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Interferometry of the intensity fluctuations in light

I. Basic theory: the correlation between photons
in coherent beams of radiation

By R. HANBURY BrROWN
Jodrell Bank Experimental Station, University of Manchester

AND R. Q. Twiss
Division of Radiophysics, C.8.1.R.0., Sydney, Australia

(Communicated by A. C. B. Lovell, F.R.S.— Received 15 November 1956—
Revised 23 May 1957)

It is shown by a quantum-mechanical treatment that the emission times of photoelectrons at
different points illuminated by a plane wave of light are partially correlated, and identical
results are obtained by a classical theory in which the photocathode is regarded as a square-
law detector of suitable conversion efficiency. It is argued that the phenomenon exemplifies
the wave rather than the particle aspect of light and that it may most easily be interpreted as
a correlation between the intensity fluctuations at different points on a wavefront which
arise because of interference between different frequency components of the light.

From the point of view of the corpuscular picture the interpretation is much less straight-
forward but it is shown that the correlation is directly related to the so-called bunching of
photons which arises because light quanta are mutually indistinguishable and obey Bose—
Einstein statistics. However, it is stressed that the use of the photon concept before the
light energy is actually detected is highly misleading since, in an interference experiment, the
electromagnetic field behaves in a manner which cannot be explained in terms of classical
particles.

The quantitative predictions of the theory have been confirmed by laboratory experi-
ments and the phenomenon has been used, in an interferometer, to measure the apparent
angular diameter of Sirius: these results, together with further applications to astronomy,
will be discussed in detail in later papers.

It is shown that the classical and quantum treatments give identical results when applied
to find the fluctuations in the photoemission current produced by a single light beam, and
the connexion between these fluctuations and the correlation between photons in coherent
beams is pointed out. The results given here are in full agreement with those obtained by
Kahn from an analysis based on quantum statistics: however, they differ from those derived
on thermodynamical grounds by Fellgett and by Clark Jones and the reasons for this
discrepancy are discussed.

1. INTRODUCTION

In this paper, the first of a series on the interferometry of intensity fluctuations in
light, we shall establish theoretically the underlying principle of the technique,
which is that the times of emission of photoelectrons at different points illuminated
by coherent beams of light are partially correlated. The chief application of this
technique is to astronomy, and it has already been successfully tested in a measure-
ment of the angular diameter of Sirius (Hanbury Brown & Twiss 19560). The
existence of a correlation between photons has been denied by some authors
(Brannen & Ferguson 1956) who have stated, in our view wrongly, that it is contrary
to the laws of quantum mechanics. The error appears to have arisen because of a too
literal reliance on the corpuscular picture of light. As Bohr has pointed out, in his

[ 300 ]
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Principle of Complementarity, a particular experiment can exemplify the wave or
the particle aspect of light but not both; thus the interpretation is greatly simplified,
and indeed is much more likely to be correct, if one confines oneself rigidly to the use
of the appropriate language and talks of photons when the energy behaves like
a classical particle but otherwise talks only of waves. In the present paper, as we
shall show, we are dealing essentially with an interference phenomenon which can
be interpreted, on the classical wave picture, as a correlation between intensity
fluctuations due to beats between waves of different frequency; the concept of
a photon need only be introduced at the stage where energy is extracted from the
light beam in the process of photoemission.

This does not mean that one cannot interpret the phenomenon from the cor-
puscular point of view: one can, but only if one is prepared to endow the photons
with properties very different from those of classical particles, and in practice the
corpuscular picture is more of a hindrance than a help to an interpretation of the
phenomenon. Indeed if photons did behave like independent classical particles,
distinguishable one from another and obeying Boltzmann statistics, the correlation
between them would be identically zero. However, photons are not independent
since only states symmetrical between them can occur in nature; thus they obey
Bose-Einstein statistics and must be regarded as mutually indistinguishable.

The connexion between the fact that photons are bosons and the existence of
a correlation between light quanta may be illustrated by the familiar example of
a cavity filled with thermal radiation. In this case, as is well known, the r.m.s.
fluctuations in the number of photons in an elementary cell in phase space are
greater than those predicted by the classical Boltzmann statistics; as Einstein
(1909) pointed out, this excess noise is essentially a wave interference effect, but it
can be interpreted in the corpuscular picture as the so-called ‘bunching’ of photons
(Clark Jones 1953).

In principle this ‘bunching’ of photons could be measured directly if a single
photocathode were illumined by a coherent beam of light, since the fluctuations in
the photoemission current should be slightly greater than the pure noise fluctuations
which would arise if the photoelectrons were emitted completely independently. In
practice the difference between photon and shot noise, which we have called the
excess photon noise, is too small to be detected conveniently with one photocathode
(Fiirth & MacDonald 1947), being swamped by effects such as space-charge
smoothing in the photocell or fluctuations in the multiplication process in a photo-
multiplier. However, the ‘bunching’ can be measured with two separate phototubes,
the cathodes of which lie in the same cell in phase space or, in other words, are
illumined by coherent beams of light.t In this arrangement the shot noise currents,
the space-charge smoothing effects and the multiplication noise in the two photo-
tubes are uncorrelated, and thus the small correlation between the fluctuations in
thetwo currents can be detected if the observations are carried out overasufficiently
long time. This correlation can only arise if there is a corresponding correlation in the

1 The connexion between the extent, in real space, of an elementary cell in phase space and
the volume over which a light beam may be regarded as coherent is not perhaps self-evident
and it is therefore examined in appendix I.
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time of emission of photoelectrons from the two cathodes, and it follows that this
latter phenomenon is related to the fact that photons obey Bose—Einstein statistics.
It is of course possible, by means of quantum statistics, to develop the theory given
in this paper entirely in terms of the particle picture, as has been done by Kahn
(1957); however, we have chosen an alternative approach which emphasizes that
the correlation between photons is essentially an interference effect related to the
wave picture rather than to the corpuscular aspect of light.

Experiments to measure directly the correlation in the arrival times of photons
with coincidence counters have been carried out by Adam, Janossy & Varga (1955)
and, with more sensitive equipment, by Brannen & Ferguson (1956), but with
a negative result. However, as we have pointed out elsewhere (Hanbury Brown &
Twiss 1956¢), under the conditions of these experiments the expected correlation
would have been far too small to be detected. We have carried out independently
(Hanbury Brown & Twiss 1956a) a similar experiment in which we measured the
correlation between fluctuations in the emission currentst of two phototubes,
under conditions where the expected signal to noise ratio was of the order 10to 1, and
we have obtained a positive result in satisfactory quantitative agreement with
theory. However, the detailed interpretation of this experiment will be left to
a later paper of this series since the analysis is complicated by the fact that the light
beam was not fully coherent over the surfaces of the photocathodes. In the present
paper we shall consider only the idealized case of a plane wave of linearly polarized
light in order to present the basic theory in the simplest form.

