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Chapter 1

Theoretical background

Scattering Theory aims at describing experiments in which a beam of incoming particle
is scattered by the interaction with something else (other particles, a surface, a crystal,
etc.).

The physical picture of Scattering Theory is that we can split the hamiltonian in two
terms

H = H0 + V

a free hamiltonian and an interaction hamiltonian. For t→ ±∞ the system is described
by an asymptotic state, that evolves according to H0 . Inbetween the system feels the
interaction and evolves according to the total hamiltonian H.

For example, two colliding particles1 interacting with a potential V will be described
by the hamiltonian

H = T1 + T2 + V12

where Ti is the kinetic energy operator of the ith particle. In this case the obvious choice
is to set H0 = T1 + T2, i.e. the evolution of the particle in abscence of interaction.

As further example, the full hamiltonian of a biatomic molecule in an external potential
is

H = Ttrasl(R) + Trot+vib(r) + Vinternal(r) + Vext(R, r)

where R and r are respectively the the coordinates of the center of mass and the di�erence
between the position of the two atoms (in spherical coordinates the bond lenght r and
the orientation angles ϕ, ϑ ). If we assume that in the scattering process the molecule
does not dissociate, we can set H0 = Ttrasl(R) + Trot+vib(r) + Vinternal(r). In this way
the free evolution will describe the translation and the rotation of the molecule and the
vibrational degrees of freedom of the surface, without the external potential.

In a scattering experiment, the information that are accessible are the state in which
the system is prepared (which we will call the �incoming asymptote�) and the properties
measured after the scattering (the �outcoming asymptote�). On the other hand, theoreti-
cal methods describe how the system evolves according to the full potential, and the link
between the actual state and the asymptotic states may not be trivial. The goal of Scat-
tering Theory is to relate these informations: the asymptotic states and the interaction
potential.

In the following we will very often make use the free hamiltonian eigenstates. Begore
going on, some comments about them are needed. In general free hamiltonian eigenstates
are a combination of two parts: a plane wave for the scattering coordinate (e.g. the relative
distance of two colliding particle, or the center of mass of the molecule experiencing the
external potential) and another part for the other degrees of freedom .

In the following we will generally write the free hamiltonian eigenstates as

|pα〉 , |p′β〉 , |p′′γ〉 , . . .
1in this example we assume no internal degrees of freedom, e.g. two atoms from a �chemical� point of

view
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where the the letter p is the momentum associated to the plane wave and the greek
letter is a collective index labelling the state for the other coordinates. For semplicity of
notation, we will assume α to be discrete. This is not always true, e.g. the vibrations of
the molecule may become continuous in the dissociation limit. Anyway, the generalization
of the equations in this sense is usually straightforward and implies the substitution of
the sum over α with an integral.

1.1 Time dependent formalism

1.1.1 Time evolution operator

According to a quantum mechanics postulate, time evolution of a state is described by
time dependent Schrödinger equation:

H |ψ〉 = ı~
d |ψ〉
dt

(1.1)

The �rst step in the development of a quantum description of an evolving system is
expressing this di�erential equation with a continous group of operators describing the
time dependence of the system, the time evolution operators. We brie�y recall some
useful properties of such operator group.

Schrödinger equation is a �rst-order linear di�erential equation: given an initial con-
dition, the solution is uniquely determined for every time. Hence we can de�ne the time
evolution of a system with an operator U(t), such that

|ψτ+t〉 = U(t) |ψτ 〉 (1.2)

where |ψτ+t〉 is the wave-function at time τ + t and |ψτ 〉 is the wave-function at time τ .
Time evolutions operator are linear unitary operators satisfying the composition rela-

tion
Ut1+t2 = Ut1Ut2

From the unitarity and the composition relation we can relate the evolution for positive
times and negative times

U†
t = U−t

Substituting Eq. (1.2) in Schrödinger equation we get

HU(t) |ψ〉 = ı~
d (U(t) |ψ〉)

dt

which can be rewritten as an operator equivalence2:

∂U(t)
∂t

= − ı
~
HU(t)

In our case, H does not have an explicit time dependence and the equation can be
formally integrated, giving a very simple and useful expression for the time evolution
operator

U(t) = exp
(
− ı

~
Ht
)

(1.3)

As for the full hamiltonian, we can build a time evolution operator corresponding to
the free hamiltonian H0, which is solution of Schrödinger equation for the non-interacting
system

∂U0(t)
∂t

= − ı
~
H0U0(t)

and can be simply written as

U0(t) = exp
(
− ı

~
H0t

)
(1.4)

when the free hamiltonian does not depend explicitely on time, as in our case.

2The total derivative symbol has been replaced by the partial derivative one, to distinguish the operator
derivative (which can be de�ned similarly as in calculus) from the dynamical derivative of an operator
(see appendix A.2).
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1.1.2 Møller operators and S matrix

We have already spent some words on the physical picture underneath Scattering Theory.
Now we want to make this picture more precise.

