6th International Scientific Meeting New biologci and analytic issue on Hemoglobin A2 and other minor Hemoglobins

Highlights on globin gene switch: new target for therapeutics

Renzo Galanello Pediatric Clinic 2 and Thalassemia Unit– University of Cagliari (Italy) Ospedale Regionale Microcitemie ASL8

DI MILANO

ORGANIZATION AND DEVELOPMENTAL EXPRESSION OF GLOBIN GENES

Type And Distribution Of β-Thalassemia Mutations

Thein et al. 2004.

Globin chain synthesis with β-thalassemia mutations

Pathophysiology of β-thalassemia

Mechanisms Of β-Thalassemia Intermedia

Severe Phenotype

HOMOZYGOUS SARDINIAN δβ°-THALASSEMIA

Why interest in fetal hemoglobin and hemoglobin switching?

- ✓ Hb F is a strong modifier of hemoglobinopathies' severity
- ✓ level of HbF is a variable and inducible quantitative trait in humans
- ✓ to understand the mechanisms of thalassemia intermedia
- to understand the general mechanisms of gene expression and of developmental gene regulation
- to develop targeted therapeutic approaches for ameliorating the severity of the beta-hemoglobinopathies

Population distribution of fetal hemoglobin

- interindividual HbF variation is highly heritable
- genetic investigation is expected to identify genetic factors that controls HbF production

QTLs map to HBS1L-MYB and BCL11A

Intergenic variants of *HBS1L-MYB* are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults

Swee Lay Thein^{*++}, Stephan Menzel^{*}, Xu Peng⁵, Steve Best^{*}, Jie Jiang^{*}, James Close^{*+}, Nicholas Silver^{*}, Ageliki Gerovasilii^{*}, Chen Ping⁵, Masao Yamaguchi⁵, Karin Wahiberg^{*}, Pinar Ulug^{*}, Tim D. Spector¹, Chad Garner^{**}, Fumihiko Matsuda⁵, Martin Farrali⁺⁺, and Mark Lathrop⁵

11346-11351 PNAS July 3, 2007 vol. 104 no. 27

Figure 1 Association statistics ($-\log_1 o(P)$) for individuals included in the genome-wide screening panel. (a) Association statistics for 3.225 markers genome-wide with $P < 10^{-2}$. (b) Association statistics for 211 markers across the 2p15 region of association.

A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15

Stephan Menzel¹, Chad Garner², Ivo Gut³, Fumihiko Matsuda³, Masao Yamaguchi³, Simon Heath³, Mario Foglio³, Diana Zelenika³, Anne Boland³, Helen Rooks¹, Steve Best¹, Tim D Spector⁴, Martin Farrall⁵, Mark Lathrop³ & Swee Lay Thein^{1,6}

F cells measure the presence of fetal hemoglobin, a heritable quantitative trait in adults that accounts for substantial phenotypic diversity of sickle cell disease and β thalassemia. We applied a genome-wide association mapping strategy to individuals with contrasting extreme trait values and mapped a new F cell quantitative trait locus to *BCL11A*, which encodes a zinc-finger protein, on chromosome 2p15. The 2p15 *BCL11A* quantitative trait locus accounts for 15.1% of the trait variance.

GWAS results for HbF

Uda M., Galanello R et al, Proc. Natl. Acad. Sci. USA 105, 1620-1625 (2008)

BCL11A is a major HbF quantitative trait locus in three different populations with β -hemoglobinopathies $\stackrel{i}{\sim}$

Amanda E. Sedgewick ^{a,1}, Nadia Timofeev ^{a,1}, Paola Sebastiani ^a, Jason C.C. So ^b, Edmond S.K. Ma ^b, Li Chong Chan ^b, Goonnapa Fucharoen ^c, Supan Fucharoen ^c, Cynara G. Barbosa ^d, Badri N. Vardarajan ^e, Lindsay A. Farrer ^{a,e,fg,h}, Clinton T. Baldwin ^{e,i}, Martin H. Steinberg ^d, David H.K. Chui ^{d,*}

Hb F variation associated SNPs

Bcl11A and HbF

genetic association detected by G-WAS

- SNP_s in IVS2 described in different populations, in HPFH, beta thalassemia, HbE, SCD
- High HbF is associated with low Bcl11A expression
- Bcl11A expression varies at different developmental stages
- Bcl11A is down-regulated by KLF1 gene

KLF1 regulates BCL11A expression and γ - to β -globin gene switching

Dewang Zhou, Kaimao Liu, Chiao-Wang Sun, Kevin M Pawlik & Tim M Townes

Delayed fetal hemoglobin switching in subjects with KLF1 gene mutation Stefania Satta^a, Lucia Perseu^b, Liliana Maccioni^a, Nicolina Giagu^c, Renzo Galanello^{a,*}

γ -globin gene expression in β -talassemia and in HPFH

use only.

