.

Main Problem

Does this definition depend on the choice of 𝜔?

Independence for smooth fibers
Note that the polarisation type (𝑑1, … , 𝑑𝑛) does not depend
on the choice of 𝜔. This is due to a theorem of Voisin[5],
combined with Matsushita’s result that Lagrangian fibrations
deform in codimension one[3].

Theorem 1. Let 𝐹 ⊂ 𝑀 be a smooth fiber. Then the restriction
map

𝐻 2(𝑀, ℚ) → 𝐻 2(𝐹 , ℚ)
has rank one.

Local analysis of the 𝐻 𝑖(Ω𝑇 )
Hwang and Oguiso also proved that a general singular fiber
looks locally like a (𝑛 − 1)-dimensional complex disc times
one of the four curve singularities depicted in the following
table[1].

Node Cusp Tangent Triple intersection

𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝑉

𝑥𝑦 = 0 𝑥3 = 𝑦2 𝑦(𝑦 − 𝑥2) = 0 𝑥(𝑥 − 𝑦)𝑦 = 0

The sheaf 𝐻 2(Ω𝑇 |𝐹𝑖) is the cokernel of the differential map
𝑇𝑁 → 𝑓 ∗𝑇ℓ. Since 𝑓 ∗𝑇ℓ is trivial in a neighbourhood of 𝐹𝑖,
𝐻 2(Ω𝑇 |𝐹𝑖) is the structure sheaf of its support. Using the local
picture of Hwang and Oguiso one can then fully describe its
second Chern class in 𝑁. Combining this with (1), one obtains
Theorem 2.

The singular locus Sing(𝐹𝑖)red is a disjoint union of (𝑛 − 1)-
dimensional tori 𝑍𝑖1, … , 𝑍𝑖𝑟. The tori 𝑍𝑖𝑘 are called singular tori.
Let 𝜇𝑘 be the Milnor number of the curve singularity at 𝑍𝑘.
Theorem 2. The weight 𝑤𝑖 associated to 𝐹𝑖 satisfies

𝑤𝑖 = (𝑑1⋯𝑑𝑛)
−1

⋅ 𝑛 ⋅
𝑟

∑
𝑘=1

𝑎𝑘∫
𝑍𝑖𝑘
𝜔𝑛−1,

where

𝑎𝑘 =
⎧⎪
⎨⎪
⎩

1 + (𝑎−𝑏)2

𝑎𝑏
if 𝑍𝑘 is an intersection of type 𝐼 with local
multiplicities 𝑎, 𝑏

𝜇𝑘 if 𝑍𝑘 is of type 𝐼 𝐼 , 𝐼 𝐼 𝐼 or 𝐼 𝑉 .

Moving singular tori to smooth fibers

Theorem 2 allows us to solve the Main Problem, by proving:

Theorem 3. The restriction map 𝐻 2(𝑀, ℚ) → 𝐻 2(𝑍 , ℚ) has
rank one.
The strategy is to write down a homotopy which moves 𝑍
into a smooth fiber. Then Theorem 1 implies 3.

Let 𝑋1, … , 𝑋𝑛−1 be the Hamiltonian vector fields in a neigh-
bourhood 𝑁𝑖 of 𝐹𝑖, which give a flow

Φ∶ ℂ𝑛−1 × 𝑁𝑖 → 𝑁𝑖.
Pick a base point 𝑝 ∈ 𝑍, to get the universal covering
𝜈 ∶ ℂ𝑛−1 → 𝑍, and the period lattice

Λ = 𝜈−1(𝑝) ⊂ ℂ𝑛−1.
Choose a complex two-dimensional disc 𝐷 = 𝐷2 ⊂ 𝑁, cen-
tered at 𝑝 and transverse to 𝑍.

