
Deep Learning in Simulative Sciences.

The case of the Met-Net2 model

Lucia Guerrisi

Department of Cognitive Science University of Messina, <u>lucia.guerrisi@unime.it</u> SMARTEST 1st workshop, Noto - September 10, 2024

- The DL allows to overcome the traditionally equation-based methods. Given the growing usage of Deep Learning (DL)modelling in scientific contexts traditionally considered simulative:
- Examine whether and to what extent DL modelling can be acknowledged, from an epistemological and methodological point of view, as a **simulative method**.
- Analyse the *reliability* of DL as simulative method

The major difference between Artificial Neural Networks(ANN) (a) and DL (b) is the use of more than three layers of neurons.

Thanks to

Geoffrey Hinton

and

Ruslan Salakhutdinov

ANN studying the human brain – modeling cognitive processes

DL

focus on practical applications – separation from biological neurons

Deep Learning in Science

- The convolutional DL model used for simulate **medical images**(Shen et al., 2017)
- The **predictive maintenance** of the industrial plants (Liu, 2021 Serradilla, 2022)
- The **MetNet-2** (Meteorological Neural Network 2) DL model, the first featuring a forecasting range of up to 12 hours of lead time (Espeholt et al., 2021)

The simulative method (broad sense)

In a *broad* sense, a simulation involves the process of:

designing a mathematical model;

- translating the mathematical model into an algorithm;
- implementing the algorithm in a computational model;

executing the computational model on a machine, the latter often referred to as the artefact;

studying the resulting outputs (usually through visualization).

MetNet-2 and NWP (numerical weather prediction) represent two different approaches to weather forecasting

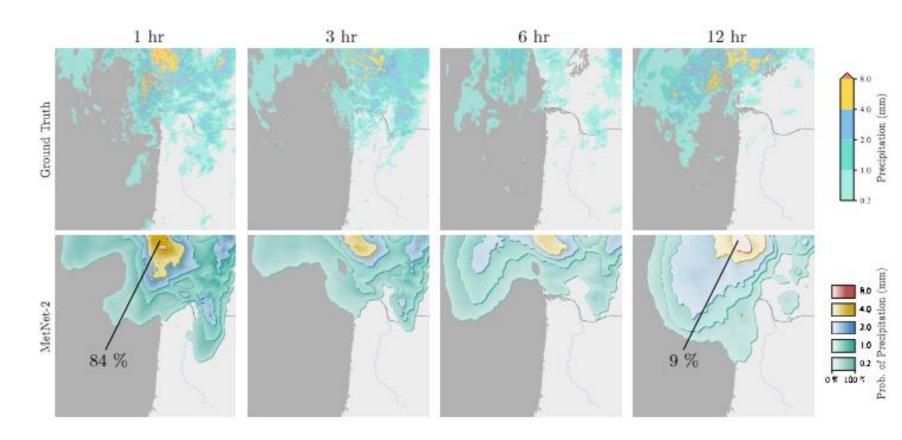
Numerical Weather Prediction models (NWP) consists in physics-based simulations:

the mathematical model consists in a set of differential equations involving the desired atmospheric variables;

the computational model is a computer program aimed at providing numerical solutions to the mathematical model;

► the computational model is implemented in supercomputers, here the artefacts, dislocated around the globe which run continuously and frequently update the forecasts given the latest observation.

The MetNet-2 model


• The Meteorological Neural Network 2 (MetNet-2) is a probabilistic weather forecast model built using DL networks:

MetNet-2 allows precipitation forecasting of 12 hours of lead time, with a 2 minute update frequency.

The training dataset is provided by precipitation measure sobtained through radars dislocated in the Continental United States (CONUS).

The MetNet-2 Model Architecture

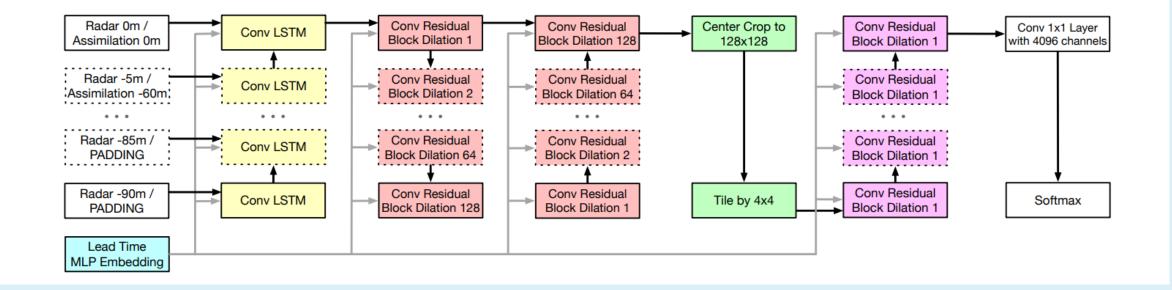
- Input encoder
- Second Convolutional Network
- Crop and Predictions

