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In these notes the experiments by Rainer Beck are discussed from a theoretical point

of view, i.e. with the speci�c aim of developing quantum and quasi-classical schemes to

reproduce the relevant experimental values.

For a detailed description of the theory of angular momentum, I refer to the book

by Brink, Satchler �Angular Momentum� (Oxford University Press). For the detailed

description of the experiment, I refer to Bruce Yoder's PhD Thesis �Steric E�ects in the

Chemisorption of Vibrationally Excited Methane on Nickel�

1 Wigner D-Matrix and rotations of the reference frame

As well known from the theory of angular momentum, in the rigid rotor approximation

(i.e. neglecting coupling between rotations and vibrations) the eigenfuctions describing

the angular part of a symmetric top molecule are the complex conjugate of Wigner D-

matrices1

Ψ(α, β, γ) = DJ?
MK(α, β, γ) (1)

where α, β and γ are the so-called Euler angles, one of the most common way to

parametrize rotations of an object in 3 dimensions 2. The quantum numbers J, M

and K correspond to the total angular momentum (~
√
J(J + 1)), the projection of the

angular momentum along a �xed space axis, usually de�ned to be the Z axis (~M) and

the projection of the angular momentum along the �gure axis - the symmetry axis of the

molecule (~K).

1More precisely, a normalization factor dependent on J is required to get properly normalized eigen-

states.

Ψ(α, β, γ) =

√
2J + 1

2π
√

2
DJ?

MK(α, β, γ)

For the sake of clarity in this discussion these normalization factors will be dropped.
2More precisely, di�erent sets of Euler angles arise from di�erent conventions. In this notes, we use the

Z-Y-Z convention, with counterclockwise rotations and an active point of view.
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By de�nition (e.g. see Brink, Satchler �Angular Momentum� Oxford University Press),

a Wigner D-matrix is a trasformation matrix of the angular momentum eigenstates due

to rotations:

DJ
MK(α, β, γ) = 〈JM |R(α, β, γ)|JK〉

where |JM〉 and |JK〉 are angular momentum eigenstates of a linear rotor (spherical

harmonics) and R(α, β, γ) is the Euler rotation corresponding to angles α, β, γ.
In the experiments considered, the reacting methane molecules are prepared in a precise

rotational state (or a statistical mixture of some of the states). The selection rule ∆M = 0
- that is used in the experiment to prepare aligned vibrational excited methane molecule

- is valid in a reference system in which the Z axis lay along the direction of the laser

linear polarization. Hence the initial state of the experiments has to be referred to such

frame of reference. However, in our quantum simulations it is much more convenient to

set the Z coordinate in a direction that is normal to the metal surface. For this reason

we want to �nd the expression of the matrix of Eq. 1 in a new reference α′, β′, γ′ that is
related to α, β, γ by a rotation R(α̃, β̃, γ̃)

DJ
MK(α′, β′, γ′) =

〈
JM |R(α′, β′, γ′)|JK

〉
=
〈
JM |R(α̃, β̃, γ̃)R(α, β, γ)|JK

〉
If we now introduce in the expression the identity over the J level

∑+J
M ′=−J |JM ′〉 〈JM ′|

(other J values would not contribute since rotations do not couple states with di�erent

total angular momentum)

DJ
MK(α′, β′, γ′) =

+J∑
M ′=−J

〈
JM |R(α̃, β̃, γ̃)

∣∣JM ′〉 〈JM ′∣∣R(α, β, γ)|JK
〉

Using the de�nition of Wigner D-matrix we can write this expression as

DJ
MK(α′, β′, γ′) =

+J∑
M ′=−J

DJ
MM ′(α̃, β̃, γ̃)DJ

M ′K(α, β, γ) (2)

If we identify with R′ = α′, β′, γ′ the �laser� reference system (with Z oriented as the

laser polarization) and with R = α, β, γ the �surface� reference system (with Z normal to

the surface), Eq. 2 tells us that in the �surface� reference frame the J,M,K initial state

can be written as superposition of states in the �laser� frame with the same J and K. The

coe�cients of the superposition - DJ
MM ′(α̃, β̃, γ̃) - are still Wigner D-matrices with the

same J quantum number, evaluated for the angle of rotation that brings the �surface�

reference system to the �laser� one.