A scattering experiment can be idealized in the following way. The system is initially
prepared in a state which is a combination of free eigenstates |pα〉. For the results to
be as detailed as possible, we want this incoming asymptote to be prepared in a very
speci�c quantum state α, or at least with a very narrow distribution. Long time before
the interaction takes place, the system evolves according to U0(t), since in this asymptotic
regime V (pasym) = 0. When the interaction is �switched on� (e.g. the particles collide, or
the molecule reach the surface) the evolution of the system is given by the full hamiltonian
U(t), whose e�ect is usually to couple some degrees of freedom which are uncoupled in
the free evolution. Long time after the interaction, the state will be a superposition of
free eigenstates |pα〉 possibly di�erent from the intial one and evolving according to U0(t)
again.

The relevant information that can be extracted from this experiement, is the proba-
bility for the system to go from the initial state |pα〉 to one other free state |p′β〉

w(pα← p′β)

For this purpose, we need some tool to relate the in and out asymptotes to the inter-
acting system. These tools are Møller operators, de�ned as

Ω± = lim
t→∓∞

U(t)†U0(t) (1.5)

For a detailed discussion of the conditions under which the de�nition makes sense and
a review of the mathematical properties of Møller operators, the reader should refer to
Taylor, Newton.

In the present discussion, we will just give a heuristic justi�cation of this de�nition.
The operator Ω+ can be viewed as the product U(−∞)†U0(−∞), which acting on a state
vector bring it from t = 0 to t = −∞ as a free evolving state and then from t = −∞
to t = 0 as an interacting state. The idea is that Ω+ map a free state evolving from the
incoming asymptote in absence of the interaction to the state that would evolve from the
same asymptote in the presence of the interaction potential. The same holds for Ω− and
the outcoming asymptote. Schematically

in asymptote actual state out asymptote

|Ψ〉 Ω+−→ |Ψ+〉
|Ψ−〉 Ω−←− |Ψ〉

Now let's turn back to our problem. We want to express the probability w(pα← p′β)
that the free state |pα〉 evolves to |p′β〉 due to the interaction. The transition probability
will be the overlap between |pα−〉 (the actual state evolving to asymptote of |pα〉) and
|p′β+〉 (the actual state evolving from the asymptote of |p′β〉)

w(pα← p′β) = |〈pα− |p′β+〉|2

With Møller operators we have a way to express the unknown actual states in terms of
the free states

|p′β+〉 = Ω+ |p′β〉 |pα−〉 = Ω− |pα〉
and the transition probability is conveniently expressed as

w(pα← p′β) =
∣∣∣〈pα ∣∣∣Ω†

+Ω−|p′β+
〉∣∣∣2

This is the central result on which scattering theory is based. The transition proba-
bility is the squared modulus of the matrix element of the Scattering operator, de�ned
as

S = Ω†
+Ω−
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1.2 Time independent formalism

In the previous section, we have introduced the main tools of scattering theory from a
dependent point of view, namely by showing their de�nition in terms of evolution operator.
The same can be done in a time independent fashion. The �rst step will be transforming
the dynamical operator from the time to the energy domain. We will then introduce the
T operator in function of this energy domain propagator. Finally we will show how T
operator can be related to Scattering operator.

1.2.1 Green operator

We de�ne the green operator as

G(z) =

{
−ı

� 0

−∞ dt exp (−ı(z −H)t) = G+(z) Imz > 0
+ı

� +∞
0

dt exp (−ı(z −H)t) = G−(z) Imz < 0
(1.6)

where the superscript ± indicates the restriction of G(z) to the upper or lower complex
half-plane.

When Re z does not belong to the spectrum of H

lim
ε→0+

G+(x+ ıε) = lim
ε→0+

G−(x− ıε) = G(x)

Otherwise G(x) is not de�ned, and

lim
ε→0+

G+(x+ ıε) 6= lim
ε→0+

G−(x− ıε)

Basically, G+(z) and G−(z) are a complex extension of the fourier transform of the
t > 0 and t < 0 restriction of the time evolution operator. In this sense it should be
reasonably accepted that they are an alternative time-independent way of describing the
dynamics of the system.

The necessity to let z ∈ C (and not just a physical meaningful real energy) comes
from the fact that the operator is not de�ned for z in the spectrum of H. Hence in the
manipulation of the equations involving the green operator is often convenient to take
Imz 6= 0 and then let Im z → 0 after integration. This is equivalent to introduce a
dumping factor e−εt in the integrals (e.g. in eq. 1.6, putting z = x+ iε) and then to let
ε→ 0 (and e−εt → 1 ).

Formally, if z is not in the spectrum of H, we can integrate eq.1.6

G(z) =
1

z −H
(1.7)

This is the most common way in which G(z) is represented, and is of course the more
convenient form to compute its matrix element (as long as z is not in the spectrum of
H).

