BN Quantum devices for research in quantum information

Matteo Rossi **University of Turku (FI)** Milano 16 march 2021

- Intro: Gate-based quantum computers and IBM Q
- Tutorial: Typical usage of IBM Q
- Applications:
 - Simulating open quantum systems (collisional models)
 - POVMS (in near-term algorithms)

Introduction

Gate-based quantum computers

A set of basis gates allows for universal quantum computation.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Projective measurement

Gate-based quantum computers

Superconducting circuits

Google rigetti IBMQ

Trapped ions

Photonic

Cloud providers

IBM Q Experience Now IBM Quantum

- Launched in 2016 (a 5-qubit device controlled from the browser)
- Now counts 25 quantum devices from 1 to 65 qubits
- Devices are accessible from the cloud, using the browser or the Qiskit SDK
- Free registration gives immediate access to 8 devices and simulators
- Universities can join the IBM Q Network and get priority access.
- With research proposals (and lots of bureaucracy) access to restricted devices

Yours (12) All (20) Yuantum ser Vices

View the status and details of IBM Quantum's systems and simulators, and track which are available to you.

Superconducting qubits

Transmon qubits

Superconducting microwave resonators

Single-qubit rotations Qubit-qubit bus **Readout operations**

All qubits have different frequencies

This allows to perform entangling gates using cross-resonance

Connectivity layout

Free

\$\$\$ or research agreements

Quantum gate-based devices are characterized by various sources of noise

- Finite qubit coherence times T_1, T_2 (interaction with the environment)
- Gate error rates (imperfect pulses, interaction with env., crosstalk)
- Measurement errors (discrimination errors, imperfect pulses, crosstalk)

max 3.178e-2

min 7.456e-3

ibmq_rome

						_							
Details													
5	Status:	 Online 	Av	g. CNOT Error:	1.391e-2								
Qubits	Total pending jobs:	591 jobs	Av	rg. Readout Error:	2.698e-2							Popdout	
32	Processor type (i):	Falcon r4	Av	/g. T1:	82.44 us	Qubit	Frequency (GHz)	T1 (μs)	T2 (μs)	√x (sx) error	Single-qubit Pauli-X error	assignment	CI
Quantum	Version:	1.3.16	Av	g. T2:	110.52 us							error	
Volume	Basis gates:	CX, ID, RZ, SX, X 4 iobs	Pro	oviders with cess:	2 Providers ↓	Q0	4.969	100.76	81.91	2.371E-04	2.371E-04	3.300E-02	cx0_
Your upcon	ning reservations 0	4 j003			New reservation +	Q1	4.77	69.82	70.9	3.060E-04	3.060E-04	3.330E-02	cx1_ cx1_
Calibration	data			Last	calibrated: an hour ago 🛛 🕁	Q2	5.015	86.34	154.96	5.442E-04	5.442E-04	2.380E-02	cx2_ cx2_
ሌ Map Qubit:	view Graph view	v ⊞ Table view				Q3	5.259	56.68	89.22	3.032E-04	3.032E-04	2.240E-02	cx3_ cx3_
Readout Avg	assignment error 🗸 2.698e-2					Q4	4.998	98.57	155.61	3.035E-04	3.035E-04	2.240E-02	cx4_
min 2.240e-2	2 max 3.330e-2	2											
Connection:				2 3	4								
CNOT er	ror v												
Avg 1.391	e-2												

• •

Quantum volume

depth

• The number of qubits is irrelevant if the depth of the circuit is limited by noise • Limited connectivity effectively increases the depth (qubit swaps required)

Cross, Bishop, Sheldon, Nation, Gambetta Phys. Rev. A 100, 032328

Scaling IBM Quantum technology

Released		In development		Next family of IBM Quantum systems			
2019	9/1/2020	2021	2022	2023	and beyond		
27 qubits Falcon	65 qubits Hummingbird	127 qubits Eagle	433 qubits Osprey	1,121 qubits Condor	Path to 1 millio and beyond Large scale sys		
Key advancement	Key advancement	Key advancement	Key advancement	Key advancement			
Optimized lattice	Scalable readout	Novel packaging and controls	Miniaturization of components	Integration			