The varying intensities correspond to MetNet-2's predicted probability for the respective rate of precipitation showing the probabilistic structure of the forecast.

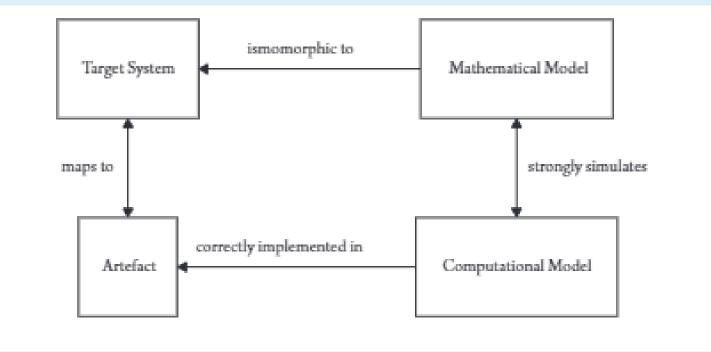
MetNet-2 Model as a Simulative Method (Broad Sense)

- Designing a DL model with its architecture (**the mathematical model**).
- Implementing the DL model into a high-level programming language (the computational model).
- The MetNet-2 model is executed on a computer using a specialized hardware setup: a 16parallel TPU processor, which is **the artefact** used for running the Deep Learning program.
- Studying the resultant data (through visualization).

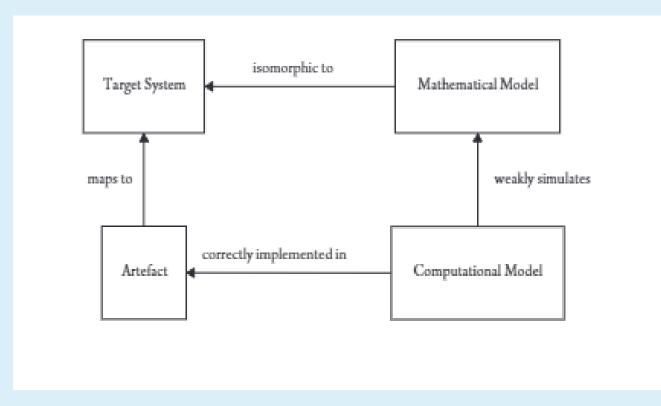
Is There a Real Simulation?

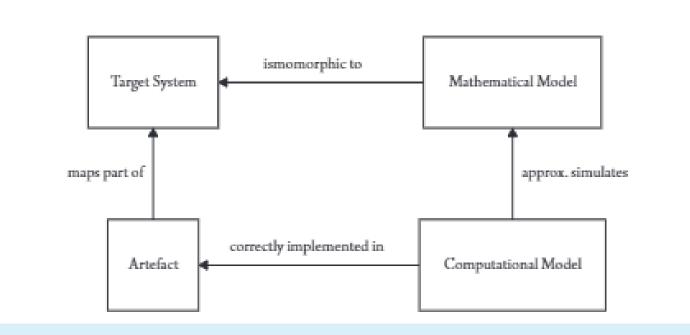

- In the traditional **NWP model**, the initial values of the involved variables represent the system at time t; the computed solutions to the dynamical system allow for examining how the system evolves over time.
- . In the **MetNet-2 model**, no system evolution is represented; rather, the network learns the relationships between initial and final values of the involved variables from the training dataset.

The simulative method (narrow sense)


• A system S provides a core simulation of an object or process B just in case S is a concrete computational devise that produces, via a temporal process, solutions to a computational model [...] that correctly represents B, either dynamically or statically. If in addition the computational model used by S correctly represents the structure of the real system R, then S provides a core simulation of system R with respect to B (Humphreys 2004).

MetNet-2 as a Strong Simulation?