If we assume that only the angle between the surface normal and the laser polarization

is relevant, we further specialize our result by imposing that R(α̃, β̃, γ̃) is a rotation

through ϑ around the Y axis

R(α̃, β̃, γ̃) = R(0, ϑ, 0)
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In this assumption, the coe�cient of Eq. 2 becomes equivalent to the so-called Wigner

small D-matrix. Hence the initial rotational state of Eq. 1 becomes

DJ?
MK(R′) =

+J∑
M ′=−J

dJMM ′(ϑ)DJ?
M ′K(R) (3)

where we have dropped the complex conjugate from the Wigner small D-matrix since we

adopt a convention such that dJMm(ϑ) are real functions of ϑ (i.e. the Z-Y-Z convention

for the Euler angles, see Brink and Satchler's book).

On the other hand, if the experimental results are resolved also over the symmetric

directions of the surface, Eq. 2 can still be used by retaining also the dependence on an

azimuthal angle ϕ.

2 Two examples and a comparison with the experiments

In this section I will brie�y discuss two cases, to explain how Eq. 3 can be used to

simplify the problem of simulations of the scattering of aligned molecules.

2.1 R(0) transition in CH4

Consider the initial state of a vibrationally excited CH4 prepared by means of the R(0)

transition (see Bruce Yoder's PhD thesis for details). This transition brings the rovibra-

tional ground state ν3=0, J=0 to the excited state ν3=1, J=1 (here ν3 is the vibrational

quantum number for the antisymmetric CH stretching mode). In the frame of reference

of the laser polarization, such transition has the ∆M = 0 and ∆K = 0 selection rule.

Since for J=0, only M=0 K=0 state is possible, we can conclude that the reacting CH4

is prepared in the rotational state J=1, M=0, K=0

Ψ0(R′) = D1?
00(R′) (4)

in the laser reference frame.

Using Eq. 3, we �nd that in the �surface� frame the initial state is expressed by

Ψ0(R) =
+1∑

m=−1

d1
0m(ϑ) D1?

m0(R)

Substituting the expressions of the small D-matrix (see Tab. 1), we get

Ψ0(R) = − 1√
2

sinϑD1?
−10(R) + cosϑD1?

00(R) +
1√
2

sinϑD1?
10(R) (5)

where ϑ is the angle between the surface normal and the direction of the laser polarization.

With two reasonable assumptions, this expression can be tested with the data reported

by Bruce Yoder (see Fig. 4.10, page 128, Yoder's PhD thesis). First, we neglect quantum

interference of the component of the initial state (see Appendix A). In this (reasonable)
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approximation, the reaction probability of a superposition of states is the average of

the reaction probability of the states, with weights that are given by the square of the

superposition coe�cients:

Preact(ϑ) =
(
− 1√

2
sinϑ

)2

PM=−1
react + (cosϑ)2 PM=0

react +
(

1√
2

sinϑ
)2

PM=+1
react

where PM=m
react is the reaction probability computed with the system in the initial J=1,

K=0 and M=m rotational state (in the �surface� reference).

Making the further assumption that the reaction probability does not change whether

the molecule is rotating clockwise or counterclockwise along Z with the same angular

velocity

PM=−1
react = PM=+1

react = P⊥react

In conclusion, we get

Preact(ϑ) = cos2 ϑP
‖
react + sin2 ϑP⊥react (6)

Basing on a simple geometrical argument, in the thesis Yoder assumed a very similar

model, i.e.

Preact(ϑ) =

√(
P
‖
react

)2
− sin2 ϑ

[(
P
‖
react

)2
−
(
P⊥react

)2] =

=

√
cos2 ϑ

(
P
‖
react

)2
+ sin2 ϑ

(
P⊥react

)2
(7)

As shown in Fig. 1, the dependence on ϑ obtained in Eq. 6 is in agreement with the

experimental results reported in the thesis.

2.2 1R(1) transition in CHD3

Now consider the vibrationally excited CHD3 prepared with laser tuned at the 1R(1)

transition . This transition brings the rovibrational state ν1=0, J=1, K=1 to the excited

state ν1=1, J=2, K=1 (here ν1 is the vibrational quantum number for the CH stretching

normal mode). Again, in the frame of reference of the laser polarization, such transition

has the ∆M = 0 selection rule. Since for J=1, only the states M=0,±1 are possible,

we can conclude that the reacting CHD3 will be a statistical mixture of rotational state

J=2, K=1 and M=0,±1
Ψ−1(R′) = D2?

