NON-SYMPLECTIC AUTOMORPHISMS OF PRIME ORDER OF OG10 AND CUBIC FOURFOLDS

Simone Billi – simone.billi@edu.unige.it – joint work with Annalisa Grossi

Department of Mathematics – University of Genova (Italy)

Kyoto 2024 – September 17-September 20

Abstract

We give a lattice-theoretic classification of non-symplectic automorphisms of prime order of irreducible holomorphic symplectic manifolds of OG10-type. We determine which automorphisms are induced by a non-symplectic automorphism of prime order of a cubic fourfold on the associated Laza-Saccà-Voisin manifolds, giving a geometric and lattice-theoretic description of the algebraic and transcendental lattices of the cubic fourfold. As an application we discuss the rationality conjecture for a general cubic fourfold with a non-symplectic automorphism of prime order.

Non-symplectic automorphisms on manifolds of OG10-type

An irreducible holomorphic symplectic (IHS) manifold X is a compact Kähler manifold such that • $\pi_1(X) = \{ \text{id} \},$

Let Y be a cubic fourfold and $U \subset (\mathbb{P}^5)^{\vee}$ the open set parametrizing the smooth hyperplane sections of Y. Consider the fibration

$J_U(Y) \to U$

whose fiber over a hyperplane H is give by the intermediate Jacobian of the hyperplane section

LSV manifolds

• $\mathrm{H}^2(X, \Omega^2_X) \cong \mathbb{C}\sigma_X$ with σ_X a symplectic form,

it is called of OG10-type if it is deformation equivalent to O'Grady's ten dimensional example [5].

An automorphism $f \in Aut(X)$ is called symplectic if $f^*(\sigma_X) = \sigma_X$, it is called non-symplectic otherwise. Similarly, if Y is a smooth cubic fourfold, an automorphism $f\phi \in Aut(Y)$ is called symplectic if $\phi^*(\sigma_Y) = \sigma_Y$ and non-symplectic otherwise, where $\mathbb{C}\sigma_Y \cong \mathrm{H}^1(Y, \Omega_Y^3)$.

The lattice of OG10 manifolds

Let X be a manifold of OG10-type, then there is the following lattice isometry

 $\mathrm{H}^2(X,\mathbb{Z}) \cong \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 3} \oplus \mathbf{A}_2(-1) =: \mathbf{L}$

where $H^2(X,\mathbb{Z})$ is endowed with the Beauville-Bogomolov-Fujiki form. The lattice L has a unique embedding in the unimodular lattice

 $\mathbf{\Lambda} := \mathbf{E}_8(-1)^{\oplus 2} \oplus \mathbf{U}^{\oplus 5}$

with orthogonal complement isometric to A_2 .

The lattice of smooth cubic fourfolds

Let $Y \subset \mathbb{P}^5$ be a smooth cubic fourfold, then the lattice $\mathrm{H}^4(Y,\mathbb{Z})$ given by the Poincaré pairing is unimodular, more precisely there is an isometry

 $\mathrm{H}^4(Y,\mathbb{Z}) \cong [1]^{\oplus 21} \oplus [-1]^{\oplus 2}.$

Let $\eta_Y \in H^4(Y,\mathbb{Z})$ be the class of a hyperplane section and let $H^4_p(Y,\mathbb{Z})$ be its othogonal complement, then there is an isometry

 $\operatorname{H}_{n}^{4}(Y,\mathbb{Z}) \cong \mathbf{U}^{\oplus 2} \oplus \mathbf{E}_{8}^{\oplus 2} \oplus \mathbf{A}_{2} =: \mathbf{F}.$

 $Y_H = Y \cap H$. Consider $J_U^t(Y) \to U$ the fibration of twisted intermediate Jacobians.

Theorem 4 (Laza-Saccà-Voisin, Voisin). *There are compactifications* $J(Y) \to \mathbb{P}^5$ and $J^t(Y) \to \mathbb{P}^5$ \mathbb{P}^5 of $J_U(Y) \to U$ with J(Y) and $J^t(Y)$ of OG10-type.

The manifold J(Y) is called LSV manifold and $J^t(Y)$ is called twisted LSV manifold. We have a lattice $\mathbf{U}_Y \subseteq \mathrm{NS}(J(Y))$ isometric to U and a lattice $\mathbf{U}_Y^t \subseteq \mathrm{NS}(J^t(Y))$ isometric to U(3).

Induced action on the LSV manifolds

Let $\phi \in Aut(Y)$ be an automorphism of the cubic fourfold, then ϕ is the restriction of a linear transformation of \mathbb{P}^5 , this induces an action on the hyperplane sections of the cubic fourfold and hence on the fibration $J_U(Y) \rightarrow U$. There are induced birationalities

$f \in \operatorname{Bir}(J(Y)), f^t \in \operatorname{Bir}(J^t(Y)).$

Proposition 5. Let Y be a general cubic fourfold with a non-symplectic automorphism of prime order $\phi \in Aut(Y)$, then the induced birational transformations extend to automorphisms $f \in Aut(Y)$ $\operatorname{Aut}(J(Y)), f^t \in \operatorname{Aut}(J^t(Y)).$

The twisted LSV

There is a Hodge isometry

The classification for OG10

An isometry of the lattice L can be extended to an isometry of the lattice Λ , which is unimodular. In [1], the authors give numerical criteria for prime-order isometries on unimodular lattices.