The phenomenon we are discussing is a general characteristic of an electromagnetic
radiation field and will therefore occur not only at optical but also at radio wave-
lengths. The existence of the effect in the latter case has been demonstrated, impli-
citly, by experiments with an ‘intensity’ interferometer which has been used to
measure the angular diameter of discrete radio sources (Hanbury Brown, Jennison
& Das Gupta 1952). In these experiments energy was extracted from the electro-
magnetic field by two separate aerials, corresponding to the apertures of the photo-
tubes in the optical experiment, and was then rectified by two square law detectors
which correspond to the two photoelectric cathodes. The correlation between the
fluctuations in the output currents of the two detectors was measured and was found
to be equal to the theoretical value as calculated by classical electromagnetic
theory.

The general theory of this radio interferometer has been given elsewhere (Han-
bury Brown & Twiss 1954), but in the rather complex form required for practical
applications to radio-astronomy. To bring out the connexion between the radio and
the optical case we shall first develop a simple classical theory for the correlation
between the intensity fluctuations at different points in space for the idealized case
where the incident radiation field is a plane wave of radio frequency.

+ The correlation was measured in this way, and not with a coincidence counter as in the
experiments of Adam et al. (1955), because the latter technique is not practical for the
measurements on stars to which our work was primarily directed.
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2. THE CLASSICAL THEORY OF THE INTENSITY FLUCTUATIONS
IN A PLANE ELECTROMAGNETIC WAVE

() The intensity fluctuations in o plane wave

Let us assume that the frequency components of the incident electromagnetic
plane wave are confined to a limited region of the radio-frequency spectrum defined

by
V<V <V,

such that V>V —Vy.

If the voltage induced by this radiation field in an aerial of aperture 4 is rectified
in a square-law detector, then the low-frequency fluctuations in the output current
of the detector can be expressed as a sum of the beats between the different radio-
frequency components of the electromagnetic wave and correspond to the intensity
fluctuations in the incident radiation. It is obvious that the amplitude and phase of
these low-frequency fluctuations in the detector output current are the same at any
point on the wavefront of a plane wave: so if signals are picked up by two separate
aerials and rectified in separate square-law detectors, the low-frequency fluctuations
in the two output currents will be perfectly correlated so long as the effects of shot
noise in the detector current can be neglected. The fact that this correlation is .
equally to be expected, on a classical theory, at optical wavelengths appears to
have been overlooked.

To develop this argument in a quantitative form, which will later be compared
with the results obtained by a quantum theory, we proceed as follows. By a suitable
choice of gauge a linearly polarized wave of electromagnetic radiation can be
completely described by a vector potential & with a single component perpendicular
to the direction of propagation. If the observation is of duration 7', this component
can be represented by a Fourier series,

[ee] 2 3 2 .
4= Zq,exp[-;r,ir(t-{-k.x)]+q;“exp[~—;—lf(t-l-k.x)], (2-1)
r=1

where g,, g;; are quantities determining the amplitude and phase of the rth Fourier
component, and the sign of k. x is that appropriate to an inward travelling wave. In
the present case we are assuming that g, is zero except when v, T'<r <v,T.

In a classical theory g, is a complex number such that

* pr /1’2 .
9= (8772V3TA/ 60) (2:2)

where p,/T" is the power flow across unit area perpendicular to the direction of
propagation associated with the rth Fourier component of frequency v,, where

v, =r|T, (2-3)

and where (p,/e,)? is the characteristic impedance of free space. If we define
a quantity n, by the equation
%,.hl’,, = Dp (24)
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then %,/7 may formally be identified with the average number of quanta of energy
hv, crossing unit area in unit time, and we may put

h Mo b 1 .
9 = (m;/\/g;) T eXp1¢r’ (2 5)
where ¢, is the phase of the rth Fourier component of the vector potential at the
wavefront defined by Frk.x = 0. (2-6)

In the limiting case as 7'—>o0, n, is the average number of quanta per unit
frequency bandwidth.

In what follows we shall assume that the phases of the different Fourier com-
ponents are quite uncorrelated so that we may take the values of ¢, to be a set of
independent random variables distributed with uniform probability over the range
0 < ¢, < 27r. This assumption is certainly valid as long as the radiation can be de-
scribed by astationary time series. Even when this is not the case, as when the electro-
magnetic energy is produced in bursts, the phases of the Fourier components of the
radiation received by the observer will be effectively uncorrelated aslong as theregion
of the source over which the intensity fluctuation is coherent is sufficiently small.

The voltage V (¢) produced across the input terminals to the square law detector by
the vector potential defined by (2-1) will be of the form

2mir

V(t)=§1mqrexp[g;—if<t+k.xl>]+ﬂ;*<q;*exp[ kx|, @)

where x; are the co-ordinates of the phase reference point and g, is a complex
quantity such that 8, is linearly proportional to the aerial aperture 4 and to the
aerial efficiency at frequency r/T'.

If we substitute from (2:5) and (2-7) in the equation

i(t) = bV2(t), (2-8)

then the low-frequency components in the output current of the square-law
detector are given by an expression of the general form
i) =eds %™ 1964 ¥ 3, (%Ms)%cos [37-’ (r—s) (t+k.X,)+ 6 —q&l,
r=1 T r>s s=1 T* T "
(2+9)
where e is the electronic charge and e, is defined by the equation

_ BB D (/_@) .
% ="od dmy, N \e) (2:10)

This unconventional and somewhat clumsy symbolism has been adopted so that
a direct comparison may be made with the quantum treatment of the optical case in
which the symbol ¢, will correspond to the photocathode quantum efficiency.

Let us now suppose that the a.c. fluctuations in the detector output are passed
through a filter, with a frequency response #(f) which does not transmit d.c. so that

F(0) =0, (2:11)
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then J(t) the output current of this filter may be written

g0 =4 5 3 () r () expi 00k x + 6,4

r>ss=1

w3 (g exp =i [0 x4, 40 (212

This expression may be simplified if the filter bandwidth is so narrow that
o, m, ~ o g for all values of  and s for which the frequency (r —s)/7 lies in the filter
passband. In this case if we introduce two new indices I, m defined by

r+s)=1, r—s=m, (2-13)
we have that

=4 % 5 U (7) expi] T e+ kx) + 6,6

m=11=T»,
+F*(%Z) exp—i [27—7177@ (t+k.x;)+ (P, — ¢s)]}, (2-14)

where M /T, the highest beat frequency passed by the filter, is very much less than
vy — vy, the bandwidth of the incident radiation, and where ¢,, ¢, are independent
random variables distributed with uniform probability over the range

0<¢,<2m; 0<¢p,<2m.

This result will now be used to derive expressions for the correlation between
intensity fluctuations at different points on the wavefront and for the mean square
value of the intensity fluctuations at a single point.

(b) The correlation between intensity fluctuations at different]
points on the wavefront

Let us consider the case where the plane electromagnetic wave is incident on two
aerials with apertures 4,, 4, and phase reference points x,, x, respectively. If
J (2), J, (¢) are the a.c. output currents of the two low frequency filters, which we shall
assume to have identical characteristics, the correlation C(7,) between these two
currents, averaged over a time interval 7, is given by

C(Ty) = Tf — o) Jy(t) dt, (2-15)
where fy = K.(X;—X,) (2-16)

is the difference in time between the arrival of the incident radiation at the two
aerials, and where 7, may have any value less than 7'.