−11(R′)
Ψ0(R′) = D2?

01(R′)
Ψ+1(R′) = D2?

11(R′)
(8)

We now see how these states are trasformed into our space �xed �surface� reference.

Using Eq. 3, we �nd that the state Ψ0(R′) transform to

Ψ0(R) =
+2∑

m=−2

d2
0m(ϑ) D2?

m1(R)

4



0 15 30 45 60 75 90
Polarization Angle θ / deg

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 R
ea

ct
iv

ity

Geometrical model
Wigner rotation model

Figure 1: Dependence of the reactivity of CH4-R(0) beam with respect to the polarization

angle of the laser. The green curve is the geometrical model by Yoder (Eq. 7),

while the blue curve is the model described in this report (Eq. 6)

J M K dJMK(β)

1

1 1 cos2(β/2)
1 0 −1/

√
2 sinβ

1 -1 sin2(β/2)
0 0 cosβ

2

2 2 cos4(β/2)
2 1 −1/2 sinβ(1 + cosβ)
2 0

√
3/8 sin2 ϑ

2 -1 1/2 sinβ(cosβ − 1)
2 -2 sin4(β/2)
1 1 1/2(2 cosβ − 1)(cosβ + 1)
1 0 −

√
3/2 sinβ cosβ

1 -1 1/2(2 cosβ + 1)(1− cosβ)
0 0 1/2

(
3 cos2 ϑ− 1

)
Table 1: Wigner small D-matrices for J = 1 and J=2 (see Brink, Satchler �Angular

Momentum� Oxford University Press). The elements that have not been re-

ported can be found using the symmetry properties of Wigner small D-matrices:

dJKM (β) = (−)M−KdJMK(β) and dJ−M−K(β) = (−)M−KdJMK(β).
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and analogous formulas for Ψ1(R) and Ψ−1(R). Substituting the small D-matrix, we get

Ψ0(R) =

√
3
8

sin2 ϑ
[
D2?
−21(R)−D2?

21(R)
]
−
√

3
2

sinϑ cosϑ
[
D2?
−11(R)−D2?

11(R)
]
+

1
2
(
3 cos2 ϑ− 1

)
D2?

01(R)

(9)

where ϑ is the angle between the surface normal and the direction of the laser polarization.

Analogous expression can be obtained for the intial states Ψ1(R) and Ψ−1(R).

3 Quantum and quasi-classical scattering simulations

The previous discussion shows how an angular momentum state aligned in ANY direction

can be simply related to the full set of state of equal J and K in a space �xed frame of

reference. From a theoretical point of view, this is extremely useful to de�ne the proper

initial conditions to simulate the aligned scattering experiments.

In terms of quasi-classical dynamics, we can develop a reasonable scheme to sample

the initial conditions of all the M states for given J,K, in a given �xed frame of reference

(e.g. with Z normal to the surface). One example of such scheme is described in Appendix

B. Then we have at least two possibilities:

1. The simplest approach is to sample the initial conditions by �xing Z to be the axis

of the laser reference of frame. In this case, to get results for di�erent polarization

angles is then necessary to repeat one set of trajectory for each orientation that we

want to consider changing the sampling in agreement with the laser polarization di-

rection (just two set of calculations are then needed if the two extreme polarization

ϑ = 0 and ϑ = 90◦ are considered).

2. On the other hand, Eq. 3 tells us that if we know the reaction probability resolved

for all the M states in a generic �xed frame of reference, we can compute the state

resolved reaction probability for any laser polarization direction with the formula

Paligned(J,M,K, ϑ) =
+J∑

M ′=−J

∣∣dJMM ′(ϑ)
∣∣2 Pfixed(J,M ′,K) (10)

where Pfixed(J,M ′,K) is the reaction probability of rovibrational state J,M′,K
(where m is the projection of the angular momentum along the given �xed reference)

while Paligned(J,M,K, ϑ) is the reaction probability of rovibrational state J,M,K

(where M here is the projection along the laser polarization direction) and ϑ is the

angle between the �xed frame and the polarization direction. The weights of the

average
∣∣dJMm(ϑ)

∣∣2 have been chosen in agreement with Eq. 6, and represent the

probability of �nding the system in the state J,M′ (with m projection along the

�xed reference) for an initial state J,M (with M projection along the polarization

axis)

To decide which of the two approaches should be preferred, many elements should be

taken into account: the number of orientations that we want to consider, the number of
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M′ states to be included in the sum of Eq. 10, the di�erent statistics of the two sampling

methods.