In the following we will make use of both the green operator corresponding to the full
Hamiltonian H and the free Hamiltonian H0. As usual we will distinguish them with a 0
subscript

G(z) =
1

z −H
G0(z) =

1
z −H0

Useful formulas relating G(z) and G0(z) are

G(z) = G0(z) +G0(z)V G(z) (1.8)

G(z) = G0(z) +G(z)V G0(z) (1.9)

which can be directly proven by sobstituting V = (H + z)− (H0 − z).
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1.2.2 The operator T

We de�ne the operator T (z) (z ∈ C) as

T (z) = V + V G(z)V (1.10)

It is evident that as a function of z, T and G have the very same properties.
As we already mentioned, and as we will show later, the interest in T lies in the fact

that it can be directly related to the scattering probability.
From equations 1.8 and 1.9 and the de�nition of T (z), we can �nd other useful relations

concerning T (z)

T (z)G0(z) = V G(z) (1.11)

G0(z)T (z) = G(z)V (1.12)

With the �rst relation, we can remove the operator G(z) from the de�nition of T (z)
and get

T (z) = V + V G0(z)T (z) (1.13)

which is known as Lippman-Schwinger equation for T (z). This equation is the cornerstone
of the perturbative approach to scattering problems, but we will not develop further this
topic (the interested reader should refer to Chapter ... of Taylor).

1.2.3 S matrix and T matrix

As we mentioned before, the T (z) operator can be directly related to the S-matrix element.
First we need to write S as an integral in a time variable:

S = Ω†
−Ω+ = lim

t→+∞
lim

t′→−∞
U†

0 (t)U(t)U†(t′)U0(t′)

If the limit exists, the two limits can be taken simultaneously

S = lim
t→−∞

U†
0 (−t)U(−t)U†(t)U0(t) = lim

t→−∞
U0(t)U†(2t)U0(t)

Di�erentiating the expression,

d

dt
U0(t)U†(2t)U0(t) = +ıU0(t)

[
V U†(2t) + U†(2t)V

]
U0(t)

Introducing a dumping factor that will be necessary for further manipulations

S = I + ı lim
ε→0+

� 0

−∞
dt e+εte−ıH0t

[
V e2ıHt + e2ıHtV

]
e−ıH0t (1.14)

Now if we compute the S matrix element of the free hamiltonian eigenstates

〈βp′ |S|αp〉 = 〈βp′ |αp〉+

−1
2

lim
ε→0+

〈
βp′

∣∣∣∣V G(Eαp + Eβp′

2
+ ı

ε

2

)
+G

(
Eαp + Eβp′

2
+ ı

ε

2

)
V |αp

〉
Recognizing that

ı

� 0

−∞
dt exp (−ı (Eαp + Eβp′ + ıε− 2H) t) = −1

2
G

(
Eαp + Eβp′

2
+ ı

ε

2

)
Employing eq. 1.11 and 1.12, the second term of the equation becomes

lim
ε→0+

〈
βp′

∣∣∣T (Ẽ + ı
ε

2
)G0(Ẽ + ı

ε

2
) +G0(Ẽ + ı

ε

2
)T (Ẽ + ı

ε

2
)|αp

〉



CHAPTER 1. THEORETICAL BACKGROUND 6

with Ẽ = Eαp+Eβp′

2 . Now we can let G0 act on the ket obtaining

lim
ε→0+

(
1

Ẽ + ı ε2 − Eβp′
+

1
Ẽ + ı ε2 − Eαp

)〈
βp′

∣∣∣T (Ẽ)|αp
〉

With some simple manipulations, we can recognize in this expression one of the standard
representation of Dirac delta as limit of Lorentzian distributions

lim
ε→0+

(
2

Eαp − Eβp′ + ıε
− 2
Eαp − Eβp′ − ıε

)
= −4ıπ lim

ε→0+

1
π

ε

(Eαp − Eβp′)2 + ε2
=

= −4ıπδ(Eαp − Eβp′)

In conclusion, the S matrix element is related to T matrix element by

〈αp |S|βp′〉 = δαβδ(p− p′) + 2ıπ δ(Eαp − Eβp′)
〈
βp′

∣∣T (Eαp + ı0+)|αp
〉

(1.15)

Comparing this expression, with eq. ����� we conclude〈
βp′

∣∣T (Eαp + ı0+)|αp
〉

= t(βp′ ← αp) (1.16)

1.3 Scattering states

1.3.1 De�nition

see notes on the notebook
Lippman-Schwinger equation for scattering states

|pα+〉 = Ω+ |pα〉

in an analogous way as before, we write Ω+ in integral form

Ω+ = I− ı lim
ε→0+

� 0

−∞
dτ exp(ετ)U(τ)†V U0(τ)

hence

|pα+〉 = |pα〉 − ı lim
ε→0+

� 0

−∞
dτ exp (−ı(ıε−H + Epα)τ)V |pα〉

|pα+〉 = |pα〉+G(Epα + ı0+)V |pα〉

|pα+〉 = |pα〉+G0(Epα + ı0+)T (Epα + ı0+) |pα〉

substituting A and B (B to be included in remarks on scattering states de�nition), we
get the Lippman-Schwinger relation for the scattering states

|pα+〉 = |pα〉+G0(Epα + ı0+)V |pα+〉 (1.17)

1.4 Time dependent and time independent approach

In the previous section we have developed all the necessary tools to deal with a dynamical
problem. We can now brie�y consider the philosophy behind actual methods to study
the evolution of a system.