IBM Quantum

Tutorial

How to use IBM Q devices

	(i)		Visualizations seed 9448 🗘
	(i)		
Y RX RY U RXX RZZ + Add			<pre>OpenQASM 2.0 ∨ Open in Quantum Lab OPENQASM 2.0; include "qelib1.inc"; qreg q[2]; creg c[2]; h q[0]; cx q[0],q[1]; </pre>
evector \checkmark	í	:	
<pre>π/2 Output state [0.707+0j, 0+0j, 0.707+0j] 3π/2</pre>			

			Q	isk	cit		0	qiskit see re	0.24.0) note
							0	per	ו-S	òC
							Q	uar	ntu	r
							D	eve	lo	р
	Qisl with circ	kit <u>[kiss-kit</u> n quantum uits and ap	t] is an ope computer oplication	en source s s at the le modules.	SDK for wo	orking es,	Qiskit workin pulses Get	[quiss-kit] is ng with quar , circuits an started	s an oper ntum com id applica	n sou nput atior
_										

characterization (e.g. tomography) and noise mitigation

Qiskit

Ignis

circuits, pulse schedules, hardware interf., quantum info and visualization

Qiskit textbook https://qiskit.org/textbook

 \leftarrow

Learn Quantum Computation using Qiskit

What is Quantum?

- 0. Prerequisites
- 1. Quantum States and Qubits
- 1.1 Introduction
- 1.2 The Atoms of Computation
- 1.3 Representing Qubit States
- 1.4 Single Qubit Gates
- 1.5 The Case for Quantum

2. Multiple Qubits and Entanglement

- 2.1 Introduction
- 2.2 Multiple Qubits and Entangled States
- 2.3 Phase Kickback
- 2.4 More Circuit Identities
- 2.5 Proving Universality
- 2.6 Classical Computation on a Quantum Computer

3. Quantum Protocols and Quantum Algorithms

- 3.1 Defining Quantum Circuits
- 3.2 Deutsch-Jozsa Algorithm
- _____

Learn Quantum Computation using Qiskit

Greetings from the Qiskit Community team! This textbook is a university quantum algorithms/computation course supplement based on Qiskit to help learn:

- 1. The mathematics behind quantum algorithms
- 2. Details about today's non-fault-tolerant quantum devices
- 3. Writing code in Qiskit to implement quantum algorithms on IBM's cloud quantum systems

_	Rea	nd the te	xtbook		>		
	bar. A						

a	

Qiskit Hello world!

from qiskit import IBMQ, Aer, execute
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit

pip install qiskit

Simulation:

```
job = execute(qc, Aer.get_backend('qasm_simulator'), shots=8192)
result = job.result()
result.get_counts()
```


Qiskit Hello world! Execution on a real device

IBMQ.load_account()

provider = IBMQ.get_provider(hub='ibm-q-research', group='uni-turku-4', project='main') backend = provider.get_backend('ibmq_bogota')

job = execute(qc, backend, shots=8192)

job.status()

<JobStatus.DONE: 'job has successfully run'>

Improving your results

ibmq_bogota

Improving your results

Improving your results **Measurement noise mitigation**

Prepares all 2^n bitstrings and measures them

. . .

```
## Mitigation
# Import measurement calibration functions
from giskit.ignis.mitigation.measurement import (complete_meas_cal,
                                                  CompleteMeasFitter)
meas_calibs, state_labels = complete_meas_cal(qr=qr,
                                              qubit_list=range(5),
                                              circlabel='mcal')
```

calib_job = qiskit.execute(meas_calibs, backend=backend, shots=8192)

Improving your results Measurement noise mitigation

Applies the inverse of the confusion matrix to the results

meas_filter = meas_fitter.filter
mitigated_result = meas_filter.apply(result)

For short circuits the readout error is quite relevant!

n-qubit tomography **Reconstruct the quantum state** ρ

Tomography

from qiskit.ignis.verification.tomography import state_tomography_circuits from qiskit.ignis.verification.tomography import StateTomographyFitter

Construct the tomography circuits by passing the initial circuit *# and a list of the qubits of interest* tomo_circuits = state_tomography_circuits(qc, [qr[0], qr[1]])

The fitter takes the result of the list of tomography circuits # and reconstructs the density matrix using maximum likelihood tomo_fitter = StateTomographyFitter(result, tomo_circuits) rho = tomo_fitter.fit()

Also process tomography!

