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Towards artificial enantioselective electrodes

The development of artificial "intelligent" electrodes,
capable to discriminate and quantify the enantiomers of chiral
analytes, particularly of biological and pharmaceutical interest,

is a quite attractive issue in electroanalysis.

Obviously, selectivity towards specular molecules
can only be achieved in an enantiopure environment.

For this aim,
in the last years.

Some examples of the proposed approaches I

Electrodes modified with

Chiral monolayer of self-assembled A-[Os(bpy),L(CD)]" [bpy = 2,2’-bipyridyl,
L = 1,2-bis(4-pyridyl)ethane] on a platinum electrode

Enantioselectivity of Redox Reaction of DOPA at the Gold Electrodes Modified
with a Self-Assembled Monolayer of Homocysteine
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Enantioselective Recognition of Dopa Enantiomers
in the Presence of Ascorbic Acid or Tyrosine
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Some examples of the proposed approaches I

Electrodes modified with molecularly imprinted molecular layers \

Chiral Electrochemical Recognition by Very Thin Molecularly

Imprinted Sol-Gel Films Nanostructured, Molecularly Imprinted, and Template-Patterned

A o . Polythioph for Chiral Sensing and Differentiation
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Some examples of the proposed approaches I11

Oxidation of organic \
molecules on inherently

chiral metal surfaces

Attard, Feliu et al., Langmuir
1999 & other papers in the

\ following years
/ Chiral organic thin-film transistor (OTFT)
T e

A sensitivity-
enhanced field-
effect chiral sensor
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Torsi et al. Nature Materials,
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A target still to be fully achieved

However,

¢ even the most successful attempts at chiral discrimination almost invariably
resulted in the detection of a difference in current intensity between the
signals of the two antipodes of a chiral probe

e the chiral enantioselective layer is in many instances not of general use, but
tailored for a given probe;

® many preparation procedures are very sophisticated/expensive...

e ... and/or the active films fragile.

Desirable features:

® both peak potential separation and current linear dynamic range

e easy, fast and low-cost preparation

e equal availability in both enantiomer configurations

e general applicability to many probes

¢ reproducibility and stability

* possibility of recycling the active surface

e should work on different supports and in different operating media

2. Our approach: inherently chiral electroactive oligomer films
from inherently chiral heterocycle-based monomers

Intrinsic 3D

character
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Intrinsic / O
S

regioregularity in
polymerization

Inherent dissymmetry:

The whole molecule is chiral,

exhibiting a C, symmetry axis. S

Energy barrier is sufficiently \
high to yield stable S

enantiomers.




70°, ~50 kcal mol?

2,2'-bis(2,2’-bithiophene-5-y1)-3,3’-bi-1-benzothiophene

The first example:
BT,T, and oligo-BT,T, films

F. Sannicolo, S. Arnaboldi et al. Angewandte Chemie Int. Ed., 2014, 53, 2623
S. Arnaboldi et al. Chemical Science, 2015, 6, 1706

Electrooligomerization of the BT,T, monomer

Au electrode (EQCM),
CH,Cl, +0.1 M TBAPF,, 0.2V s

Fast and regular film electrodeposition in a wide .
range of conditions, even at low monomer
concentration
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Electrooligomerization yields cyclic oligomers!

Recently, we found by
high resolution MALDI
that the electrodeposited
films mostly consist of
cyclic oligothiophenes, 87,7, Electrochemical or
constituted by 12, 18, 24 Che“(‘li:yalF‘e’éil‘:;‘ﬁ"“ (BT Tgn =25
... conjugated thiophene

units!

oxidation
—_—

n-1

The same cycles also
constitute a large fraction of
the electrodeposited
oligomer films.

The cyclic vs linear
electrodeposited oligomer
ratio appears to depend on
the electrode surface
material (GC>>ITO)

F. Sannicolo, S. Arnaboldi et al., Chemistry 2014

F. Sannicolo, S. Arnaboldi et al., Pat. Appl., M12014A 000948}

Oligomer properties as racemates

The new molecular materials possess an outstanding pool of attractive properties.