The main idea of the time independent approach is to look for the scattering states
|pα+〉. As seen in previous section, scattering states are eigenfunctions of the complete
hamiltonian H and so they are solution of the time independent Schrödinger equation,
with appropriate boundary conditions. These conditions are usually introduced by �xing
the asymptotic behaviour of the scattering states, that can be calculated from LS equation
for the scattering states

lim
R→∞

〈R | pα+〉 = 〈R | pα〉+ lim
R→∞

〈R|G0(Epα + ı0+)V |pα+〉
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In the time dependent approach, on the other hand, the actual time evolution of
the system is considered by solving the time dependent Schrödinger equation with given
initial conditions. In detail we take an initial wavepacket

|Ψ〉 =
�
dpψ(p) |pα〉

By representing both the wavepacket and the evolution operator on a suitable basis,
we evolve the wavepacket in time and then we analyse the results.

One would expect these approach to be equivalent, and this is indeed the case. Later
we will prove this fact in a particular case, showing that with a the time-energy fourier
trasform we can go from one description to the other.



Chapter 2

Scattering of molecules on

surfaces

In this part, we will specify our consideration to the system of our interest. We suppose a
biatomic molecule to be scattered by the interaction with a surface, which has two dimen-
sional periodicity. The system can conveniently described by the 3D position of the center
of mass of the particle R = (X,Y, Z) and by another nD coordinate r = (r, θ, φ,Q1 . . .),
such that the Hamiltonian in r has only discrete eigenfunctions. In particular, in our
case r represent both the internal coordinate of the biatomic molecule and the phonon
coordinates of the surface. Since we are assuming that the molecule cannot dissociate,
the molecule hamiltonian has just discrete states.

In particolar, the hamiltonian for the system will be

H = T (R) + T (r) + Vasymp(r) + Vinteraction(r,R)

where we have conveniently divided the potential in two terms. Vasymp(r), which is the
limit of the full potential as the molecule-surface distance becomes in�nite, depends just
on r and describe the vibrations of the free molecule and the phonon degrees of freedom.
Vinteraction(r,R), the di�erence between the full potential and the asymptotic potential,
describe the interaction of the molecule with the surface and the correlations between
surface and molecule degrees of freedom. In the following, our free hamiltonian will be
H0 = T (R) + T (r) + Vasymp(r) and consequently V = Vinteraction(r,R).

2.1 Asymptotic limit of the scattering states

From LS equation (eq. 2.3), we can write the asymptotic state as

〈Rr |pα+〉 = 〈Rr |pα〉+ 〈Rr|G0(Epα + ı0+)V |pα+〉 (2.1)

where p = (pX , pY ,−pZ) is the momentum along R while α = (n, j,mj , ν1 . . .) is a collec-
tive discrete index labelling the bound state for the r wavefunction (i.e. the rovibrational
state of the molecule and the phonon state of the surface). For future convinience, we
choose the Z component of the momentum to be −pZ , so that pZ is by de�nition a posi-
tive quantity when the incoming molecule approaches the surface. The free state energy
Epα is

Epα =
p2

2M
+ εα

with εα collecting all the energy term depending on the quantum numbers α.
We insert in LS equation the resolution of the identity on the free states

〈Rr |pα+〉 = 〈Rr |pα〉+
∑

β

�
dp′ 〈Rr|G0(Epα + ı0+) |p′β〉 〈p′β|V |pα+〉

8
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Figure 2.1: Poles of the integrating function and path of integration

The periodicity of the the surface implies the invariance of the interaction potential V
with respect to translations of ρ = (X,Y ). Both the free state 〈pα| the scattering states
〈pα+| span the representation

exp(ıp‖ · τmn)

of the lattice translations group {τmn} ( p‖ = (pX , pY ) is the momentum component
parallel to the surface). This implies that

〈p′β|V |pα+〉 = 0

unless p′x − px = mk1 and p′y − py = nk2 (see section ���- �reciprocal lattice�).
This allows us to convert the integration on ρ in a sum on m,n

�
dp′ . . . 〈p′β |V |pα+〉 =

∑
mn

�
dp′z . . .

〈
p′Zp‖mnβ

∣∣∣V |pα+
〉

(2.2)

where the vector p‖mn is the momentum (pX + nk1, pX +mk2) parallel to the surface.
After having introduced the symmetry of the surface, we can evaluate the action of

the free Green operator G0(Epα + ı0+) on the following free state using eq. 1.7

〈Rr |pα+〉 = 〈Rr |pα〉+
∑
mnβ

lim
ε→0+

�
dp′Z

〈
Rr
∣∣∣ p′Zp‖mnβ

〉〈
p′Zp‖mnβ

∣∣∣V |pα+
〉

Epα − Ep′β + ıε
(2.3)

We want to evaluate the integral in p′Z with the methods of complex analysis. Explic-
iting the energy Ep′β

Epα − Ep′β = Epα −
p′2Z + p

‖ 2
mn

2M
− εβ =

1
2M

2M

(
Epα − εβ −

p
‖ 2
mn

2M

)
︸ ︷︷ ︸

∆

−p′2Z


So we can factorize the denominator as

Epα − Ep′β + ı0+ =
1

2M
(p̃− p′Z) (p̃+ p′Z)

where p̃ is any complex root of ∆ + ıε (for later convenience, we choose p̃ to be the root
with Im p̃ > 0).

