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A state of a quantum-mechanical system is completely described by a density matrix or a phase-space distribution

such as the Wigner function. The complete family of squeezed states of light (states that have less uncertainty in one
observable than does the vacuum state) have been generated using an optical parametric amplifier, and their density
matrices and Wigner functions have been reconstructed from measurements of the quantum statistics of their electric

fields.

A central theme in many fields of quantum physics is the develop-
ment and application of theoretical and experimental tools for
obtaining information about the states of quantum fields of matter
and radiation. Although the state of an individual particle or system
is unobservable, it is possible to determine the state of an ensemble
of identically prepared systems by performing a large number of
measurements'. Notable experimental succcess has recently been
achieved in generating and determining states of various quantum-
mechanical systems, employing newly developed methods of quan-
tum state reconstruction (QSR)*”. A single mode of light'™",
vibrational modes of a diatomic molecule”® and of an ion in a
Paul trap'®, and the motional state of freely propagating atoms'’
have been characterized completely by determining their density
matrix or, equivalently, their Wigner functions, a quantum-
mechanical analogue of the classical phase-space distribution'®.

A single spatial monochromatic mode of light represents a
harmonic oscillator system for which non-classical states can be
generated very efficiently using the interaction of laser light with
nonlinear optical media. Squeezed states", first generated about ten
years ago®®”, have a reduced uncertainty in a specific quadrature
(for example the amplitude quadrature) compared to that of the
vacuum state. They have typically been characterized by measuring
the variances of the electric field with a homodyne detector. A
complete investigation of their quantum features, in particular their
photon statistics (which at present cannot be measured directly
owing to technical limitations of available photon counters) has
only become possible through the recent development of theoretical
tools for QSR. First experimental investigations analysed coherent
and squeezed vacuum states'®'"'>!%. Here we present a study of all
types of squeezed states of light; squeezed vacuum, amplitude-
squeezed states, phase-squeezed states and states squeezed in an
arbitrary quadrature. For each of these states we construct ‘portraits’
in terms of both the Wigner functions (which are two-dimensional
maps in appropriate phase-space coordinates) and the density
matrices. These portraits contain all that one can know about the
quantum-mechanical properties of the squeezed optical states.

Optical homodyne tomography

How is the quantum state of an optical wave determined? The
measurements to be performed on the state are measurements
of the electric field operator E(f) « X, = Xcosf + Ysinf at all
phase angles 0. Here X = (a+ a')/\/2, Y = (a—a')/\/2i are
the non-commuting quadrature operators of the electric field, with
a and a' being the annihilation and creation operators. X and Yare
analogous to position and momentum operators of a particle in a
harmonic potential. To access experimentally the electric field,
which oscillates with a frequency of w/27 of hundreds of THz, a
balanced homodyne detector” is employed (see Fig. 1). In this
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detector, the signal wave is spatially overlapped at a beamsplitter
with a local-oscillator wave of the same frequency. The two fields
emerging from the beamsplitter are proportional to the sum and the
difference of the signal and local-oscillator fields. By detecting the
difference of their fluxes, the natural oscillation of the signal state
under investigation is converted to a low-frequency electrical signal
i_, which measures X, where 0 is the relative phase between signal
and local oscillator. A large number of measurements of the
observable X; vields the probability distribution Py(x) of its
eigenvalues xp. This procedure is repeated for a set of different
phase angles 6 € [0, 7].

The relation between the measured distributions and the density
operator p is Py(x)) = (x| U'(6)pU(6) | x), where U(§) =
exp( — ifa'a) performs a rotation in phase space. As the optical
state evolves freely with w, U is equivalent to the time evolution
operator with § = wt 4+ constant, and the 6-dependence of P, is
equivalent to the time dependence of the position probability
density of the state (that is, of [Y(x, t)|>, if p = [{) (Y] is a pure
state). Thus, homodyne detection maps out the time evolution of a
harmonic oscillator state. Our measurements (shown below) may
be regarded as an implementation of the oldest example of quantum
dynamics, the motion of a wavepacket in a harmonic potential
studied by Schrodinger in 1926%.
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Figure 1 Experimental scheme for generating bright squeezed light and
squeezed vacuum with an optical parametric oscillator (OPA). The electric field
quadratures are measured in the homodyne detector while scanning the phase 6.
A computer performs the statistical analysis of the photocurrent /i, and recon-
structs the quantum states. EOM, electro-optic modulator; DM, dichroic mirror;
SHG, second harmonic generator; HR, high reflector.
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Of the various methods that have been proposed to reconstruct
the quantum state numerically from the set of measured distribu-
tions Py, two are employed here. The first method makes use of the
fact that the distributions Py(xg) are the marginals of the Wigner
function W(x, y) in rotated coordinates;

Py(xp) = JixW(xo cosO — y,sinf, x,sin @ + y,cosdy, (1)

where y, = — xsinf + y cos 0. Therefore W(x, y) can be obtained
from the set Py by back-projection via the inverse Radon transform’.
The second method furnishes the elements of the density matrix in
the Fock basis via integration of the distributions Py over a set of
pattern functions™*. In contrast to the inverse Radon transform, this
procedure does not involve any filtering of the experimental data
and also allows an estimation of the propagation of statistical errors.