In the case of quantum dynamics, again we have to possibilities.

1. Just like in the quasi-classical case, we can start from an initial state that is aligned

in the laser polarization direction. To de�ne such state, it may still be useful to

employ Eq. 3 to de�ne the correct initial condition with respect to a frame of

reference than can be conveniently used in the quantum wavepacket calculations.

In this case, one calculation is needed for each orientation ϑ that we want to

consider.

2. As an alternative, we can start from a �xed frame of reference and repeat the

calculation for all the allowed M′ states. Then the results for any laser frame of

reference can be computed according to Eq. 3. Note however that here the average

is more complicated than in Eq. 10 since we start from an initial state that is a

superposition of states and quantum interference between those states should be

considered. In detail, the quantity to be averaged is the (complex) S-matrix

Slaser(f ← J,M,K, ϑ) =
+J∑

M ′=−J
dJMm(ϑ)Sfixed(f ← J,M ′,K) (11)

The squared modulus of the S-matrix gives the scattering probability to get to

a �nal state f starting from given initial conditions. Using this equation, it is

possible to compute the reaction probability as the non-scattered probability. The

dissociation probability then becomes

Paligned(J,M,K, ϑ) =
∑+J

M ′=−J
∣∣dJMM ′(ϑ)

∣∣2 Pfixed(J,M ′,K)−
2 Re

(∑
M1

∑
M2<M1

dJMM1
(ϑ)dJMM2

(ϑ)
∑

f (S(f ← J,M1,K))? S(f ← J,M2,K)
)

(12)

Further details about this can be found in Appendix A.

In conclusion, for both quantum and quasi-classical mechanics we are able to de�ne

correct initial condition to simulate the scattering of an aligned methan molecular beam.

This can be done a priori by setting a sampling method (for quasi-classical mechanics)

or a initial wavefunction (for quantum mechanics) that properly describe a single (J,M,K)

rotational state in the frame of reference de�ned by the polarisation axis of the laser.

As an alternative, the proper initial conditions can be enforced a posteriori. If the

reaction probabilities (for classical mechanics) or the scattering matrix (for quantum

mechanics) are known for all the M values in a particular space �xed frame of reference,

the reaction probability can be computed for an initial state that has been aligned in

ANY direction. Basing on Eq. 3 - i.e. the transformation that relates the alignment

frame and the space �xed frame - we can �nd that the quasi-classical reaction probability

is given by Eq. 10 and the quantum reaction probability is given by Eq. 12.
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A Scattering of a superposition of states

Suppose we want to compute a dissociation probability for a molecule scattering on a

surface. We choose an initial asymptotic state |i〉 of the molecule that is not a single

state of the molecular hamiltonian (plus a free state for the scattering coordinates), but

a superposition of orthonormal eigenstates |α〉

|i〉 =
N∑
α

cα |α〉 (13)

From a classical point of view, if we think to the superposition of Eq. 13 as a statistical

distribution with coe�cients equal to the squared modulus of the cα, we would expect

that the probability for the possible scattering or reactive events to be

Preact(i) =
N∑
α

|cα|2 Preact(α)

Pscatter(f ← i) =
N∑
α

|cα|2 Pscatter(f ← α)

where f labels the scattering �nal asymptotic states.

On the contrary, in a fully quantum approach the scattering probability to a given

�nal state f is the squared modulus of the S-matrix, which is the matrix element of the

scattering operator S

P (f ← i) = |S(f ← i)|2 = |〈f |S |i〉|2

From the linearity of the scattering operator, we get

P (f ← i) =

∣∣∣∣∣
N∑
α

cα 〈f |S |α〉

∣∣∣∣∣
2

=
N∑
α

|cα|2 |〈f |S |α〉|2 +
N∑
α

N∑
β

c?αcβ (〈f |S |α〉)? 〈f |S |β〉

(14)

The �rst term of the right hand size corresponds to the classical scattering probability

N∑
α

|cα|2 |〈f |S |α〉|2 =
N∑
α

|cα|2 Pscatter(f ← α)

hence the expression of Eq. 14 contains a non-classical interference term

N∑
α

N∑
β

c?αcβ (〈f |S |α〉)? 〈f |S |β〉 (15)

in which we also have to consider the phase of the S-matrix and not just its amplitude.
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Due to quantum interference, we could have in general that

Preact(i) 6=
N∑
α

|cα|2 Preact(α)

∑
f

Pscatter(f ← i) 6=
N∑
α

|cα|2
∑
f

Pscatter(f ← α)

Equality strictly holds only when we neglect quantum e�ects, hence in the classical limit.