To evaluate the integral, we extend the function in the complex plane, by taking
p′Z ∈ C and we consider the integration along the path schematically represented in Fig.
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2.1. In detail, the integration path is a line between −R and +R on the real axis, and
half circumference of radius R in the upper complex halfplane. As R→ +∞, the integral
on the real axis becomes the integral we want to compute while the integral along the
half circumference tends to 0. To prove that∣∣∣∣∣∣

〈
Rr
∣∣∣ p′Zp‖mnβ

〉〈
p′Zp‖mnβ

∣∣∣V |pα+
〉

p̃2 − p′2Z

∣∣∣∣∣∣→ 0 for R→ +∞

we have to show that for p′Z ∈ C the modulus of the numerator of the integrand∣∣∣〈Rr
∣∣∣ p′Zp‖mnβ

〉∣∣∣ ∣∣∣〈p′Zp‖mnβ
∣∣∣V |pα+

〉∣∣∣is bounded. The absolute value of the �rst fac-

tor can be explicitely computed∣∣∣〈Rr
∣∣∣ p′Zp‖mnβ

〉∣∣∣ = ∣∣∣∣ 1√
2πA

φβ(r)
∣∣∣∣ e− 1

~ (Im p′Z)Z

and is bounded for p′Z ∈ C if Imp′Z ≥ 0. The second factor can more easily analyzed
when in coordinate representation. If we again assume Imp′Z ≥ 0∣∣∣〈p′Zp‖mnβ

∣∣∣V |pα+
〉∣∣∣ = ∣∣∣∣� dr′

�
dR′

〈
p′Zp‖mnβ

∣∣∣R′r′
〉
V (R′r′) 〈R′r′ |pα+〉

∣∣∣∣ ≤
≤
(

sup
R′r′

V (R′r′)
)〈

(Rep′Z)p‖mnβ
∣∣∣pα+

〉
Any reasonable potential can be assumed to be bounded except for some repulsive

regions. Anyway the scattering eigenstates are eigenstates of the full hamiltonian, and we
can reasonably assume that in the repulsive regions they go to 0 faster than the potential
itself.

From this analysis it becomes clear why we choose an integration path in the upper
complex halfplane. If we chose the symmetric path in the lower halfplane, we couldn't
assume Imp′Z ≥ 0 and the numerator of the integrand would no longer be bounded.

From the well known Cauchy's theorem of complex analysis, the integral along the
closed path is 2πı times the sum of the residues of the integrand in the area contained in
the integration path. In our case the integrand has just one simple pole in the upper half
plane, namely +p̃. So

�
dp′z

f(p′Z)
(p̃− p′Z) (p̃+ p′Z)

= 2πı lim
p′z→p̃

f(p′Z)
− (p̃+ p′Z)

= −πıf(p̃)
p̃

In conclusion, eq. 2.3 becomes

〈Rr |pα+〉 = 〈Rr |pα〉 − 2ıπ
∑
mnβ

lim
ε→0+

M

p̃

〈
Rr
∣∣∣ p̃p‖mnβ

〉〈
p̃p‖mnβ

∣∣∣V |pα+
〉

(2.4)

Next step is to take the limit ε → 0+. Now two possibilities arise, corresponding
to the possible sign of ∆. For ∆ < 0 we have scattering channels for which the energy

εβ + p‖ 2
mn

2M is greater than the initial energy (for reason that will become evident later, we
call these closed channels). In this case the limit of p̃ for ε→ 0+ is a purely immaginary

momentum ıp̄ and the free eigenstates
〈
Rr
∣∣∣ p̃p‖mnβ

〉
becomes

〈
Rr
∣∣∣ p̃p‖mnβ

〉
=

1√
2πA

e−
1
~ p̄Ze

ı
~p‖mn·ρ

This term contains a exponentially decaying function of Z. So, if we let Z → +∞ , the
closed channels do not contribute to the sum on eq. 2.4.

For the other channels ∆ > 0 and for ε → 0+ p̃ becomes a real positive momentum
p′Z and the free states survice in the limit Z → +∞. From a physical point of view, since
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p̄ is the square root of 2M
(
Epα − εβ − p‖ 2

mn

2M

)
, p′Z is the momentum along Z determined

by energy conservation when the system goes from the state |pα〉 to a state with parallel

momentum p
‖
mn and quantum numbers β. The positive sign of p′Z (meaning that the

scattered molecules move far from the surface) is set by the choice of the integration path
which in turn is connected to the presence of a repulsive wall for negative values of Z.

From eq. ................... we can recognize the element of the onshell T matrix〈
p̃p‖mnβ

∣∣∣V |pα+
〉

=
〈
p̃p‖mnβ

∣∣∣T |pα〉 = t(p̃p‖mnβ ← pα)

In conclusion, the limit of the scattering states as Z → +∞

〈Rr |pα+〉 → 1√
2πA

e ı
~p·Rφα(r)− 2πı

∑
mnβ

M

p′Z
e

ı
~p′·Rφβ(r) t(p′β ← pα)


where the component of the momentum p′ parallel to the surface are constrained by
symmetry

p′X = pX +mk1

p′Y = pY + nk2
(2.5)

and the component along Z is given from conservation of energy

p′Z =
[
2M

(
Epα − εβ

)
− p′2X − p′2Y

]1/2
(2.6)

2.2 Asymptotic �ux and Cross Section

The �rst result that we will get from the asymptotic expression of the scattering states
is the cross section for the relevant events: elastic and inelastic scattering.