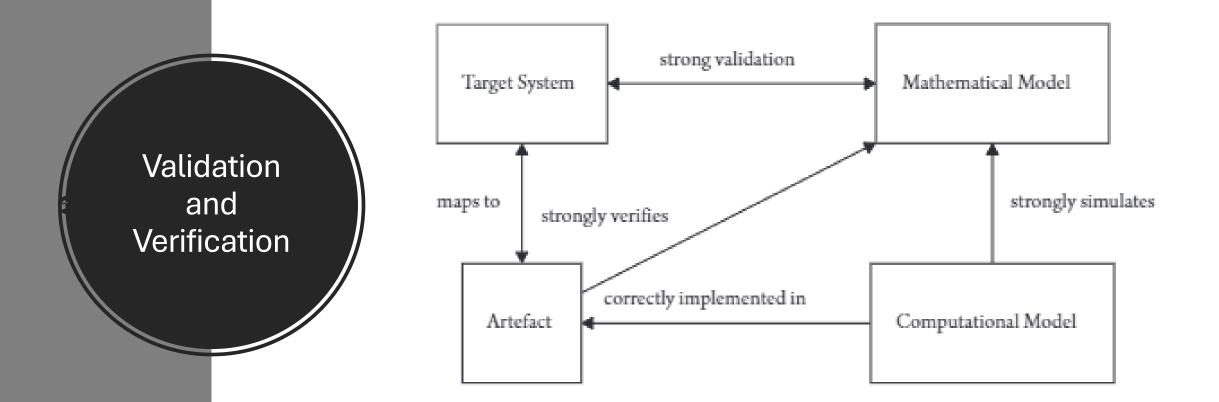

Can we talk about *isomorphism*?


Strong simulation (from Primiero, 2020)

Weak simulation

Approximate simulation

Mathematical and Computational MetNet-2 Model


- The mathematical model in DL simulations already includes its algorithms. The computational model is simply an **implementation** of the model in a high-level programming language (Python).
- Tractability is no longer a primary concern in DL. Computational models are **not approximated** to avoid tractability limitations (as extensively examined by Humphreys 2004).
- The focus in DL simulations shifts to the relationship between the mathematical model and the target system.

Relationship between Mathematical and Computational Models in Deep Learning (DL)

- No Approximation between Models
- Direct Implementation pre-defined algorithms

Python/TensorFlow/Keras Implementation:

- Layers: defined using Keras.layer
- •Activation Functions and Optimizers: direct implementations of mathematical functions.
- •Backpropagation: automatically handled by TensorFlow

Approximate Validation/Verification of MetNet2 models

How the mathematical model relates to the target system?

- Improving on training data
- Performing well on new data
- Overfitting : in model fails on new data

Traditional verification: predefined functions **DL model verification**: functions learned during training

Use Explainability Techniques (XAI) for approximate validation

- Integrated Gradients is an XAI technique that helps understand the influence of variables on the model's predictions.
- MetNet-2 model XAI methods revealed that absolute vorticity
- This finding supports the **quasi-geostrophic theory**

Conclutions

The usage of DL modelling in scientific contexts can be considered an **approximate simulative** method in all those cases wherein structural similarities can be identified through the interpretation of the network.

References

- Choudhary, A., Lindner, J. F., Holliday, E. G., Miller, S. T., Sinha, S., and Ditto, W. L. (2020). Physics-enhanced neural networks learn order and chaos. Psychonomic Bulletin & Review, 27:217-236.
- Espeholt, L., Agrawal, S., S londerby, C., Kumar, M., Heek, J., Bromberg, C., Gazen, C., Hickey, J., Bell, A., and Kalchbrenner, N. (2021). Skillful twelve hour precipitation forecasts using large context neural networks. arXiv, abs/2111.07472.
- Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific c method. Oxford University Press, Oxford (UK).
- Primiero, G. (2020). On the foundations of computing. Oxford University PressShen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. *Annual review of biomedical engineering*, *19*(1), 221-248.
- Serradilla, O., Zugasti, E., Rodriguez, J., & Zurutuza, U. (2022). Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects. *Applied Intelligence*, *52*(10), 10934-10964.
- Liu, Y., Ding, K., Zhang, J., Li, Y., Yang, Z., Zheng, W., & Chen, X. (2021). Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with IV curves. *Energy Conversion and Management*, *245*, 114603.