𝑥 = 0
𝑍𝑦 = 0 𝐷2

𝑝

By the theorem on implicit functions, there is for each pe-
riod 𝜆 ∈ Λ a map of germs �̃� ∶ (𝐷, 𝑝) → (ℂ𝑛−1, 𝜆), such that
Φ(�̃�(𝑞), 𝑞) ∈ 𝐷 for each 𝑞 ∈ 𝐷. This induces an isomorphism

�̂� ∶ (𝐷, 𝑝) → (𝐷, 𝑝),
which preserves the fibers of 𝑓. On local rings one gets an
isomorphism

�̂�∗∶ ℂ{𝑥, 𝑦} → ℂ{𝑥, 𝑦}, 𝑥 ↦ 𝜉 , 𝑦 ↦ 𝜂
which satisfies 𝑓 (𝑥, 𝑦) = 𝑓 (𝜉 , 𝜁 ). For example if 𝑍 has type 𝐼,
then

𝜉 𝑘𝜂ℓ = 𝑥𝑘𝑦 ℓ.
The next step is to write down a homotopy 𝐻𝑡(𝑥, 𝑦) from
𝐻0 = �̂�∗ to 𝐻1 = id. Before this can be done, one has to
replace 𝜆 by a multiple, because �̂� could act non-trivially on
the connected components of the fiber in 𝐷. For example the
coordinate change 𝑥 ↦ 𝑦, 𝑦 ↦ 𝑥 cannot be deformed to the
identity while preserving fibers of 𝑓.
In the case of type 𝐼 singularities, one can define the first half
of the homotopy 𝐻𝑡 = (𝜉𝑡, 𝜂𝑡) for 0 ≤ 𝑡 ≤ 1

2
by

𝜉𝑡 =
𝜉((1 − 2𝑡)𝑥, (1 − 2𝑡)𝑦)

1 − 2𝑡
, 𝜂𝑡 =

𝜂((1 − 2𝑡)𝑥, (1 − 2𝑡)𝑦)
1 − 2𝑡

.

Then 𝜉0 = 𝜉 , 𝜂0 = 𝜂, and
(𝜉1/2, 𝜂1/2) = (𝑎𝑥, 𝑏𝑦)

where 𝑎, 𝑏 ∈ ℂ satisfy 𝑎𝑘𝑏ℓ = 1. Since �̂� preserves the con-
nected components of {𝑥𝑘𝑦 ℓ = 1}, the pair (𝑎, 𝑏) is in the
same component as (1, 1). A path from (𝑎, 𝑏) to (1, 1) inside
{𝑥𝑘𝑦 ℓ = 1} completes the homotopy.

Moving cycles to smooth fibers cont’d
Using the homotopy 𝐻 one can easily move 1-cycles from 𝑍
to a smooth fiber. Each 1-cycle in 𝑍 corresponds to a period
𝜆 ∈ Λ. Assume 𝜆 admits a homotopy 𝐻 as before. Consider
the path 𝛾 (𝑡) = (𝑡, 𝑡), in 𝐷, which starts at 𝑝 and moves into a
smooth fiber 𝐹sm. The singular square

𝜎 ∶ [0, 1]2 → 𝑀, 𝜎(𝑠, 𝑡) = {
Φ(2𝑡�̃�(𝛾 (𝑠)), 𝛾 (𝑠)) for 𝑡 ≤ 1

2
𝐻2𝑡−1(�̂�(𝛾 (𝑠))) for 𝑡 ≥ 1

2
then moves 𝜆 into 𝐹sm.

𝑡

𝑠

𝛾 𝛾

𝜆 const.

𝛽

Φ 𝐻𝑡

Using more complicated higher-dimensional singular cubes
one can also move higher-dimensional cycles which are ob-
tained by combining multiple periods.

Weights via the characteristic cycle
Theorem 4. If the characteristic cycle Θ𝑖 of 𝐹𝑖 is compact, then

𝑤𝑖 =
𝜒(Θ𝑖)
∫Θ𝑖

𝜔
.

The main ingredients here are of course the classification of
characteristic cycles and the fact that singular tori 𝑍 have
numerically trivial normal bundle in the components of 𝐹𝑖.
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