The approach that we will follow is to compute the Z component of the �ux along an
analysis surface far from the surface, in which we will assume that the scattering state is
equal to its asymptotic limit. We will �nd that the �ux is a sum of di�erent terms, each
corresponding to a speci�c event.

As we brie�y recalled in appendix (Section B) the �ux along a surface S can be
computed as

Φ =
~
µ

�
S

Im
[
Ψ∗~∇Ψ

]
~δn

where ~δn is the direction perpendicular to the surface.
In our case we will compute the �ux on a hyperplane Z = Z∞, that is located in the

asymptotic region. We will take the normal to the plane in the +Z direction. We will
allow X and Y to vary in one unit cell of the surface. On the other hand, the coordinate
r will assume all the accettable values. The expression of the �ux hence become

Φ =
~
µ

�
dr

� LX

0

dX

� LY

0

dY Im (Ψ∗∂ZΨ)|Z=Z∞

Deriving and taking the complex conjugate of the expression of the asymptotic limit
of the scattering wavefunction (remember that p = (pX , pY ,−pZ))

〈Rr | ∂Z |pα+〉 → 1√
2πA

−
ı

~
pZe

ı
~p·Rφα(r)︸ ︷︷ ︸
A1

+
2πM

~
∑
mnβ

e
ı
~p′·Rφβ(r) t(p′β ← pα)︸ ︷︷ ︸

A2





CHAPTER 2. SCATTERING OF MOLECULES ON SURFACES 12

〈Rr |pα+〉? → 1√
2πA

e−
ı
~p·Rφ?

α(r)︸ ︷︷ ︸
B1

+2πıM
∑
mnβ

1
p′z
e−

ı
~p′·Rφ?

β(r) t?(p′β ← pα)︸ ︷︷ ︸
B2


From the multiplication of these two expression, four terms arise. One term comes

from the incident part of the scattering state (A1×B1), another term from the scattering
part (A2 × B2) while the other two (A1 × B2 and A2 × B1) represent the interference
between the two waves. We take into account these three parts separatly.

Incident Flux The �rst term A1×B1 is

− 1
2πA

ı

~
pZe

ıp·Rφα(r)e−ıp·Rφ?
α(r) = − ıpZ

2π~A
|φα(r)|2

The �ux coming from this term is

Φinc = − 1
2π

pZ

M

which can evidently be associated with an incident beam of particle with velocity
pZ

M
approaching the surface (pZ is positive by de�nition so the �ux is negative)

Scattering �ux The term A2×B2

1
2πA

2πM
~

∑
ijγ

e
ı
~p′′·Rφγ(r) t(p′′γ ← pα)

2πıM
∑
mnβ

1
p′Z
e−

ı
~p′·Rφ?

β(r) t?(p′β ← pα)

 =

2πı
~
∑
klγ

∑
mnβ

M2

Ap′Z
e

ı
~ (p′′−p′)·Rφγ(r)φ?

β(r) t(p′′γ ← pα)t?(p′β ← pα) =

Not that the symmetry condition on p′ (eq. 2.5) imply that

1
A

� LX

0

dX

� LY

0

dY e
ı
~ (p′′−p′)·R = e

ı
~ (p′′Z−p′Z)Z 1

A

� LX

0

dX

� LY

0

dY e
ı
~ (m−k)k1Xe

ı
~ (n−l)k2Y = e

ı
~ (p′′Z−p′Z)Zδmkδnl

while the orthonormality of the discrete states�
dr φγ(r)φ?

β(r) = δγβ

so the integration gives

2πı
~
∑
klγ

∑
mnβ

δmkδnlδγβ
M2

p′Z
e

ı
~ (p′′Z−p′Z)Z t(p′′γ ← pα)t?(p′β ← pα) =

=
2πı
~
∑
mnβ

M2

p′Z
|t(p′β ← pα)|2

recognizing that if m = k, n = l and γ = β then p′′Z = p′Z (since both values are
constrained by conservation of energy).

The �ux is

Φscattering = 2π
∑
mnβ

M

p′Z
|t(p′β ← pα)|2

Which represents the scattering of particles in all the channels that are consistent with
energy conservation. Each scattering event has a probability which is given by the square
of the on shell T matrix, as expected from the theory.
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Interference �ux The term A1×B2 is

+
M

~
∑
mnβ

pZ

p′Z

1
A
e

ı
~ (p−p′)·R (φ?

β(r)φα(r)
)
t?(p′β ← pα)

while the term A2×B1

+
M

~
∑
mnβ

1
A
e

ı
~ (p′−p)·R (φ?

α(r)φβ(r)) t(p′β ← pα)

By integration we �nd that

Φinterf =
M

~
Im
(
t?(−pZp‖α← pα) + t(−pZp‖α← pα)

)
= 0

the interference term is equal to zero1.