The experiment
The experimental set-up is shown in Fig. 1. Central to the experi-
ment is a monolithic standing-wave lithium-niobate optical
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Figure 2 Noise traces in i, (t) (left), quadrature distributions P,(x,) (centre), and
reconstructed Wigner functions (right) of generated quantum states. From the
top: Coherent state, phase-squeezed state, state squeezed in the ¢ = 48°-quad-
rature, amplitude-squeezed state, squeezed vacuum state. The noise traces as a
function of time show the electric fields’ oscillation in a 4= interval for the upper
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parametric oscillator (OPA)™*, pumped by a frequency-doubled
continuous-wave Nd:YAG laser (1,064 nm). The infrared laser
wave is filtered by a high-finesse mode-cleaning cavity, which
transmits 75% of the laser power. Its narrow linewidth of 170 kHz
suppresses the high-frequency technical noise of the laser, yielding a
shot-noise-limited local oscillator for light powers in the milliwatt
range at frequencies =1 MHz (ref. 13). The pump wave 2w (power
~20-30mW) for the OPA is generated by resonant second
harmonic generation.

In the past OPAs have been frequently used as sources of non-
classical light'****®, Operated below threshold, the OPA is a
source of squeezed vacuum. We studied the field’s spectral comp-
nents around a frequency offset by /27 = 1.5 or 2.5 MHz from the
optical frequency w, to-avoid low-frequency laser excess noise. To
generate bright light (that is, with non-vanishing average electric
field at the frequencies w * 2), we employ the OPA in a dual port
configuration®. A very weak wave split off the main laser beam is
phase-modulated by an electro-optic modulator (EOM) at the
frequency 2 (modulation index 8 < 1) and injected into the

10

four states, whereas for the squeezed vacuum (belonging to a different set of
measurements) a 3« interval is shown. The quadrature distributions (centre) can
be interpreted as the time evolution of wave packets (position probability den-
sities) during one oscillation period. For the reconstruction of the quantum states
a = interval suffices.
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OPA through its high reflector (HR) port. The carrier frequency w is
kept on-resonance with the cavity and the two ‘bright’ sidebands
® * Q are well within the cavity bandwidth /27 = 17 MHz
(HWHM). In the semiclassical picture we may write the Fourier
components at the frequency Q' of the field’s quadratures emitted
from the output mirror as X(2') = E,(Q') + BE,(6(Q' — Q) —

5(Q' + Q)+ X,(2), Y(Q') = Y, (Q"), where § is the Dirac delta-
function, E, is the amplitude of the emitted wave and X,, Y, are the
broad-band quantum fluctuations®. Due to the very small ratio of
HR transmission (<0.1%) to output mirror transmission (2.1%),
the transmitted sidebands and their quantum fluctuations are
strongly attenuated. The quantum fluctuations of the signal wave
inside the resonator originate essentially from the vacuum fluctua-
tions entering through the output coupler. The injected seed-wave
amplitude as well as the fluctuations are modified inside the
resonator by the interaction with the 2w pump wave: the quadrature
fluctuations out-of-phase with the pump are deamplified
(squeezed), the in-phase quadrature fluctuations are amplified.
Similarly, the seed wave is deamplified if it is out of phase, and
amplified if it is in phase, with the pump wave. As the relative phase
¢ between seed wave and pump wave is controlled manually by a
mirror attached to a piezoelectric actuator, deamplified amplitude-
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squeezed light, amplified phase-squeezed light and light squeezed in
an arbitrary quadrature are easily generated. The coherent excita-
tion of the sidebands is controlled coarsely by changing the power of
the seed wave (the photon flux of the carrier E, at the OPA output
port is about 6 X 10°photonss™' = 120pW), fine control is
achieved by varying the modulation strength of the EOM. By
turning the modulation off, we obtain squeezed vacuum, which
has been described in detail previously'>'“. By blocking the OPA
pump wave, we are left with coherent states.

