Coble duality and Kummer fourfolds Pietro Beri (Université de Lorraine) joint work with D. Agostini, F. Giovenzana, Á. Rios Ortiz

COBLE CUBIC AND DUALITY

MAIN OBJECTS: C, A = JC, $C_3 \subset \mathbb{P}^8$, $C_6 \subset (\mathbb{P}^8)^{\vee}$.

Let (A, Θ) be a (very general) principally polarized abelian variety. The map associated to the linear system $|3\Theta|$ is an embedding

 $\phi_{|3\Theta|}: A \hookrightarrow |3\Theta|^{\vee} \cong \mathbb{P}^8$

• (Coble, 1917 - Beauville, 2003). There is exactly one cubic $C_3 \subset |3\Theta|^{\vee}$ containing $\phi_{|3\Theta|}(A)$, singular along $\phi_{|3\Theta|}(A)$ itself.

There is a curve C of genus 2 whose Jacobian is A, $JC \cong A$. The moduli space of rank 3 semi-stables vector bundles over C is $SU_C(3)$.

• (*Dolgachev*, 1996). There is a natural double cover $r : SU_C(3) \longrightarrow |3\Theta|$, ramified along a sextic C_6 .

• (*Dolgachev*, 1996). **QUESTION**: is $C_6 \subset |3\Theta|$ projectively dual to $C_3 \subset |3\Theta|^{\vee}$?

• (*Ortega*, 2005 - Nguyen, 2007). **YES!** The image of C_3 via the associated Gauss map is indeed C_6 .

$$|3\Theta|^{\vee} \supset \mathcal{C}_3 \xrightarrow{Gauss} \mathcal{C}_6 \subset |3\Theta|^{\vee}$$

And the story is not finished yet...

HOW ABOUT $\operatorname{Kum}_2 A$??

GOAL: study projective models of Kummer fourfolds. Very few are known!

Kum₂ *A* admits two big+nef, non-ample divisors [Y]: $D_1 = \Theta_2$ and $D_1 = 2\Theta_2 - \delta$, whose square is minimal ($q_{BB}(D_1) = q_{BB}(D_2) = 2$).

THE LINEAR SYSTEM D_1 [BMT]

There is a natural map $f : \operatorname{Kum}_2 A \to SU_C(3)$. The composition with the double cover is identified with $\phi_{|D_1|}$,

 $\phi_{|D_1|} = r \circ f : \operatorname{Kum}_2 A \to \mathcal{SU}_C(3) \to |3\Theta| \cong |D_1|^{\vee}.$ (2)

(1)

(3)

The image of the Kummer fourfold lies in the sextic C_6 !

THE LINEAR SYSTEM D_2

Our main tool is the action of $A[3] \cong \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^4$ (the 3-torsion points of A) over $\operatorname{Kum}_2 A$. The 3-torsion A[3] acts trivially on the second cohomology group of $\operatorname{Kum}_2 A$ and the maps associated to the linear systems $|D_2|$ and $|D_1|$ are equivariant with respect to the action of A[3].

Proposition 1. (A-GR) The linear system $|D_2|$ is base-point-free.

The 3-torsion acts also over $|3\Theta|$. Both actions lifts to the action of a central extension H_3 on $H^0(A, 3\Theta)$ and $H^0(\text{Kum}_2 A, 2\Theta_2 - \delta)$,

 $1 \longrightarrow \mu_3 \longrightarrow H_3 \longrightarrow A[3] \longrightarrow 1.$

In both cases, it is the the so-called *irreducible Schrödinger representation* (classical for A, very recently proved by O'Grady for Kum₂ A [OG]). We are able to make O'Grady's result effective, by finding a copy of A inside the image of Kum₂ A.

Proposition 2. (A-GR) The image $\phi_{|D_2|}(\operatorname{Kum}_2 A)$ contains A, projectively embedded via the linear system $|3\Theta|$. This yields a natural identification

 $\phi_{|D_2|} : \operatorname{Kum}_2 A \longrightarrow |D_2|^{\vee} \cong |3\Theta|^{\vee}.$

QUESTIONS. Pulling together (1), (2) and (3): Does the Gauss map send $\phi_{|D_2|}(\operatorname{Kum}_2 A)$ to $\phi_{|D_1|}(\operatorname{Kum}_2 A)$? Does $\phi_{|D_2|}(\operatorname{Kum}_2 A) \subset C_3$?

DUALITY

Theorem 1. (A-GR) The composition of $\phi_{|D_2|}$ with the Gauss map associated to C_3 is $\phi_{|D_1|}$,

 $\phi_{|D_2|}(Kum_2(A)) \xrightarrow{Gauss} \phi_{|D_1|}(Kum_2(A))$

ONE STEP FURTHER

Corollary 1. (A-GR) $\phi_{|D_2|}(\operatorname{Kum}_2 A)$ is contained in the cubic C_3 . **Corollary 2.** (A-GR) The map $\phi_{|D_2|}$ is birational onto its image.

Some interesting upcoming questions:

• Let (X, H) be a general deformation of $(\operatorname{Kum}_2 A, D_2)$. Is $\phi_{|H|}$ still birational?

- Can we find explicit equations for $\phi_{|D_2|}(Kum_2(A))$?
- Can we describe the image in $|3\Theta|$ to the point of having a good grasp on the image of $\phi_{|H|}$ as above?

REFERENCES

- [B] Beauville, A., *The Coble hypersurfaces*. C. R. Math. Acad. Sci. Paris, 337(3):189–194, 2003.
- [BMT] Benedetti, V., Manivel, L., Tanturri, F., *The geometry of the Coble cubic and orbital degeneracy loci*. Math. Annalen 379 (2021), 415-440.
- [C] Coble, A., *Point sets and allied cremona groups iii*. Trans. Amer. Math. Soc., 18:331–372, 1917.
- [N] Nguyen, Q. M., Vector bundles, dualities and classical geometry on a curve of genus two. Internat. J. Math., 18(5):535–558, 2007.
- [O] Ortega, A. On the moduli space of rank 3 vector bundles on a genus 2 curve and the Coble cubic. J. Algebraic Geom., 14(2):327–356, 2005.
- [OG] O'Grady K. G., *Theta groups and projective models of hyperkahler varieties* arXiv:2204.09582 (2022).
- [Y] Yoshioka K., *Bridgeland's stability and the positive cone of the moduli spaces of stable objects on an abelian surface,* Development of moduli theory Kyoto 2013, Mathematical Society of Japan, 2016, pp. 473–537.