For our present purposes the quantity of interest is U, the ensemble average of
C(T,) taken over an infinite number of independent time intervals each of length 7},
which is equal to the time average

lim C(7})
Toy—>©

in the present case where the fluctuations are determined by a stationary time series.
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For the classical radio case this calculation is very straightforward, since it is only
necessary to average over the random radio-frequency phases. Terms in C(7p)
which depend on ¢,, ¢, will average to zero and so we have immediately that

; @ o | FonT) |

= 902
C = 2e A1A212%T T m§}=1 T ,

(2:17)

which, as one would expect, is independent of 7,
In the limiting case 7'-> 00, 80 we may replace the sums in (2-17) by integrals on
putting 1/7" = dv when we have that

0 = 2¢2 :“AlAzaz(v) n2(v) dv f : F(f)df. (2-18)

(¢) The mean square value of the intensity fluctuations
If, for the moment, we ignore the effects of shot noise in the current of the square-

law detector, the mean square fluctuations j2 in the output current of the filter may
be defined as the ensemble average of

L™ ey as
ﬁfo (¢) dt,

where J(t) is given by (2-14). Accordingly, j% is given by (2:18) with 4, = 4, = 4.

If a current I, flows in the detector circuit the mean square fluctuations are
increased by the shot noise term j%, which, in the absence of space-charge smoothing
(Rice 1944), is given by

7 = 2el, f REGIRT (219)

Now from (2-9) the incident radiation field increases the average current I in the
square-law detector by ., where

«©
Jy=eA Y an/T, (2-20)
r=1
80, in the limiting case, as 7' o,

J, = f : Ax(v)n(v)dv. (2:21)

The total mean square fluctuations J2(t) in the filtered output current of the
square-law detector due to the incident radiation field are therefore given by

750 = 7% = 20| [ datyney o [ vy | [ ) g, @22

since the noise currents j, and j, are uncorrelated.

The first term in (2-22) represents the shot-noise term due to the discrete nature of
the particles carrying the detector current, while the second term, which is due to
beats between the different Fourier components of the incident radiation field, may
be called the wave interaction noise.

In a typical radio case An(v), which is effectively equal to the number of quanta
extracted from the radiation field by the aerial in unit time and unit bandwidth, is of
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the order of 10%, while ¢(v), which is effectively equal to the average number of
electrons transported from cathode to anode of the square-law detector by the
incidence of a single photon, might be of the order of 108. Under these conditions
42 exceeds j%, by a factor of 1011, so that the contribution of the latter is completely
negligible.

However, at optical wavelengths An(v) is of the order of 10~% in a typical case,
while a(v), the quantum efficiency of the photocathode, is of the order of 10-1.
Under these conditions everything is reversed and the classical theory would lead one
to expect that j3 would be smaller than j% by a factor ~ 10-5. Admittedly it is not
obvious that the quantitative predictions of a classical and determinist wave theory
will be valid for the optical case, but it is shown below that indeed they are and that
the wave interaction noise is simply another name for the excess photon noise, due
on the corpuscular picture to the fact that photons obey Bose—Einstein statistics.

3. THE FLUCTUATIONS IN THE PHOTOELECTRIC EMISSION
DUE TO A PLANE WAVE OF LIGHT

(@) The probability of photoelectric emission by a plane wave of light

In order to calculate the correlation between the times of emission of photo-
electrons at different points of a wavefront and to find the mean square fluctuations
in the photoemission current from a given photocathode, we shall first obtain an
expression for the probability of photoemission in terms of the observables of the
incident beam of light.

In a quantum theory one must regard the quantities g,, ¢¥, which occur in (2-1), as
operators rather than as numbers, and the quantities »,, exp ig,, which correspond
to the action and angle variables of the equivalent harmonic oscillator, are also
operators satisfying commutation relations of the form (Heitler 1954),

N, €Xp (1¢s) —exp (ip,) n, = J,;6xp (l¢s), (3-1)
7, eXp (— i¢s) — exp(— i¢s) Ny = — 87'3 exp (— i¢s)> (3-2)
where 6, is the familiar Kronecker symbol and (3-2) is the complex conjugate of (3-1).
In the standard treatment of the interaction between the matter and radiation
fields, as given by Dirac (1947), one calculates the probability of a transition in
which a photon is absorbed from a specific Fourier component of the radiation field
so that the number of quanta associated with this component changes by unity.
However, this procedure can clearly not be used to analyse an experiment in which
we measure the correlation between the times of arrival of photons at different
points of a wavefront, since, if the time of arrival of a photon is known to an
accuracy A, the uncertainty, AH =hAv, in the energy must satisfy the inequality

AENAt = h, (3:3)

or AvAt = 1. (3-4)
If the particular Fourier component with which a specific photon is to be asso-
ciated is known then Av = 1/T', where 7' is the total observing time, and one has no

knowledge whatever as to the actual moment, in the observation period, when the
photon arrived.
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It follows that the action and angle variables of the radiation field are not
observables for the conditions under which one would look for a correlation between
the arrival times of photons. As we have just shown in the classical analysis of the
radio-frequency case the intensity fluctuations depend upon the beat frequencies
between the different radio-frequency components of the incident radiation rather
than upon the radio-frequency componentsthemselves, while the correlation between
the intensity fluctuations is determined by the amplitudes and relative phases of
these beat frequencies.

When interpreting interference phenomena according to the corpuscular theory
of radiation, it has been emphasized by Dirac (1947) that one must not talk of
interference between two different photons, which never occurs, but rather of the
interference of a photon with itself. This point was originally made for the case of
spatial interference, as in an interferometer, but the arguments on which it is based
are equally valid for temporal interference as in the phenomenon of a beat frequency.
Accordingly, in the corpuscular theory, one must not interpret a beat frequency as
an interference between photons of different energy, but rather as a phenomenon
caused by the uncertainty in the energies of the individual photons which may be
associated with either of the two Fourier components of the radiation field, the
interference of which gives the beat frequency.