The signal is analysed at a homodyne detector, whose output
current i _ is mixed with an electrical local oscillator ~sin(Q2t + ¢)
phase-locked to the modulation frequency, and then low-pass
filtered with 100 kHz bandwidth. We fix the phase of the electric
local oscillator to cos ¢ = 1, so that the resulting current is;

in(0, ) = (2BE, + X,(Q, 1) — X,(— Q, 1) sinf

)
+(Y,(Q,5)— (Y, (—Q,1t)cosb

where X,(Q, 1), Y ,(Q, t) are the noise fluctuations in a 100-kHz-
wide band centred at (2. By variation of the optical local-oscillator
phase 6, any quadrature of the field difference at w + 2 and w — Q
can be accessed.

The i, data (about 500,000 points per trace) are taken with a
high-speed 12 bit analogue-to-digital converter, while the local-
oscillator phase is swept by 27 in approximately 200 ms. Time traces
of i for coherent and squeezed states are shown in the left column
of Fig. 2. They can be considered to be the experimental counterpart
of the theoretical depictions of squeezed states introduced by
Caves™.

The traces are subdivided into 128 equal-duration intervals
within which the local-oscillator phase is approximately constant.
These individual time traces may be regarded as the quantum
trajectories of a particular quadrature X,. The specific behaviour
of the trajectory is unpredictable; its statistics however contain the
information necessary and sufficient to calculate the quantum state
properties. Experimentally, the statistics are obtained by forming
histograms of 256 amplitude bins for each quantum trajectory and
normalizing the absolute bin width using as reference the distribu-
tion of a vacuum state. The middle column of Fig. 2 shows selected
measured quadrature probability distributions for the generated
states. All distributions are found to be gaussians. This is expected,
as the states are generated from a coherent state with a gaussian
Wigner function via a second-order nonlinear interaction.

The variances of these distributions determine the amount of
squeezing and anti-squeezing. A maximum of —6 * 0.25dB
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Figure 3 Photon number distributions for the states of Fig. 2. Solid points refer to
experimental data, histograms to theoretical expectations. Except for the
poissonian distribution of the coherent state, all distributions are super-
poissonian ((n) <Var(n)). The odd/even oscillations in the photon number
distribution of the squeezed vacuum state are a consequence of the pair-wise
generation of photons. They can also be explained by quantum interference
effects in phase space®’.
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(= 0.25) for the squeezed vacuum mode was detected. For the
bright squeezed light only a maximum amount of squeezing of
—5.2dB (= 0.3) was reached, due to slight phase instabilities
of the seed wave. The anti-squeezing amounted to 12-14dB
(= 15.8-26.9) for the states presented. These values agree with
the results of simultaneous measurements with a spectrum analyser.

Phase-space distributions of squeezed states

Applying the inverse Radon transform yields the Wigner distribu-
tions shown in the right column of Fig. 2. They agree well with the
theoretical expression;

Wi, y) = ﬁ,exp( -Gl b adnd) ) ©

where x = x,cos ¢ + x,, sin ¢, y = — x,sin¢ + x,, cos ¢ are the
phase-space coordinates used in standard textbooks, a and b are
respectively the minimum and maximum standard deviation of the
quadrature fluctuations, and ¢, = 2(E, is the state’s amplitude. The
commonly used depiction of squeezed states as ellipses in phase
space, with half-axes a and b, corresponds to a horizontal section
through the Wigner function. The area of the ellipse is a measure of
the purity of the state, as Trp> = 27 [ [ W(x, y)*dxdy equals 1/ab for
squeezed states (here Tr indicates the trace of a matrix). Trp?
amounted to 1 for the (pure) coherent state and 0.41-0.46 for the
squeezed states of Fig. 2. Their significantly mixed character arises
mostly from loss experienced in the cavity of the OPA (escape
efficiency 0.88) and during propagation and detection (overall
detection efficiency n = 0.94).

The quantum efficiency of the detection system is a critical issue
in the field of QSR. The loss suffered by the quantum state in
propagation and detection is equivalent to a convolution of its
original Wigner function with a gaussian. Thus for a given detection
efficiency 7 only the s-parametrized phase-space distribution func-
tion W(x, y, s) (ref. 18) with s < 1 — (1/9), can be reconstructed®. In
a strict sense the Wigner function itself W(x, y) = W(x, y,s = 0) is
not accessible by tomographical methods, but with our high
detection efficiency our reconstructions yield phase-space distributions
with s = — 0.064, which is very close to the Wigner function. An
additional smoothing, also a convolution with a gaussian, occurs
within the reconstruction algorithm in a filtering procedure with a
quadratic regularization method”. However, its contribution to the
total s-parameter can be made less than — 0.01.

