

Construction and classification of finite group actions

- \mathcal{T} : known deformation type of IHS manifolds
- Λ : abstract BBF lattice

UNIVERSITÄT

SAARLANDES

DES

- $Mon^2(\Lambda)$: numerical monodromy group
- $\mathcal{W}^{pex}(\Lambda)$: numerical prime exceptional divisors
- M: associated (extended) Mukai lattice

- L: Leech lattice

Symplectic automorphisms of finite order <u>are stable</u> (L. Giovenzana, Grossi, Mongardi, Onorati, Tari, Veniani, Wandel). \rightarrow Classified for: K3 [Mukai '88],

K3^[2] [Höhn–Mason '19],

OG6 [Grossi-Onorati-Veniani '23],

OG10 [Giovenzana-Grossi-Onorati-Veniani '24], and

K3^[3] [Billi–Muller–Wawak '24].

Symplectic **birational** automorphisms of finite order <u>can be nonstable</u>.

 \rightarrow By studying birational automorphisms of IHS manifolds, need to consider a new s.e.s as shown vertically.

Definition

We call a primitive sublattice $C \subseteq \Lambda$ a **heart** if C is negative definite, $S(C) \curvearrowright C$ is free and $C \cap \mathcal{W}^{pex}(\Lambda) = \emptyset$ where $S(C) := SO^{\#}(C)$ if $\mathcal{T} = \operatorname{Kum}_n$ and $S(C) := O^{\#}(C)$ otherwise.

Proposition 1

There is a bijection

 $\mathsf{Mon}^2(\Lambda) \setminus \{H \leq \mathsf{Mon}^2(\Lambda) \text{ stable symplectic with } H = S(\Lambda_H)\} \xleftarrow{1:1}{\longleftrightarrow} \mathsf{Mon}^2(\Lambda) \setminus \{C \subseteq \Lambda \text{ heart}\}$

 \rightarrow Effective classification possible if Mon²(Λ) = $O^+(\Lambda)$

What are the hearts C for each \mathcal{T} ?

Potential hearts C for known \mathcal{T}

- $\mathcal{T} = \operatorname{Kum}_n : C \hookrightarrow E_8$ primitively. • $\mathcal{T} = \mathsf{OG6}$: $C \hookrightarrow E_8$ primitively, except if $(\mathsf{rk}(C), l_2(D_C)) \in \{(5, 5), (5, 4)\}.$
- $\mathcal{T} = \mathsf{K3}^{[n]}$: $C \hookrightarrow \mathbb{L}$ primitively.
- $\mathcal{T} = \text{OG10}$: $C \hookrightarrow \mathbb{L}$ primitively, except if $(\mathsf{rk}(C), l_3(D_C)) \in \{(r, 25 r) \mid 13 \le r \le 21\}$.

Hearts embedding primitively into \mathbb{L} and E_8 are known and classified [Höhn–Mason '16].

 \rightarrow Need to determine the missing ones for OG6 and OG10.

Theorem 1 [Marquand-Muller '24]

For $\mathcal{T} = OG10$, there exist exactly 185 conjugacy classes of symplectic finite subgroups $H \leq O^{+,\#}(\Lambda)$ such that $H = O^{\#}(\Lambda_{H})$ and Λ_{H} embeds primitively into the Leech lattice.

Regarding some moduli problems, we want to classify (groups of) isometries up to monodromy conjugation. \rightarrow Case with maximal monodromy Mon²(Λ) = $O^+(\Lambda)$ are the easiest to handle.

Symplectic birational automorphisms of IHS manifolds

Stevell Muller

Saarland University (Germany) muller@math.uni-sb.de

Λ	$Mon^2(\Lambda)$	M
$(+2)\mathbb{Z}$	$\{g \in O^+(\Lambda) : \det(g)D_g = \mathrm{id}\}$	$U^{\oplus 4}$
$\mathbb{Z}/2\mathbb{Z}$	$O^+(\Lambda)$	$U^{\oplus 5}$
}	$O^+(\Lambda)$	$U^{\oplus 3} \oplus E_8^{\oplus 2}$
$(-2)\mathbb{Z}$	$\{g \in O^+(\Lambda) : D_g = \pm \mathrm{id}\}$	$U^{\oplus 4} \oplus E_8^{\oplus 2}$
3Z	$O^+(\Lambda)$	$U^{\oplus 5} \oplus E_8^{\oplus 2}$

Strategy

(Theorem 1) [Brandhorst–Hofmann '23] [Nikulin '80]

Theorem 2 [Marquand-Muller '24]

For $\mathcal{T} = \text{OG10}$, there exist exactly 921 conjugacy classes of finite symplectic subgroups $H_s \leq O^+(\Lambda)$ such that $H_s^{\#}$

Stable symplectic to symplectic

action on

$$\xrightarrow{\mu_{\eta}} \mu_{\eta}$$

symplectic form

Lemma 1

Strategy

(Lemma 1) [Kneser '02] [Nikulin '80]

Theorem 3 [Marquand-Muller '24]

 \rightarrow For the remaining $\mathcal{T} = K3^{[n]}$, Kum_n, can unify the study and classify involutions of the associated Mukai lattices?

Nonstable symplectic involutions