Theorem 1. We classify all the pairs $(\mathbf{L}^f, \mathbf{L}_f)$ of invariant and coinvariant lattices for a nonsymplectic automorphism of prime order $f \in Aut(X)$ with X of OG10-type.

We recall that if X is general of OG10-type with an non-symplectic automorphism $f \in Aut(X)$, then we have $\mathrm{H}^{1,1}(X,\mathbb{Z}) \cong \mathbf{L}^f$.

The classification for cubic fourfolds

Cubic fourfolds with an automorphism of prime order are classified in [2], the possible nonsymplectic automorphisms have order two or three.

- ϕ_2^1 : p = 2, $F = L_3(x_0, \dots, x_4) + x_5^2 L_1(x_0, \dots, x_4)$,
- ϕ_2^3 : p = 2, $F = L_3(x_0, x_1, x_2) + x_0L_2(x_3, x_4, x_5) + x_1M_2(x_3, x_4, x_5) + x_2N_2(x_3, x_4, x_5)$,
- ϕ_3^1 : $p = 3 F = L_3(x_0, \dots, x_4) + x_5^3$,
- ϕ_3^2 : p = 3, $F = L_3(x_0, \dots, x_3) + M_3(x_4, x_5)$,
- ϕ_3^5 : p = 3, $F = L_3(x_0, x_1, x_2) + M_3(x_3, x_4) + x_5^3 + x_3x_5L_1(x_0, x_1, x_2) + x_4x_5M_1(x_0, x_1, x_2)$,
- ϕ_3^7 : p = 3, $F = x_2 L_2(x_0, x_1) + x_3 M_2(x_0, x_1) + x_4^2 L_1(x_0, x_1) + x_4 x_5 M_1(x_0, x_1) + x_5^2 N_1(x_0, x_1)$

$\mathrm{H}^{4}(Y,\mathbb{Z})_{prim}(-1) \cong (\mathbf{U}_{Y}^{t})^{\perp} \subset \mathrm{H}^{2}(J^{t}(Y),\mathbb{Z}),$

combining this with the Torelli Theorem for cubic fourfold [3] we get the following criterion.

Theorem 6. A manifold X of OG10-type is birational to $J^t(Y)$ for a cubic fourfold Y if and only if:

- there is an embedding $U(3) \subset NS(X)$ such that U(3) contains a vector of divisibility 3 in $\mathrm{H}^2(X,\mathbb{Z}).$
- $\mathbf{U}(3)^{\perp} \subset \mathrm{NS}(X)$ cointains no vectors of square -2 and no vectors of square -6 and divisibility 3.

This leads to the following:

Corollary 7. Let Y be a general cubic fourfold with a non-symplectic automorphism of prime order and consider the induced automorphism on $J^t(Y)$. Then the possible invariant lattices for $J^t(Y)$ are

- $U \oplus E_6(-2)$ or $[2] \oplus [-2] \oplus E_6(-2) \oplus D_4(-1)$ for order two,
- U(3), $U(3) \oplus E_6^*(-3)$, $U(3) \oplus E_6^*(-3) \oplus A_2(-1)$ or $U(3) \oplus E_6(-1) \oplus A_2(-1)^{\oplus 3}$ for order three.

Viceversa, non-symplectic automorphisms or prime order of a manifold of OG10-type with the above invariant lattices are induced by a non-symplectic automorphism on a cubic fourfold.

Questions

$x_4N_2(x_2, x_3) + x_5O_2(x_2, x_3)$

where L_i, M_i, N_i and O_i are homogeneous polynomials of degree *i*.

Recall that if Y is a general cubic fourfold with a non-symplectic automorphism $\phi \in Aut(Y)$, then we have $\operatorname{H}^{2,2}_p(Y,\mathbb{Z}) \cong \mathbf{F}^{\phi}$.

Theorem 2. We classify all the pairs $(\mathbf{F}^{\phi}, \mathbf{F}_{\phi})$ of invariant and coinvariant lattices for a nonsymplectic automorphism of prime order $\phi \in Aut(Y)$ of a cubic fourfold Y.

The case of involutions was already studied by Marquand in [4].

Corollary 3. A general cubic fourfold with automorphism ϕ_3^1 or ϕ_3^5 has no associated K3. A general cubic fourfold with automorphism ϕ_3^2 or ϕ_3^7 has an associated K3 and it is rational.

Question 8 (Laza). What is the maximum order $2^l 3^k$ of a non-symplectic automorphism of a cubic fourfold (and hence of an induced automorphism on the LSV manifolds)?

Question 9. What about cubic fourfolds with a symplectic automorphism? Work in progress with A. Grossi and L. Marquand.

- Simon Brandhorst and Alberto Cattaneo. "Prime order isometries of unimodular lattices and automorphisms of IHS manifolds". In: Int. Math. Res. Not. IMRN 18 (2023), pp. 15584-15638. ISSN: 1073-7928.
- Victor González-Aguilera and Alvaro Liendo. "Automorphisms of prime order of smooth cubic n-folds". In: Archiv der Mathematik 97.1 (2011), pp. 25–37.
- Radu Laza. "The moduli space of cubic fourfolds via the period map". In: Annals of mathematics (2010), pp. 673–711.
- Lisa Marquand. "Cubic fourfolds with an involution". In: Transactions of the American Mathematical Society 376.02 (2023), pp. 1373-[4] 1406.
- Kieran G O'Grady. In: Journal für die reine und angewandte Mathematik 1999.512 (1999), pp. 49–117. [5]