Figure 4 Reconstructed density matrices (absolute values) of three states with
approximately equal amplitude: a, sub-poissonian amplitude-squeezed state with
(ny = 8.9, Var(n) = 4.9; b, coherent state with (n) = 8.4, Var(n) = 8.6; ¢, phase-
squeezed state with (1) = 8.4, Var(n) = 24.6. The bump aroundn = 17,m = 12 for
the amplitude-squeezed state is a characteristic feature, where the matrix
elements change sign.

474

Figure 5 Reconstructed density matrix of the squeezed vacuum state of Fig. 2:
along the diagonal and the near off-diagonals the elements alternate in
magnitude, which can be explained by quantum interference in phase space®.
Odd off-diagonals are zero, owing to the symmetry of the state’s distribution in
phase space, Wx,y) = W(—-x, —y).
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Density matrices of squeezed states
An alternative view of the generated states is provided by their
density matrices p in the Fock basis, because here the state is
described in terms of energy eigenstates, in contrast to the descrip-
tion by field components discussed in the previous paragraph. The
diagonal elements of the density matrix p,,, = p(n), are the occupa-
tion probabilities of the number states |n). Here n is to be
interpreted as the photon flux per unit bandwidth; p(n) is the
probability that an ideal photon counter would register in 1 second
n photons in a 1-Hz-wide spectral band. A state with () photons
corresponds to a photon flux of (n) X 10° photonss™'=~
(n)0.02 pW in the 100-kHz-wide spectral bands centred at w = Q.
Figure 3 shows the photon number distributions for the states
from Fig. 2. As can be seen, a simple rotation of the squeezing ellipse
(with respect to the coherent excitation in phase space) changes the
photon distribution function substantially. Apart from the poisso-
nian distribution of the coherent state, all distributions shown are
strongly super-poissonian, that is, the photon number variance
Var(n) exceeds its mean (n). For amplitude-squeezed light this
seems counterintuitive, as reduced amplitude noise should imply
reduced intensity (photon number) noise. An explanation is given
by the expressions for photon number average and variance for
general (non-minimum-uncertainty) squeezed states™:

1, 2 _ lz
(n):Z(a + b 2)+2.e0
4)

1
Var(n) = %(a4 +v -2+ 3 & (a’ cos’e + b’ sin’g)

For states with a large amplitude e, the variance of the amplitude
quadrature a* cos’¢ + b* sin’¢ indeed determines the characteris-
tics of the photon number distribution. However, in the regime of
low amplitudes, when coherent excitation and quantum noise are
comparable in size, the first terms in equation (4), figuratively the
photon content of the quadrature fluctuations, play a significant
role. We adjusted the experimental parameters to a = 0.43,
b* = 3.3 (reduced squeezing and anti-squeezing) and ¢, = 4.12 to
obtain amplitude-squeezed sub-poissonian light. Its Mandel-Q-
parameter (Var(n) — (n))/(n) = — 0.45 is to our knowledge the
lowest value achieved so far using optical nonlinear frequency-
conversion techniques™.

Figure 4 shows the density matrix up to n, m = 25 for the sub-
poissonian amplitude-squeezed state in comparison with those of a
coherent and super-poissonian phase-squeezed state with approxi-
mately equal average photon numbers. Owing to their reflection
symmetry in phase space, it is always possible to choose a basis in
which the density matrices of these three states in the Fock
representation are real. For the coherent state and the phase-
squeezed state all elements p,, are positive, for the amplitude-
squeezed state the near-diagonals show oscillations. The density
matrix of the squeezed vacuum, Fig. 5, exhibits the most interesting
structure. Its typical ‘chess-board’ pattern is due to the down-
conversion process occurring in the OPA, where photons are created
in pairs. The deviations of the experimental density matrices
presented here from the theoretical ones are of the order of 0.01
per element. Besides statistical effects, this is partly due to
instabilities of the relative phases § and ¢ and to fluctuations in
the pump power.

We have carried out a complete experimental characterization of
the whole family of squeezed states. Average photon number and
orientation of the states in phase space were accurately controlled by
macroscopic experimental parameters. In particular, this flexibility
allowed us to generate amplitude-squeezed light with either sub- or
super-poissonian photon statistics. The quantum state reconstruc-
tions were performed in quasi real-time, with a data acquisition
time of 200 ms and an analysing time of ~20s. Our results are in
very good agreement with theory. Beyond the reconstructions
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presented here, we have investigated the Pegg—Barnett phase dis-
tribution and incoherent superpositions of coherent states™.

Quantum state reconstruction by homodyne tomography has
been developed into a reliable and accurate tool. We believe that this
powerful method will stimulate experimental efforts to generate
new quantum states with non-gaussian statistics using higher-order
nonlinear processes.
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