By means of the full S matrix we get the quantum expression for the reaction proba-

bility. For any normalized state, the unitarity of S operator implies that∑
f

Pscatter(f ← i) + Preact(i) = 1

So, we can compute the reaction probability as

Preact(i) = 1−
∑
f

Pscatter(f ← i) = 1−
∑
f

|〈f |S |i〉|2

Substituting the expression for the state |i〉 as a superposition of states (Eq. 13) we get

Preact(i) = 1−
N∑
α

N∑
β

c?αcβ
∑
f

(〈f |S |α〉)? 〈f |S |β〉 =

= 1−
N∑
α

|cα|2
∑
f

|〈f |S |α〉|2 −
N∑
α

N∑
β 6=α

c?αcβ
∑
f

(〈f |S |α〉)? 〈f |S |β〉

We can recognize 1 −
∑N

α |cα|
2∑

f |〈f |S |α〉|
2 as the weighted sum of the |α〉 states

reaction probability. Using the symmetry of the expression in the sum with respect to

exchange of α and β, we get

Preact(i) =
N∑
α

|cα|2 Preact(α)− 2 Re

 N∑
α

N∑
β<α

c?αcβ
∑
f

(〈f |S |α〉)? 〈f |S |β〉

 (16)

hence the term (α′,β′,γ′)

2 Re

 N∑
α

N∑
β<α

c?αcβ
∑
f

(〈f |S |α〉)? 〈f |S |β〉


determine the interference e�ect in the reaction probability.
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B Quasi-classical sampling of the aligned initial state

I brie�y sketch the idea behind one reasonable way to make a quasi-classical sampling

of the initial condition of CHD3. Especially for this part, I have to thank Francesco

Nattino, whose collaboration has been invaluable and greatly appreciated.

In a space �xed reference frame, the three quantum numbers J, M, K corresponds

to three constants of motion (which are conserved when the molecule is moving in the

vacuum). J corresponds to the total angular momentum, M to its projection on the space

�xed Z axis and K to its projection along the �gure axis (that in a symmetric top is the

symmetry axis of order > 2, in our case the CH3 umbrella axis)

J → |L|2 = ~
√
J(J + 1)

M → LZ = ~M
K → Laxis = ~K

This three conditions can be conveniently visualized as in Fig. 2. If we �x the Z axis

in the space, the angular momentum is a vector lying in the cone de�ned by the angle

cos ρ =
M√

J(J + 1)

The length of the vector is ~
√
J(J + 1) and then by generating a random number ξ ∈

[0, 2π] we can �x the other components of the angular momentum

LX = ~
√
J(J + 1) cos ξ

LY = ~
√
J(J + 1) sin ξ

Now we have to �x the orientation of the molecule. To obey the quantization rule of

Laxis, we have to orient the �gure axis ~ω in a cone of angle β′ with respect to the angular

momentum

cosβ′ =
K√

J(J + 1)

Note that β′ is the second Euler angle describing the orientation of the molecule in the

reference de�ned by the angular momentum. The other two Euler angles α′ and γ′ can be
chosen randomly in the correct de�nition interval [0, 2π] (possibly reduced by additional

symmetry of the molecule, such as the C3v symmetry of the umbrella).

So we have fully speci�ed

• the cartesian components (LX ,LY ,LZ) of the angular momentum with respect to

the space �xed frame

• the euler angles (α′,β′,γ′) de�ning the orientation of the molecule with respect to

the angular momentum
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Composing the rotation (α′,β′,γ′) with a rotation to bring the angular momentum from

the z axis to its absolute orientation, we can �nd the (α,β,γ) angles describing the

orientation of the molecule in the space �xed frame.

Note that in total we have 6 degree of freedom, 3 for the angular momentum and 3 for

the orientation. We have 3 constraints coming from quantization rules and 3 additional

values that should be randomly sampled in an interval [0, 2π].

Z L




'

Figure 2: Relative orientation of the Z axis, the angular momentum ~L and the �gure

axis ~ω, with indetermination represented as is customary with two cones.
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