It follows that the observables appropriate to the measurement of a beat
frequency are the relative phases of the two Fourier components and the fofal
number of quanta associated with the two components. As is well known (Heitler
1954), these quantities can be measured simultaneously without violating the
uncertainty principle since they are characterized by operators of the form

Ny =+ g and exp 1(¢r - ¢s)

which commute. To prove this we have from (3-1) and (3-2) that

(nr + ns) exp 1(¢r - ¢s) = exp 1(¢r - 9753)7’&7. +exp 1(¢r - ¢s)
+exp 1(¢r - ¢s)ns —exp 1(¢r - ¢9)
= expi(¢r'—¢s) (nr+ns)' (35>

For the specialized purposes of this paper, in which one is concerned simply with
the fluctuations in the cathode currents of photocells, one may therefore discuss the
interaction of the radiation field and the photocathode by a simplified theory in
which the radiation field is characterized by a set of commuting operators and may
therefore be treated classically. This procedure takes no specific account of the fact
that the emission of a photoelectron reduces the total number of photons in the
radiation field by one, but then there is no @ priori knowledge of this number, still
less of the actual distribution of these photons, with energy: all that is known,
from a study of the light source, is the average number of photons arriving in unit
time in unit bandwidth together with the fact that the fluctuations in the number of
incident photons are controlled by Bose—Einstein statistics. Itisthisindeterminacy,
basic to the existence of a correlation between photons, which makes it possible to
use a classical treatment for the radiation and impossible to use the standard
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quantized field treatment of the photoelectric effect: the latter applies rigorously to
an experiment where the energy of the incident photon and the momentum of the
emitted electron can both be known to the maximum accuracy permitted by the
uncertainty principle.

In what follows we shall assume that ¥ represents the total wave function for the
electrons and ions forming the photocathode when acted upon by the incident
radiation field. Then ¥ will be a solution of the Schrédinger equation

oY

i = = (Hy+H,)'Y, (3-6)

where H, is the Hamiltonian for the matter field alone, and H,, the interaction

energy, is of the form
gy Hy = S pvii(x), (37)

where v; is a dynamical variable describing the Ith particle of charge p; at the point
x,, and @(x;) is the vector potential acting on the Ith particle.
From (2-1) and (2-5) the expression for H; may be written

(& LI . )
H = %} AT (ZTTVTT A/’Lﬁ)) {n,zexp (+ig,) exp (2miv,(t + Kk .X;))

r=1 €o

+exp (—ig,)ntoxp (= 2min,(t+k. X))} (3:8)
If the wave function W', satisfying the zero-order equation

ik%’ = H)¥, (3-9)
can be found, one can use a perturbation procedure to determine the first-order
approximation to the exact solution from the equation

ikaTlI;l —H,¥Y, = HY,. (3-10)

For our present purposes there is no need to derive a detailed theory for the
photoelectric effect since quantitative data, such as the dependence of quantum
efficiency on frequency, or the lower limit to the time delay of photoemission, can be
taken from experiment. The important thing to note is that the interaction energy
is linearly dependent upon the vector potential of the radiation field as, therefore,
is the first-order perturbation in the wave function of the matter field. However,
this is no longer the case in the second- and higher-order perturbation terms which
describe processes in which several photons are simultaneously emitted or absorbed.
Such processes are of two kinds. In the first, several photons are involved in the
emission of a single photoelectron, but such events are very rare and can be ignored
without significant error. In the second, two or more electrons are emitted in
a process, in which each photoemission absorbs a single photon, which is clearly
related to the problem of the coherent emission of photoelectrons. In a fully rigorous
treatment one would have to use a higher-order perturbation theory to analyze this
case but we shall make the simplifying assumption that the combined probability of
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obtaining two photoemissions in a very small time interval from areas A4, 4, of
a photocathode is equal to the product of the probability of obtaining a photoemis-
sion from each area separately. Clearly this assumption is valid in the physically
important case when the areas 4; A, belong to quite separate photocathodes
illumined by coherent light beams since the actual processes of photoemission in the
two photocathodes are quite independent. The assumption will also be valid for
a single photocathode as long as the fractional volume over which appreciable
electronic interaction can take place inside the photocathode is very small compared
with unity, a condition that will always be met in practice.

The solution for ¥,, corresponding to the absorption of a photon by an electron
which is then emitted from the photocathode, is of the general form

W—EZ%wPH% n} exp {— 2miv, (t+ k. X,)}, (3:11)

where 7, is a complex quantity involving the /th particle of the matter field
and the rth component of the radiation field. The terms in H, proportional to
exp {2miv, (¢ +K.X;)} do not contribute since they correspond to processes involving
the emission of a photon by the particles of the photocathode.

The probability of a single photoemission in time df is then proportional to

dt | P, dr,

where the integral is taken over the volume of the photocathode and a summation is
made over all the particles of the matter field. If we assume that the photocathode
of area A, is placed normal to the incident plane light wave so that (x;) are the
co-ordinates of the midpoint of the cathode, then

I«xbt)sJ\quQdy (3-12)
is given by an expression of the form
© b
P(x,f) = 3 4% 5 3 (%)
r>s s=1

X COS (277(1)7* - Vs) (t +k 'Xl) + (¢r - ¢s) - (01' - 08))7 (3'13)

where 6,/v,, 0,/v, determine the delays in the emission of a photoelectron after the
absorption of photons of energy Av,, hv, respectively. As the delay in photoemission
is known experimentally (Forrester, Gudmundsen & Johnson 1955) to be much less
than 1015 while, because of the limited amplifier bandwidths and the spread in
transit time through the photomultiplier tube, the beat frequencies which are
significant in a practical case all lie below 108 or 10°¢/s, we may put

0,—0,=0

in (3:13) without introducing significant error.

The quantity c, is simply the cathode quantum efficiency for a normally incident
plane wave of frequency /7' and, as in the analysis for the radio case, we shall assume
that a, is a smoothly changing function of frequency effectively constant over the
maximum beat frequency bandwidth that can arise in practice. It would be difficult
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to establish this assumption experimentally since the cathode quantum efficiency is
normally measured with a light beam of bandwidth large compared to 108c¢/s and
any rapid changes in o, with frequency would be smoothed out, but it is almost
certainly valid in view of the appreciable energy spread of the electrons inside the
photocathode. We shall also assume that the quantity =,, which represents the
average number of quanta of energy crossing unit area in unit time, is a smoothly
varying function of frequency effectively constant over the beat frequency band-
width. As before we now introduce two indices [, m defined by

r+s)y=1, r—s=m,
when P(x,,t) is given by

<) M L, 2
P(xyt) = 3 A4, 7700 124, 3 5 T cos (—’}i‘ <t+k.x1>+<¢r—¢s>), (3:14)
r=1 m=1 l=IL,

a result that can be compared with (2-9).

(b) T'he correlation between fluctuations in the emission currents
of two separate photomultipliers

Let us consider the case where a linearly polarized plane wave of light is normally
incident on two separate photocathodes of areas 4, 4, centred at x,, x, respectively.
We assume that the photomultipliers are followed by bandpass filters with zero d.c.
response, and we shall show that the average value of the correlation between the
a.c. fluctuations in the output currents of these filters is identical with that derived
above for the radio case by a classical deterministic theory.

As before, we take J;(¢), J,(¢) to be the a.c. output currents of the two filters and
we must then calculate C the ensemble average of the integrated correlation defined
by (2-15) and (2-16).

In this case the calculation is complicated by the necessity of averaging over the
number and time of emission of the photoelectrons produced in time 7' as well as
over the radio-frequency phases.

In the development of statistical theory a large number of methods have been
evolved for analyzing problems of this kind. The one that we shall use is based on the
so-called shot noise representation since, though not perhaps the most elegant
procedure, it has the most direct physical interpretation in the present case. This
procedure has been extensively studied by Rice (1944) and frequent use will be made
of his results.