Simulation

Experiment

Fidelity: 0.92

Take home messages

- Noise and connectivity layout pose limitations to the size of circuits
- **Do not trust the compilers!** They are still rudimentary
- Handmade short circuits that take into account the connectivity layout can give good experimental resuts
- qiskit.ignis gives tools such as measurement noise mitigation and state and process tomography to improve and analyze the results

Pulses

- Access to higher energy levels $|0\rangle$, $|1\rangle$, $|2\rangle$, ...
- Studying qubit-cavity interaction with JC Hamiltonians
- Characterizing qubit noise, frequency etc.
- Might be very interesting for projects in open quantum systems, metrology, parameter estimation...
- Tutorials on the giskit textbook

Example applications

Simulating open quantum systems

Amplitude damping

Depolarizing channel

García-Pérez, Rossi, Maniscalco npj Quantum Information 6, 1 (2020)

Simulating open quantum systems

1st submission

resubmission

Collisional models

García-Pérez, Rossi, Maniscalco npj Quantum Information 6, 1 (2020)

Collisional model

- IBM introduced conditional qubit resets in Nov 2020.
- An X gate is applied if the qubit is measured in $|1\rangle$
- We can reset the state of neighbouring ancillas: no need to swap them with fresh ones!
- We are trying to use this for multipartite collisional models

Marco Cattaneo, De Chiara, Maniscalco, Zambrini, Giorgi, arXiv:2010.13910

Collisional models

Noiseless simulation

Noisy simulation

ibmq_bogota

Marco Cattaneo et al. (in progress)

Collisional models

Noiseless simulation

ibmq_toronto

Marco Cattaneo et al. (in progress)

- Generalized measurement with positive-valued operators $\{\Pi_0, \Pi_1, \Pi_2, \Pi_3\}$
 - If they span $\mathscr{L}(\mathscr{H})$ it is informationally complete (d^2 operators)
- Can be implemented using dilation

$$\sum_{i} \Pi_{i} = \mathbb{I}$$

$$\begin{array}{c} 0 \rightarrow TT_{c} \\ 1 \rightarrow TT_{c} \\ 1 \rightarrow TT_{2} \\ - \rightarrow TT_{3} \end{array}$$

$$\{\Pi_i(\overrightarrow{\alpha})\}\longleftrightarrow U(\overrightarrow{\alpha})$$

POVMs and VQE

$\lambda_{\min} \leq \lambda_{\theta} \equiv \langle \psi(\theta) | H | \psi(\theta) \rangle$

- Hybrid quantum-classical algorithm:
 - Quantum computer: state preparation and measurement
 - Classical computer: parameter optimization

Variational Quantum Eigensolver: find an approximate ground state energy

POVMs and VQE

We evaluate the expectation value of the energy

$$\langle H \rangle_{\psi(\theta)} = \sum_{k} c_k \langle P_k \rangle_{\psi(\theta)}$$

and hence the number of shots required to reach chemical accuracy

Solutions: grouping of Pauli strings that can be measured at once (with marginalization), machine learning, etc...

Measurement problem: the number of Pauli strings to be measured grows very badly with the size of the Hamiltonian,

POVMs and VQE

Our proposal: perform local IC-POVM on each qubit

The expectation value of the energy is simply a Montecarlo sampling

Moreover, we have informationally complete data (useful for e.g. partial tomography, quantum subspace expansion etc.)

The POVM operators can be optimized to increase the precision!

 $W_{\overrightarrow{m}}$ is the corresponding weight in H (can be calculated efficiently)

POVMs and VQE Results

Gradient-optimized IC-POVM beats state of the art Pauli grouping

Recap

- Introduction to the limitations of superconducting quantum devices
- How to get the best results from IBM Q devices
- Two research examples in OQS and mesurements
- The devices improve fast. Things that may not work now may work in a few months
- New possiblities offered by the pulse level control

Thank you!