Even as racemates:
they idealize conducting polymers

without end, with no defectivity
connected with active terminals

they exhibit very facile,
reversible charge
transfer and very fast
charge transport, as
revealed by CV and EIS

they provide cavities
functionalized with
heteroatoms, which,
like e.g cyclodextrins,
can act as hosts for a
variety of guests

their redox potentials are
convenient for energy
applications, and
modulable by structure

(BTa Ty n=25

design
an appropriate protocol
they are . affords the oligomer films to
, and display

be obtained as self-standing
membranes




Enantiopure inherently chiral electroactive macrocycles

However, chirality can make them even smarter!
Starting from enantiopure monomers,

enantiopure inherently chiral macrocycles are obtained
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Oligomer properties as enantiopure antipodes

Chirality makes the ringlet films even smarter, endowing them with an exceptional
series of additional properties!
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3. Enantiorecognition tests

Potential-Driven Chirality Manifestations and Impressive
Enantioselectivity by Inherently Chiral Electroactive Organic Films
Angew. Chem. Int. Ed. 2014, 53, 2623 —262

Inherently chiral electrodes: the tool for chiral voltammetry,
Chemical Science 6 (2015) 1706

First enantiorecognition tests (1) (Having identical CV pattern on bare Au SPE)

(R)-(+)-N,N-
dimethyl-1-ferrocenylethylamine

(R)-(-)-BT,T, (9)-(+)-BT,T,

electrooligomerization o 52

at low scan rate (0.05 V/s)

in BMIMPE, ionic liquid, Y
on Au screen printed electrodes

(36 cycles, 0.012 M)
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First enantiorecognition tests (II): Racemates and enantiomeric excesses
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Energetics of a binary system can be significantly different
from that of a ternary system
H. Wynberg and B. Feringa, Tetrahedron, 1976, 32, 2831

Enantiorecognition tests with a single ringlet kind

100

Drop coating of
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4. Confirming the enantiorecognition capability
with different probes

Enantiorecognition Capability using chiral probes with different bulkiness and chemical nature
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Enantiorecognition tests towards DOPA probe
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Enantiorecognition tests towards Naproxen, Catechin, Norepinephrine, Ascorbic Acid
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5. Confirming the concept

with chemically different starting monomers

Enantiorecognition tests using pyrrole-based atropisomeric scaffold

electrooligomerization

*100° node angle between moieties
e Possibility to locate the heteroatom in ortho position

*Two homotopic positions available for
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The same concept in all-thiophene materials:
inherently chiral spider-like oligothiophenes

o, a-link: a node/distortion
arises, but the energy
barrier for rotation is low

M. C. Escher

B, B-link: a node/distortion with
high energy barrier fo rotation
— the molecule is chiral

(BB -bithiophene core)

Similar tests on inherently chiral spider-like oligothiophenes
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Coming back to the checklist of desiderable features...

¢ both peak potential separation and current linear dynamic range

e casy, fast and low-cost preparation

¢ equal availability in both enantiomer configurations
e general applicability to many probes

¢ reproducibility and stability

* possibility of recycling the active surface

¢ efficiency on different supports and operating media
Moreover,

*The concept works as well in chemically different oligomers
*The enantiopure film can be also obtained and processed as self-standing membranes

—L
Inherently chiral electroactive films are indeed attractive tools for chiral voltammetry

6. An alternative approach:
Working on an achiral surface
but in an inherently chiral medium




An alternative approach to chiral electroanalysis: chiral working media

As an alternative approach to using a chiral electrode surface, different
chiral media for electrochemical processes have been proposed

Chiral organic solvents

Chiral supporting

electrolytes
Increasingly more ordere

at the electrode/solution
interphase, resulting in
increasing enantioselective

effects

Chiral ionic liquids
(CILs)

Already adopted in organic chemistry,
still to be explored in electrochemistry

Possibly the best:
Inherently chiral ionic liquids
(ICILs)
Inherently Chiral Ionic Liquids
R
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The cationic bibenzimidazolium or bipyridinium moiety responsible for the
CILs physical properties is also part of the stereogenic element responsible for
molecular chirality.
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The most promising family: bicollidinium scaffolds and salts

Synthesis (easy, low cost) of the
bicollidine scaffold
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Breaking news: enantiorecognition tests employing bicollidinium salts!!!

Recently we have confirmed that also these materials hold an impressive
enantiorecognition ability like a
chiralizing gel spread on electrodes.

[ = (R)-Fc and (S)-Fc on bare Electrode

—— (1)-3mE,BF, 0.01 mol dm” in BMIMPF,

— + = (2)-3mE,BF, 0.01 mol dm™ in BMIMPF
(R)-Fc e (S5)-Fc 0.002 mol dm?
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