Following Rice we introduce a normalized probability function p(¢ +k.x,) such
that

T
f pt+k.x)) =1, (3-15)
0
which is related to P(x,,¢) by the equation
Np(t+k.x) = P(xy,1), (3-16)
where N = § Ao, = Lyje (3-17)
r=1

and I, is the average photoemission current.
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We now consider a particular time interval of length 7', in which exactly K elec-
trons are emitted from one photocathode and exactly IV electrons from the other, so
that the output currents of the filters following the photomultipliers may be written

K

Ji(t) = X efy(t—1p), (3-18)
k=1
N

Jz(t) = Z egn(t_tn)s (319)
n=1

where ef;,(t—1;,), eg,, (¢ —t,) are the effects produced in the first and second filters by
electrons of charge e emitted at times ¢; and ¢, respectively.
Since the filters do not pass d.c.

7 —war= " ge-tyar-o (3-20)

and it will further be assumed that f,(t), g,,(¢) only differ appreciably from zero in an
interval A which is negligibly small compared with 7'.

In a complete discussion it would be necessary to note that f,(¢) will vary from one
photoemission to another, since it will depend to some extent upon such things as the
emission velocities of the photoelectrons and upon the number and momentum
distribution of the secondary electrons produced at each stage of the photomultipli-
cation process. For the present, however, we shall ignore these effects, which would
considerably complicate the algebra without adding anything significant to a basic
understanding of the phenomenon, though they are of real practical importance
since they impose a lower limit to the resolving time of the electronic equipment.

Accordingly, we shall assume that

Jut—1) =f(t — ), ‘
Inlt—1t,) = g(t~tn).} (3-21)

Finally, we shall limit ourselves to the idealized case
J@)=g(), (3-22)

though to begin with it will be more convenient to retain both symbols.
From (2-15), (3-18) and (3-19) we have that

1 To K N
CMy) =7 | dt X 3 €f(t—ty—ty) gt —Lyy). (3-23)
ToJo  k=1n=1
To find C we must average over the times of emission of the different photo-
electrons, over the total number of photoelectrons emitted in a time interval 7', and
over the phases of the Fourier components of the radiation field so that

/ 1 [T ) © X E N 7
C = AR dt 3 X e?py(K)po(N) X 21 , Flt—to—ty) Pt + K. x,) dty,
0

K=1 N=1 k=1 n=

T
x f Gt Pallan + K. 5,) dt2n> . (324)
0 aver,
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where the angle brackets denote an averaging over the phases of the individual
Fourier components of the radiation field. The quantities

Pt +K.X;), pota+K.X,)

are defined by (3-16), (3-17) and (3-14) and differ only in so far as the areas 4,, 4,and
the position vectors of the photocathodes are not identical. The quantities

P1(K), po(N)

are the probabilities that exactly K and N photoelectrons are emitted in time 7'
from the first and second photocathodes respectively. Rice (1944) has discussed the
generalization of Campbell’s theorem to the case where the probability of a funda-
mental event varies with time and it can easily be shown, along the lines of his
analysis, that

KXexp(—K N¥exp(—N
pu(K) = TR Ry < AR 2D, (3:25)
where K=NT, N=NT, (3-26)

but this result, which will be needed in the next section, is not essential to the present
argument,
If we introduce new time variables 7, 7,,, defined by

T = t=to—lip, Top =1—1y, (3-27)

in place of ¢,;,t,, we see that

5 /1 Tndt . K N7t v
=\7—’ Z 29P1(K)P2( ) 2 Zf f(T) py(E+ K. X —75) d7yy,

k=1 n=1J —(t—t)

Tt
<[ et p k=) dry (329)
-— aver.

As long as t<7T'—A we may replace the integration limits over the variables
T1xs Ton PY (—00, 00) and since AT is, ex hypothesi, negligibly small, the resulting
error is also negligible.

From (3-16), (3-17) and (3-22) we get that

To d o) A °e) 2
e [ 7o S 3 KNy )A—j{fo f<7k)p1<t+k.x2—rk>dvk}>

=1 N=1 aver.

(3-29)

From (3-20) only the time-dependent part will contribute to €, while all the terms
explicitly dependent upon the phases of the individual Fourier components of the
incident light will average to zero.

Hence, since
Kp(K)=K=NT = AT Y an,

! (3-30)
Np2(N) = N = NZT = AzT Zlarnw
=

20 Vol. 242. A,
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we have from (3-16), (3-17) and (3-14) that
A & A, Ayoing % | F(fm) |?

¢ = 2921:%1 D (3:31)

where F(f) = fw f(&)exp[— 2mift] d¢ (3-32)
is the Fourier transform of f(f) and satisfies the integral equation

s = 7 Fipyexpemimas (3-33)

as long as f | f(@)|dt exists: a condition which certainly holds in the present

— o0

case where f(¢) satisfies (3:7) and is zero outside 0 <# < A.

In the limiting case, as 7' o0, (3:31) may be written
T = 2024, 4, J ® () n2(v) dv f C B 24y, (3-34)
0 0

which is formally identical with the correlation for the radio case given by (2-18),
although the physical interpretation of the symbols ot (v), F(f) is different in the two
cases. Thus in the optical case a(v) is simply the quantum efficiency of the photo-
cathode, while in the radio case it depends upon the aerial efficiency and the con-
version characteristics of the square law detector; again, in the radio case F(f) is
simply the frequency characteristic of the filter, while in the optical case it also
depends upon the frequency characteristic of the photomultiplier. However, these
are minor points which do not alter the fundamental conclusion that the correlation
can be found by a purely classical theory in which the photocathode is regarded as
a square law detector of suitable conversion efficiency. It is this result which
provides the basis for our claim that the correlation is essentially an interference
effect exemplifying the wave rather than the corpuscular aspect of light.

(€) The mean square fluctuations in the emission current of a phototube

We have argued above that the excess photon noise and the correlation between
photons in coherent beams are closely related, and to bring this out more explicitly
we shall derive an expression for the mean square fluctuations in the output current
of a bandpass filter following a phototube of cathode area 4 placed normal to an
incident plane wave of light.

Let Jx(t) be the output current in the case when exactly K photoelectrons are
emitted in time 7', then we may use the same shot noise representation in the previous
section and write

K
J(t) = Elef(t—tk), (3+35)
K K K
so that JE(t) = ZEf-t)+2 X 3 eft—t)f(t-t,). (3-36)

The mean square fluctuations J2() can then be found by averaging over the times
of emission of different photoelectrons, over the total number of electrons emitted in
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time 7" and over the phases of the Fourier component of the incident light, so that we

may write ﬁ(t) — ]?v 4 j'go" (3-37)
where j% = <Z e%p( f fAe—t,) p(t+k.xy) dtk\/\ (3-38)
aver,
<2 3 Z f(t——t,c)pl(t—*—k X,) dt;, ft—tn pl(t+k.xl)dtn> , (3-39)
k>n n=1 aver,

where p(t +k.x,) is deﬁned by (3-14) and (3-16) and p(K) is given by (3-25).
We shall now show that j%, the shot noise contribution to the mean square

fluctuations, and j% the wave interaction noise, are given by expressions formally
identical with those derived in §2 for the classical radio case.