Brief report

Amelioration of Sardinian β^0 thalassemia by genetic modifiers

Renzo Galanello,¹ Serena Sanna,² Lucia Perseu,² Maria Carla Sollaino,¹ Stefania Satta,¹ Maria Eliana Lai,³ Susanna Barella,¹ Manuela Uda,² Gianluca Usala,² Goncalo R. Abecasis,⁴ and Antonio Cao²

CONTRIBUTO DI ALCUNI ALLELI NEL DETERMINARE IL FENOTIPO DI TALASSEMIA MAJOR E INTERMEDIA

Blood,2009

Survival curves for 316 patients with different combinations of predictors for later and earlier time to transfusion

Time (years)

Locus		р	Hazards Ratio	Harrell's C-index	Predictor for later transfusion start
HBG2:g58C>T		<0.001	0.081	0.54	+/-
α gene defects		<0.001	0.514	0.61	class 2
BCL11A	rs1427407	<0.001	2.391	0.63	T allele
	rs10189857	0.005	1.312		G allele
HBS1L/MYB	rs4895441	<0.001	1.979	0.57	G allele
	rs6904897	0.020	0.697		TT genotype
Gender		0.016	0.738	0.52	Male

Clinically relevant fetal hemoglobin modifiers

- Genetic:
 - in cis variants:
- γ globin genes
- β globin cluster
- LCR
- *in trans* variants:
 - BCL11A
 - HBS1L-MYB
 - KLF1 mutations
 - GATA1

• Epigenetic:

- trisomy 13
- DNA methylation
- histone modification (acetylation, phosphorylation, methylation)
- erythropoiesis expansion (perturbation of erythroid kinetics)

Current hemoglobin switching model

Variance components of the F-cell trait

(MenzelS, 2009)

Rationale for HbF induction

- ✓ Gamma globin genes are intact
- HbF will functionally compensate for the absence of HbA (HPFH homozygotes, genetic compounds (β-thal/HPFH)
- HbF in post-natal life is influenced by physiological and genetic factors (pregnancy, acute erythroid expansion, haematological diseases, haemoglobinopathies)
- High cost of conventional treatment
- Problems wit blood safety and availability in several countries
 HbA = adult haemoglobin: HbE = fetal

HbF inducers

Class	Compound	
Hypomethylating/cytotoxic agents	5-azacytidine, decitabine	
Cytotoxic agents	hydroxyurea	
Histone Deacetylase Inhibitors	butyrate analogs, short chain fatty acids, adipicin, scriptaid, trichostatin A, valproic acid,	
Antioxidants	resveratrol, angelicin, curcumin	
Others	Erythropoietin, thalidomide	

Mechanisms for γ -globin induction by pharmacologic agents

Summary of clinical trials with HU in β-thalassemia syndromes

✓ 18 trials

- ✓ 7 thalassemia major, 8 intermedia, 3 HbE/ β -thal
- ✓ treated patients 573
- ✓ number of patients/trial: 2 to 163
- ✓ variable doses 3 to 30 mg/kg/day
- ✓ responding patients: 25 to 100%
- ✓ total hemoglobin increase: <1 g up to 4g/dl
- ✓ best response in thalassemia intermedia
- ✓ response correlates with XmnI polymorphism

The Xmnl and BCL11A Single Nucleotide Polymorphisms May Help Predict Hydroxyurea Response in Iranian β-Thalassemia Patients

2012, Vol. 36, No. 4 , Pages 371-380 (doi:10.3109/03630269.2012.691147) Mehdi Banan,¹ Hadi Bayat,¹ Azita Azarkeivan,^{2,3} Saeid Mohammadparast,¹ Koorosh Kamali,⁴ Samaneh Farashi,¹ Nooshin Bayat,⁵ Masumeh Hadavand Khani,³ Maryam Neishabury,¹ and Hossein Najmabadi^{1,5}

Thalidomide therapy in patients with thalassemia major.

Aguilar-Lopez et al Blood Cell Mol Dis 2008

➢ potential toxicity→ safety an long term

unpredictable and variable response

- effectiveness and long term (loss of efficacy overtime)
- compliance

Future directions

- > other safer and more effective compounds
- better understanding of molecular mechanisms
- combination therapies
- Correlation with individual genetic determinants
- personalized therapies
- impact on natural history

Induction of HbF by rapamycin

Conclusions

- second generation DNA technologies have improved the knowledge of globin gene modifiers
- well phenotyped cohorts of patients are essential for genetic research: your genetics is only as good as your phenotype
- gene modifiers are useful in the follow-up of disease -related complications and in drug selection and dosing
- genetic studies of disease modifiers can identify new potential targets for therapy
- An integrated approach by clinicians, geneticists, clinical researchers and basic scientists is needed to further improve the knowledge of variability and the treatment of patients with hemoglobinopathies