Scattering cross sections So complessively the total �ux is

Φtotal = Φincident +
∑
mnβ

Φmnβ
scattering

We can calculate the cross section for the scattering in each open channel as

∂σ

∂ρ
(p′β ← pα) =

Φmnβ
scattering

Φincident

which gives
∂σ

∂ρ
(p′β ← pα) = 4π2 M2

pZp′Z
|t(p′β ← pα)|2

In light of this result, we can de�ne proportionality between the scattering matrix
element and the on-shell T matrix as

S(p′β ← pα) = 2πı
M√
pZp′Z

t(p′β ← pα)

so that the square of the S matrix is the cross section for the scattering event.
With these de�nition the asymptotic formula for the scattering states becomes

〈Rr |pα+〉 → 1√
2πA

e ı
~p·Rφα(r)−

∑
mnβ

√
pZ

p′Z
e

ı
~p′·Rφβ(r)S(p′β ← pα)


1For the reader who is familiar with Scattering Theory, some comments are necessary. The method

that we have applied here is often used in many books to derive results which may seems to be in
disagreement with our discussion. In particular, the interference is di�erent from zero and applying �ux
conservation this term depending on the forward scattering T matrix element can be shown to be related
to total scattering cross section (the well known �optical theorem�).

In our case, even if the �ux based method is the same, some crucial assumption of the derivation
mentioned above do not hold. In detail:

• our asymptotic expansion of the scattering states does not contain a forward scattering term
interfering with the incoming wave. The boundary conditions of the problem forced us to choose
the specular channel (−pZp‖α← pα) rather than the forward channel (pZp‖α← pα)

• as a consequence of gauss theorem, �ux conservation holds for closed surface in the coordinate
space. The choice of the hypersurface S that is convenient for the symmetry of our system does
not allow to apply �ux conservation
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2.3 Time-Energy Fourier Transform of a wavepacket

In section 1.4 we have brie�y mentioned that time dependent and time independent
pictures can be related by a time-energy fourier transform. We will show now for the
scattering of molecules on surfaces how this can be done, by extracting information about
the scattering states from the actual evolution of the system.

Let's consider a wavepacket, with de�nite α, p|| and a distribution ψ(pZ) on pZ . Its
free evolution, in absence of the molecule-surface interaction, will be given by

|Ψ〉 = e−ıH0t

�
dpZψ(pZ) |pα〉 =

�
dpZψ(pZ)e−ıH0t |pα〉 (2.7)

whereH0 is the hamiltonian including the internal degrees of freedom of both the molecule
and the surface.

On the other hand, the actual evolution of the wavepacket will be given by

|Ψ+〉 = Ω+

�
dpZψ(pZ)e−ıH0t |pα〉 =

�
dpZψ(pZ)e−ıHt |pα+〉 (2.8)

where we have used the intertwining relation eq. .................... .
Fourier transforming the wavepacket for �xed E, we get

� +∞

−∞
dt eıEt |Ψ+〉 =

�
dpZψ(pZ)

� +∞

−∞
dt eı(E−H)t |pα+〉 (2.9)

Since the scattering states are stationary, we can integrate on time

� +∞

−∞
dt eı(E−H)t = 2πδ(E −H)

where δ(E − H) is the projector on the energy shell. If we let the projector act on the
scattering state |pα+〉 we have the Dirac delta

δ

(
E −

p2
‖

2M
− εα −

p2
Z

2M

)
= 2Mδ

(
∆− p2

Z

)
where p|| and εα are respectively the parallel momentum and the internal energy of the

initial wavepacket, and ∆ is equal to 2M
(
E − εα −

p2
‖

2M

)
. Now we have to possibilities.

If the energy E we are considering is lower than than εα +
p2
‖

2M , ∆ is a negative number,

and the integral on pZ is zero. On the other hand, for ∆ > 0 we set p̄ =
√

∆ and we can
trasform the Dirac delta as

2Mδ
(
p̄2 − p2

Z

)
=
M

p̄
[δ (pz − p̄) + δ (pz + p̄)]

Eq. 2.9 becomes

� +∞

−∞
dt eıEt |Ψ+〉 =

2πM
p̄

[
ψ(p̄)

∣∣p̄p‖α+
〉

+ ψ(−p̄)
∣∣(−p̄)p‖α+

〉]
with p̄ =

√
2M (E − εα)− p2

‖

If we choose an initial momentum distribution ψ(pZ) which is centered in negative
values (the particle is moving towards the surface) and narrow enough, we can assume
ψ(p̃) ≈ 0 and � +∞

−∞
dt eıEt |Ψ+〉 =

2πM
p̄

ψ(−p̄)
∣∣(−p̄)p‖α+

〉
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In conclusion, by computing the fourier transform for di�erent values of E, we can
selectively extract from the evolving wavepacket informations on |pα+〉

|pα+〉 =
|pZ |

2πMψ(pZ)

� +∞

−∞
dt exp(

ı

~
Et) |Ψ+〉 E = εα +

p2
‖

2M
+

p2
Z

2M
(2.10)

Is evident from this formula, that we can get some information on the scattering event just
for the internal state α, the parallel momentum p|| and the values of incident momentum
pZ signi�cantly included in the initial wavepacket.