Only the time independent part of p(t+k.x,) contributes to j%, since the time
dependent part depends linearly on the random phases of the Fourier components
of the incident light wave and averages to zero.

As long as £, < T'— A we may replace the limits of integration (0, 7') by (— 0, 00)
and, using Parseval’s theorem in the form

|7 poa=[" ppiar=2[ 1m0 (340
where f(¢), F(v) are Fourier mates related by (3:32), (3:33), we get that
j% = 2e2Af v)n(v) dvf | F(f)|2df (3-41)

on substituting in (3-39) from (3-14), (3-16) and (3-25).
Since J,, the average emission current of the photocell, is given by

J, = ed f : a(v) n(v) dv, (3-42)

which is formally identical with (2-20), we see that j isindeed the shot noise current,
for which _ ®
Bo= e[ 1) oy, (3-43)

On the other hand, only the time dependent part of p(t +k.x,) contributes to 52,
the contribution from the time-independent part being zero from (3-20). By a dis-
cussion along identical lines with that given in the previous section it can be shown

that —
=2 f A%2(v) n“(v)dvf | F(f [2df Z ~%M£) (3-44)
But from (3-25) it follows immediately that
o K(EK-1)pK) =1,
3-45
KZI K2 ( )
so that j3= f A202(v) n2(v) dv f | F(f)|2df (3-46)

If (3-46) is compared with (3-34) it will be seen that the two expressions are
identical in the special case 4; = 4,, which establishes the close connexion between
the excess photon noise in a coherent beam of light and the correlation between
Photons in two coherent light beams. It may also be seen that the expression given

20-2
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by (3-46) is identical with the second term in (2-21) which gives the wave interaction
noise for the classical case, so that the excess photon noise due to the so-called
‘bunching’ of photons is the equivalent, in the corpuscular language, of the wave
interaction noise of the undulatory picture. This identification is supported by the
analysis of Kahn (1957) who obtains results identical with ours by a treatment
based directly on the particle model of the incident light; but quite a different
expression for the excess photon noise has been obtained by Fellgett (1949) and by
Clark Jones (1953) who relied on thermodynamical arguments. In our view, how-
ever, thermodynamical considerations cannot be applied to the photoelectric effect
and for this, and other reasons given in appendix I1, we consider that their expression
for the excess photon noise is wrong. If we may anticipate results which are to be
given in a later paper, we may observe that this conclusion is supported by
experimental measurements of the correlation between the fluctuations in separate

phototubes. These results indicate that the ratio j3/2, is approximately proportional
to o, the quantum efficiency of the photocathodes, which is in accordance with the
theory given above, but is incompatible with that of Fellgett (1949) in which
42/72, should be independent; of c.

Ideally, it would be desirable to confirm this conclusion by a direct measurement
of the noise in the photoemission current, but this would be very difficult in practice
since the excess photon noise is so small by comparison with the shot noise proper.
Thus let us consider the case, appropriate to the laboratory experiment reported
elsewhere (Hanbury Brown & Twiss 1956a), in which the light source is square in
shape and subtends an angle 62 at the photocathode. Let us assume the idealized
conditions in which the radiant energy is linearly polarized and concentrated into
a narrow frequency band of rectangular shape centred at 4400 A with an effective
black-body temperature of 7000°K, and that the photocathode has a quantum
efficiency of 209, and a square aperture of width d. If the incident light is to be
effectively a plane wave, the source must be so distant that it is not appreciably
resolved by the photocathode and this sets an upper limit to the product 0d given by
the inequality 6d < 0-2A where A = 4400 A is the mean wavelength of the incident
light. The number of quanta n incident on the photocathode in unit frequency
bandwidth then obeys the inequality » < 3-7 x 10~ so that

G2 <an<0-74 x 1074,

Since this is appreciably smaller than the uncertainties in the measurement of the
shot noise proper, and since we have assumed conditions exceptionally favourable
to the observation of the excess photon noise, we can conclude that the contribution
of the latter to the total noise current in a phototube is quite negligible in a practical
case.

(d) The signal to noise ratio in a measurement of the correlation

To complete the fundamental theory we shall calculate the signal to noise ratio in
a measurement of the correlation. Thus if S is given by

8=0 _<]1, " Tt —t) Jut) dt > . (3-47)
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and N is the r.m.s. fluctuation in C(7") defined by

R S
¥ =iz Jy(t—t) Jo(t) dt ) e, (3-48)
we shall calculate the ratio S/NV.

As we have just seen, the contribution to N? due to the excess photon noise
is negligible in comparison with the contribution from the shot noise proper,
therefore in finding N we can assume that the fluctuations in the emission currents
of the two photocathodes are due to independent shot noise currents. To this order of
accuracy (¢ —1,), Jo(¢) may be represented by the Fourier series

Jy(t—1y) = ZVnCOS(’M ¢“)’ (3-49)

3 = % nmeos (77 =),

where ¢,,, ¥, are independent random variables distributed with uniform probability
over the range 0 to 27.

If the photomultiplying process and the bandpass filters introduce no additional
noise it follows immediately from (3-43), with dv = 1/7" that

= 2e

Doj
k>

(3:50)
192, = 2el, l f’" I,

if the amplitude and phase response of the photomultiplier are included in F(f).
When the gain M of the photomultiplier is large, the noise introduced by the
bandpass filters is normally negligible; but the number of secondary electrons
emitted at a given stage of the photomultiplier is itself a fluctuating quantity, and it
has been shown by Shockley & Pierce (1938) that this effect increases the output
noise power by a term

Mp—1 7
Mp—1) " p=1’ (8:51)
if M > 1, where x is the secondary emission multiplication factor.
It is therefore more realistic to assume that
Fy(f, )
4t et 2 B
(3-52)

. w | B f) |
12, 2eI‘u 7 .

From (3-49) we have immediately that

lf dé Z Y nm COS (2ﬂfnt_¢n COS 27Tfmt_¢m .> ’ (353)

n, m=1




318 R. Hanbury Brown and R. Q. Twiss

where the angle brackets now mean that the expression contained within them is to
be averaged over the random variables ¢,,, ¥,,; since these phases are all mutually
uncorrelated only terms independent of them contribute to N2.

Integrating over time we get that

N2 = < §‘ Yo lm [Sm{ZW(f _.fm (¢n wm)}'i_snl zpm)

nm=1 21 Qﬂ(fn ~Jm)
Sln {277 fn +fm ¢n + %lrm)} +sin ( ¢n + zﬁm) .
27T(fn +f) ] >aver. - (354

If we collect the terms independent of the random phases and proceed to the
limit in which sums are replaced by integrals we get from (3-40) that

o= (ALY Ry pan [T B0 s,

p—1

1 sin®rr(fy +/o) Ty |, sin®n(f,—fo) Ty .
* 2[ m(f1+]2)? " m(f1—f2)? ]’ (3-55)

a result very similar to that derived, for a somewhat different case, by Rice (1945).
The contribution to N? from the term proportional to

sin?(w(fy + fo) To) [m2(f1 + f5)?

is quite negligible in the practical case where the integration time 7j >10%s, and
where the lowest frequency passed by the filter following the photomultiplier tube is
> 108 ¢/s. Furthermore, with 7' > 103, then F(f,) ~ F(f,) for values of f; — f, for which
sin2(w(fy —fo)To) [m%(fL — f2)? differs significantly from zero, and in this case N2 may be
written in the simplified form '

LL)pw\? 1 X

The effective bandwidth of the bandpass filters, which we now assume to be
identical, may be defined by the expression

b, = f() I l2df/Fmax > (3:57)

where | FXf)| = |F3S)| = | F(f)|?

and F, . is the maximum value of F(f).
If we define a normalized spectral density coefficient # by the relation

1= {11 [P [ 170 0 (3:58)

1 ssz

| x4 =% (3-59)

then, since
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we get from (2-20), (3-56) and (3-57) thaty

N = L (4,40 027 | B st 0) (360)

From (3-34) and (3-60) we have that the signal to noise ratio S/N is given by

(%)m = 2 (1= 1/p) (A, 4p)* (vao)%ﬂ*%J: a¥(v) n*(v) dv / f : av)n(v)dv, (3:61)

which is independent of | F,,,,. |2 and, therefore, of the gain of the photomultiplier
tubes.

This result has been derived for the case where the incident light is linearly
polarized. If the light is unpolarized, as is normally the case, the expression for
N will be unaltered if the average number of quanta per cycle bandwidth is un-
altered. However, the expression for § will be different since there is no correlation
between quanta in different states of polarization, and we must decompose the
incident beam into two independent components each with }n quanta per cycle
bandwidth. Since the correlation between coherent beams of polarized light is
proportional to the square of the number of quanta per cycle bandwidth, the value
for S must be reduced by a factor i, and the signal to noise ratio for the case of
unpolarized light becomes

(). = W2 =1 (4 ) 0T "o )y /. «wynav.
N r.m.s, 0 0 (3'62)

Because of the very small number of quanta received per unit bandwidth from
even the hottest sources the signal to noise ratio will only be significant if one
integrates for long times and also accepts the intensity fluctuations over the widest
possible bandwidth. However, the signal to noise ratio is independent of the
bandwidth of the incident light.

4. DiscussioN

In calculating the correlation between the emission times of photoelectrons at
different points on the wavefront of a plane wave of light we have used a quantum
theory in which the incident radiation field is treated classically. Such a procedure
is justified theoretically by the fact that the relevant observables of the radiation
field can be characterized by commuting operators, but it is opposed to one’s
natural tendency to regard a correlation between the emission times of photo-
electrons as essentially a quantum phenomenon for which a classical treatment of
the radiation field would only be valid in the limiting case where the number of
incident quanta is very large. Accordingly, to make the argument more acceptable
from a physical point of view we shall consider the analogous case of a diffraction
grating illuminated by monochromatic light to produce an interference pattern on
a screen.

In this latter case it is well known that the average distribution of light intensity
over the screen can be found by a classical wave theory, even in the limiting case

1 This expression for N is smaller by a factor 1/,/2 than that given in an earlier paper
(Hanbury Brown & Twiss 1956a) which applies when the correlation is measured by a some-
what different technique.
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where the light is so weak that one can count the arrival of individual photons. As
Born (1945) points out in discussing an essentially similar experiment, things are in
no way altered if the screen is replaced by a mosaic of photoelectric elements; the
experiment still illustrates the wave aspect of light, since the particle aspect can only
really be brought out by observations in which the position of a single quantum is
measured at two successive instants of time. If such observations were introduced
into the present experiment, the interference pattern would be destroyed.

From the point of view in which light is viewed as a photon stream the appearance
of interference effects is closely related to Heisenberg’s uncertainty principle; an
accurate knowledge of the transverse point of impact of a photon involves a corre-
sponding uncertainty in the transverse momentum, and therefore an uncertainty in
the element of the grating from which the photon has come. If we perform an
experiment, such as blackening out the rest of the grating to determine the trans-
verse momentum of the photons, then the main interference pattern once more
disappears.

This state of affairs is exactly paralleled by the correlation experiment, which is
the subject of this paper, if one everywhere substitutes the concepts of time and
energy for those of position and momentum. Thus the bandwidth of the light and
the length of the observation time in the correlation experiment are the analogues of
the width and number of lines per unit length of the grating. The interference
pattern in time, the beat phenomenon of the correlation experiment, arises because
of the uncertainty in the energy of the photon which produced a specific photo-
emission, and is the analogue of the interference pattern on the screen which arises
because of the uncertainty in the transverse momentum of a photon reaching
a specific point on the screen. Both phenomena are to be understood from the
particle point of view as being due to an uncertainty in the behaviour of a single
photon and not as due to interference between different quanta. Finally, it may be
noted, that if one partly removes the uncertainty in the energy of the incident
photons in the correlation experiment, by using a highly monochromatic source or
by analyzing the light with a prism of very great resolving power, the higher beat
frequency components will disappear, just as the analogous components of the
interference pattern on the screen will disappear if the angular width of the grating
is suitably reduced.

Accordingly, since the radiation field can be treated classically in the case of the
diffraction grating, it is only to be expected that it can be treated classically in
analyzing the correlation experiment.

In this paper we have considered the idealized case where the two photocathodes
lie on the same wavefront of the incident light. However, the emission time of
a photoelectron is uncertain within limits determinined in practice by the resolving
time of the electronic equipment, so the observed correlation will not be affected as
long as the difference in the time of arrival of a particular wavefront of the two
photocathodes is small compared with this resolving time. This means that the
position of the photocathodes need only be controlled to an accuracy determined by
the bandwidth of the fluctuations rather than by the wavelength or bandwidth of
the incident light.
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To simplify the presentation, we have developed the fundamental theory for the
case where this incident radiation is a plane wave. However, an arbitrary radiation
field can be expressed as a sum of plane waves and, since the operators associated
with the observables of one plane wave commute with all the operators associated
with the observables of any other, one is equally justified in analyzing this general
case by a theory in which the radiation field is treated classically; this will be done in
a subsequent paper.

A quantum theory is needed to compute the probability of photoemission which,
as we have shown, is proportional to the square of the amplitude of the incident
light; but if this probability is known from experiment, one can calculate the correla-
tion between the fluctuations in the photoemission currents at two separate photo-
tubes by a fully classical theory in which the photocathodes are regarded as square
law detectors of a suitable conversion efficiency. This emphasizes the fact that the
theory is equally valid if the phototubes are replaced by true energy detectors such
as bolometers or thermistors, though for reasons of signal to noise ratio these latter
alternatives could not be used in a practical correlation experiment.