Appendix A

Operator derivative and

dynamical derivative

In section ������-, we have introduced the time derivative of an operator which
parametrically depends on time. Naively1, this derivative can be de�ned in analogy with
calculus

∂A(t̄)
∂t

= lim
t→0

A(t̄+ t)−A(t̄)
t

Operator derivative has many proprieties of ordinary derivative:

∂(αA+ βB)
∂t

= α
∂A

∂t
+ β

∂B

∂t

∂(AB)
∂t

=
∂A

∂t
B +A

∂B

∂t

Now we want to introduce a new notion of derivative, the dynamical derivative. We
de�ne a new operator Ȧ such that 〈

Ȧ
〉

=
d

dt
〈A〉 (A.1)

Since 〈A〉 = 〈ψ|A|ψ〉

d

dt
〈A〉 =

〈
dψ

dt

∣∣∣∣A|ψ〉+
〈
ψ

∣∣∣∣A|dψdt
〉

+
〈
ψ

∣∣∣∣ ∂A∂t |ψ
〉

Substituting Schrödinger equation

d

dt
〈A〉 =

ı

~
{〈ψ |HA|ψ〉 − 〈ψ |AH|ψ〉}+

〈
ψ

∣∣∣∣ ∂A∂t |ψ
〉

=

=
〈
ψ

∣∣∣∣ ı~ [H,A] +
∂A

∂t
|ψ
〉

So we �nally have

Ȧ =
dA

dt
=
∂A

∂t
+
ı

~
[H,A] (A.2)

It can be proved that the dynamical derivative of a product can be evaluated with the
same rule as the operator derivative:

dAB

dt
=
∂AB

∂t
+
ı

~
[H,AB] =

=
∂A

∂t
B +A

∂B

∂t
+
ı

~
{[H,A]B +A [H,B]} =

1Notice that a precise de�nition would require to specify the notion of limit

16
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=
dA

dt
B +A

dB

dt

The main di�erence between ordinary derivative and (total and partial) operator
derivatives follows from non commutativity of operator algebra. The derivative of a
function of an operator, can't be computed with the usual formula:

∂(f(A))
∂t

6= ∂f

∂t
(A)

∂A

∂t

Consider, as example
d

dt
A2 = ȦA+AȦ



Appendix B

Flux operator and density current

be Ω a bounded open set of the con�guration space
we de�ne the projector P as

P =
�

Ω

dx |x〉 〈x|

the �ux operator is the dynamical derivative of the P (if the boundary of Ω are time
independent)

Φ =
ı

~
[H,P ]

we prove that this de�nition is in agreement with the usual de�nition of density current

~j =
~

2mi

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
We assume that the hamiltonian can be written in the coordinate representation as a

sum of a laplacian and a potential which is diagonal in this representation

H = − ~2

2µ
∇2 + V (x)

hence

[H,P ] = − ~2

2µ
[
∇2, P

]
+ [V, P ]

but [V, P ] is equal to 0 since both operator are functions of the coordinate only
so

Φ = − ı~
2µ
[
∇2, P

]
the expectation value of the �ux operator

〈Ψ |Φ|Ψ〉 = − ı~
2µ
(〈

Ψ
∣∣∇2P |Ψ

〉
−
〈
Ψ
∣∣P∇2|Ψ

〉)
substituting the expression of P , and using the self-adjointness of ∇2〈

Ψ
∣∣∇2P |Ψ

〉
−
〈
Ψ
∣∣P∇2|Ψ

〉
�

Ω

dx
〈
∇2Ψ

∣∣x〉 〈x |Ψ〉 − �
Ω

dx 〈Ψ |x〉
〈
x
∣∣∇2Ψ

〉
〈Ψ |Φ|Ψ〉 = − ı~

2µ

�
Ω

dx
[(
∇2Ψ?(x)

)
Ψ(x)−Ψ?(x)∇2Ψ(x)

]
the integrand expression can be written with the rules of di�erential calculus(

∇2Ψ?
)
Ψ−Ψ?∇2Ψ = ∇ · (

(
~∇Ψ?

)
Ψ−Ψ?~∇Ψ)

18
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with gauss theorem

�
Ω

∇ ·
[(
~∇Ψ?

)
Ψ−Ψ?~∇Ψ

]
dx =

�
δΩ

[(
~∇Ψ?

)
Ψ−Ψ?~∇Ψ

]
· ~δn

where the direction of ~δn is normal to the boundary δΩ of the set Ω
so the �ux is

〈Ψ |Φ|Ψ〉 = − ı~
2µ

�
δΩ

[(
~∇Ψ?

)
Ψ−Ψ?~∇Ψ

]
· ~δn

if we de�ne the current density as

~j =
~

2µı

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
=

~
µ
Im

[
Ψ∗~∇Ψ

]
we see that the �ux change in a set Ω is just the integral of the current density on the
boundary of the set

∆Φ =
�

δΩ

~j · ~δn

which is an equivalent formulation of the continuity equation (in integral form)