A purely classical theory can also be used to calculate the mean square fluctuations
in the emission current of a single phototube. As we have shown these fluctuations
can be represented as the sum of two terms, a shot noise term due to the discrete
nature of the electrons carrying the photocurrent, and a term which we have called
the wave interaction noise because in the classical theory it arises from the beats
between the different Fourier components of the radiation field. The expressions for
these terms are identical with those derived by Kahn (1957) in a treatment based
directly on quantum statistics, and two conclusions can be drawn from this. First,
that the shot noise is a consequence of the corpuscular nature of the electrons, it does
not depend at all on the fact that the radiation field is also quantized; secondly, that
the wave interaction noise is identical with the excess photon noise which is inter-
preted, in the language of the corpuscular theory, as due to the so-called ‘bunching’
of photons and which is essentially a consequence of the fact that light quanta obey
Bose—Einstein statistics. This so-called ‘bunching’is, of course,in no way dependent
upon the actual mechanism by which the light energy was originally generated; still
less does it imply that the photons must have been injected coherently into the
radiation field. On the contrary, if one wishes to picture the electromagnetic field as
a stream of photons, one has to imagine that the light quanta redistribute themselves
over the wavefront, as the radiation field, which may be quite incoherent in origin,
is focused and collimated into beams capable of mutual interference; thus the
correlation between photons is determined solely by the energy distribution and
coherence of the light reaching the photon detectors.

ApPPENDIX I. COHERENT INTERFERENCE AND THE EXTENT IN REAL SPACE
OF AN ELEMENTARY CELL IN PHASE SPACE
When one is dealing with particles such as gas molecules the dimensions, in real
space, of an elementary cell of volume L3 in phase space are likely to be very small.
Thus, in the extreme case of a hydrogen gas in which the uncertainties in the
momenta are those appropriate to a thermal spread of 1° K, the dimensions, in real
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space, of the elementary cell are of the order of 10 A cube and these will be corre-
spondingly reduced for heavier gases or for larger uncertainties in the momenta of
the individual molecules.

However, things are quite different in the case of light if the angular size of the
source is very small. Thus, when light is received from a star, the volume in real
space of an elementary cell can be many cubic metres, and we shall prove the general
result that as long as two points are close enough together to permit virtually
complete interference between the light rays reaching them, which implies that
their separation isinsufficient to resolve the star, then they liein the same elementary
cell in phase space.

For simplicity let us consider a very distant source of square angular aperture
0 x 0, where 0 is very small, and two observing points on the earth with relative
coordinates (Az, Ay, Az) such that the light source lies on the z axis. Let us further
suppose that the light is concentrated with a narrow frequency band of width Av.

Then, since the volume of an elementary cell in phase space is h? we have that

AprpyApzAQwAQyAQz = hg: (Al)

where Ap, Aq are the uncertainties in the momentum and position respectively.
In the present case

Ap, = Ap, =", (A2)
while if 62 is negligible compared with Av/v
Ap, = hAv]c. (A3)
Substituting from (A 2) and (A3)in (A1) we get that
Agq,Aq, Agq
P =
P =E =R A = 1, (A4)

where A = ¢/v.

Now if the interference fringes obtained from two coherent beams of light band-
width Av are not to be appreciably weakened, the difference in the path length of the
two beams must not exceed a wavelength of a frequency Av so that we must have

AvAzfc< 1. (A5)

Furthermore, if the transverse separation of the two points is to be so small that
they do not resolve the source, one must certainly have

OAxjA <1, OAy/A<]. (A6)
Combining the inequalities (A 5) and (A 6) with (A 4) one gets
AzxAyAz < Ag,Aq,Aq,, (A7)
and since Ag,Aq, Aqg, is the spatial volume of the elementary cell in phase space we
have proved the required result.
The importance of this argument from the theoretical point of view is thatit

brings out the connexion between the wave and particle interpretations of the
phenomenon intensity interference. Thus, on the classical picture one would expect
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the intensity fluctuations in the light at two different points in space to be correlated
as long as the light rays reaching these two points were capable of mutual inter-
ference; while on the quantum picture one would expect a correlation between the
arrival times of quanta at different points as long as these lie in the same cell in phase
space, and the above discussion shows that if the latter condition is satisfied then so
is the former.

ApPENDIX II. ON THE EXCESS PHOTON NOISE OF LIGHT DETECTORS

In the text we derived an expression for the noise in a photoemission current from
first principles, and noted that an identical result has been obtained by Kahn (1957)
with the aid of quantum statistics. However, a quite different result has been given
by Fellgett (1949) and also by Clark Jones (1953) from thermodynamical arguments,
and in this appendix we give the reasons for rejecting their procedure.

The thermodynamical argument depends in the first place on an analysis of
‘& thermal detector in thermal equilibrium with a blackbody enclosure at tempera-
ture 7T'. The discussion given by Clark Jones is based on a general theorem by Callen
& Welton (1951) which enables one to find the fluctuations associated with a linear
dissipation process, and which represents a powerful generalization of Nyquist’s
‘theorem (1928) to cover any case where the underlying physical process can be
characterized by a generalized impedance. The treatment by Fellgett is more
specific in that the equivalent electrical circuit is explicitly derived for a given
detector, but it is identical in essentials. Both writers assume that the fluctuations
in the thermal detector output are equal to the energy fluctuations in the thermal
radiation field, half being due to the absorbed and half to the emitted radiation. In
the case of the photocell the emitted stream of radiation does not exist so, it is argued,
the fluctuations in this case will be reduced by one-half.

Two objections to this treatment are immediately apparent. In the first place the
theorem of Callen & Welton does not apply, since the dissipation process of a thermal
detector is non-linear, the equivalent resistance being itself a function of the
temperature. Admittedly if the temperature fluctuations are very small compared
with 7' the error is also small, but then so is the contribution of the excess photon
noise. If we consider the analogous case of a radio antenna in a blackbody of
temperature 7', then the voltage fluctuations across the output terminals of the
antenna can be found from Nyquist’s theorem by taking the radiation resistance of
the antenna to be at temperature 7'. However, if a square-law detector were placed
between the antenna and the output terminals, one could not use a generalized
Nyquist’s theorem to find the energy fluctuations in the incident field or the
fluctuations across the output terminals of the square-law detector, since this
would ignore the presence of beats between different components of the radiation
field.

The second and more serious objection is that one cannot in general equate the
fluctuations in the output of a thermal or photon detector to the energy fluctuations
in the thermal radiation field; the principle of detailed balancing applies to the
average flow of energy but not to the fluctuations themselves. It is essentially for
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this reason that the analysis for the thermal detector cannot be applied to the photo-
cell and that the estimate of the excess photon noise given by Fellgett and Clark
Jones is linearly proportional to the quantum efficiency rather than quadratically
proportional as found by Kahn and by the present writers.

We thank Professor Rosenfeld for many helpful criticisms of this paper. We are
also indebted to Dr Kahn for showing us his results before publication and for his
valuable comments on our own approach. We also thank Dr Wolf and Professor le
Couteur for their useful criticism.
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