Biologic variability of HbA₂ and related parameters

Andrea Mosca, Renata Paleari

Centro Interdipartimentale per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME) Dip. di Fisiopatologia medico-chirurgica e dei trapianti Università degli Studi di Milano Milano, Italy

andrea.mosca@unimi.it

6th International Scientific Meeting NEW BIOLOGIC AND ANALYTIC ISSUES ON HEMOGLOBIN A₂ AND OTHER MINOR HEMOGLOBINS

November 27th, 2012 Milano Aula Magna - Settore Didattico Colombo

agenda

- What about analytical goals?
- \Box Goals for HbA₂
 - Experimental approach
 - Clinical needs/outcomes
 - Opinion of experts
- Conclusions

agenda

What about analytical goals?

- - -Cipinion-of-expents

What about analytical goals? IFCC-IUPAC conference, Stockolm 1999

- 1. Evaluation of the effect of analytical performance on clinical outcomes in specific (general) clinical settings
 - data based on components of biological variation
 - data based on analysis of clinicians' opinions
- 2. Published professional recommendations
- 3. Performance goals set by regulatory bodies or EQAS organizers
- 4. Goals based on the current state of the art

The Stockholm Consensus Conference on Quality Specifications in Laboratory Medicine, 25–26 April 1999

FOREWORD

Scand J Clin Lab Invest 1999; 59: 475

Defining the analytical goals

- Biological variation
- Clinical needs
- Opinion of experts

Analytical goals clinical outcomes

- Few examples in Laboratory Medicine
- For HbA_{1c}: simulation based on the DCCT study (CLSI C54-P, 2007)
 - Poor glycemic control: HbA_{1c} >8%
 - Good glycemic control: HbA_{1c}<7%

Allowable total error: to correctly classify a subject who has a true HbA_{1c} value of 7.5%, measurement error must not exceed 0.5% in absolute terms

±0.5 % (absolute) ±6.7 % (relative)

Clin Chem Lab Med 2010;48(5):623–626 © 2010 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2010.140

Recommendations for the implementation of international standardization of glycated hemoglobin in Italy¹⁾

- TEa % = 1.65 (0,75 CV_I) + 0,375 ($CV_{I}^{2} + CV_{G}^{2}$)^{1/2} (Minimal) •
- TEa % = 1.65 (0,5 CV_I) + 0,25 (CV_I² + CV_G²)^{1/2} (Desirable) •

- TEa % = 1.65 (0,25 CV_I) + 0,125 ($CV_I^2 + CV_G^2$)^{1/2} (Optimal)

- **TOTAL ERROR**

• $CV_{\Delta} \leq 0.5 CV_{I}$ (Desirable) • $BA < 0.25 (CV_1^2 + CV_G^2)^{0.5}$ (Desirable)

IMPRECISION

• $CV_{A} \leq 0,25 CV_{I}$ (Optimal) •

• $CV_{\Delta} \leq 0,75 CV_{I}$ (Minimal) •

$BA < 0.125 (CV_1^2 + CV_6^2)^{0.5}$ (Optimal)

 $BA < 0.375 (CV_1^2 + CV_6^2)^{0.5}$ (Minimal)

TRUENESS

Analytical goals derived from biological variation

•	http://www.westgard.com/biodatabase1.htm			√ 4 9	🗙 Google	
* @	Westgard QC: Desirable specifications for tot			🙆 • (a - 🖶 - 🗗	Pagina 🔻 🧿 Strumen
s most rec s, cons and	BLE SPECIFICATIONS FOR TOTAL ERROR, IMPRECI cent and extensive listing of biologic goals has been provided by Ricos C, Alvarez V, Cav d progress." Scand J Clin Lab Invest 1999;59:491-500. <u>These data were updated with</u> I: Within-subject and between-subject CV values of analytes and Desirable Analytical	a F, Garcia-Lario JV, Hernandez A, Jimen new data from 2008: see what was updated	ez CV, Minchinela J, <u>d here.</u>			es on biologic variation:
Albun Calcin Dehyo Immu	nin through & Fetoprotein nin through CA 549 antigen um through Cystein droepiandrosterone sulfate through Homocysteine moglobulin A through Lycopenene			See The Referen See The Referen See The Guest I	ices	1
pC02	tesium through Oxalate, output through Rheumatoid factor antigen through Zinc	Biological Variation		Desirable	-	
pC02	through Rheumatoid factor		CVg		-	ТЕ(%)
pC02	through Rheumatoid factor antigen through Zinc	Variation	CVg 31.5	Desirable specification		TE(%) 27.1
pC02	through Rheumatoid factor antigen through Zinc Analyte	Variation CVw		Desirable specification I(%)	n B(%)	
pC02	through Rheumatoid factor antigen through Zinc Analyte 11-Desoxycortisol	Variation CVw 21.3	31.5	Desirable specification I(%) 10.7	n B(%) 9.5	27.1
pC02	through Rheumatoid factor antigen through Zinc Analyte 11-Desoxycortisol 17-Hydroxyprogesterone	Variation CVw 21.3 19.6	31.5 52.4	Desirable specification I(%) 10.7 9.8	B(%) 9.5 14.0	27.1 30.2
pC02	through Rheumatoid factor antigen through Zinc Analyte 11-Desoxycortisol 17-Hydroxyprogesterone 5'Nucleotidase	Variation CVw 21.3 19.6 11.3	31.5 52.4 12.6	Desirable specification I(%) 10.7 9.8 5.7	B(%) 9.5 14.0 4.2	27.1 30.2 13.6
pC02	through Rheumatoid factor antigen through Zinc Analyte 11-Desoxycortisol 17-Hydroxyprogesterone 5'Nucleotidase 5'-Hidroxiindolacetate, concentration, 24 h	Variation CVw 21.3 19.6 11.3 20.3	31.5 52.4 12.6 33.2	Desirable specification I(%) 10.7 9.8 5.7 10.2	B(%) 9.5 14.0 4.2 9.7	27.1 30.2 13.6 26.5
pC02	through Rheumatoid factor antigen through Zinc Analyte 11-Desoxycortisol 17-Hydroxyprogesterone 5'Nucleotidase 5'-Hidroxiindolacetate, concentration, 24 h \alpha1-Acid Głycoprotein	Variation CVw 21.3 19.6 11.3 20.3 11.3	31.5 52.4 12.6 33.2 24.9	Desirable specification I(%) 10.7 9.8 5.7 10.2 5.7	B(%) 9.5 14.0 4.2 9.7 6.8	27.1 30.2 13.6 26.5 16.2
pC02	through Rheumatoid factor antigen through Zinc Analyte 11-Desoxycortisol 17-Hydroxyprogesterone 5'Nucleotidase 5'-Hidroxiindolacetate, concentration, 24 h α1-Acid Glycoprotein α1-Antichymotrypsin	Variation CVw 21.3 19.6 11.3 20.3 11.3 13.5	31.5 52.4 12.6 33.2 24.9 18.3	Desirable specification I(%) 10.7 9.8 5.7 10.2 5.7 6.8	B(%) 9.5 14.0 4.2 9.7 6.8 5.7	27.1 30.2 13.6 26.5 16.2 16.8

Pre-analytical variation: general sources

- Sex
- Age
- Race
- Food and drugs
- Seasonal variations
- Sample collection and storage

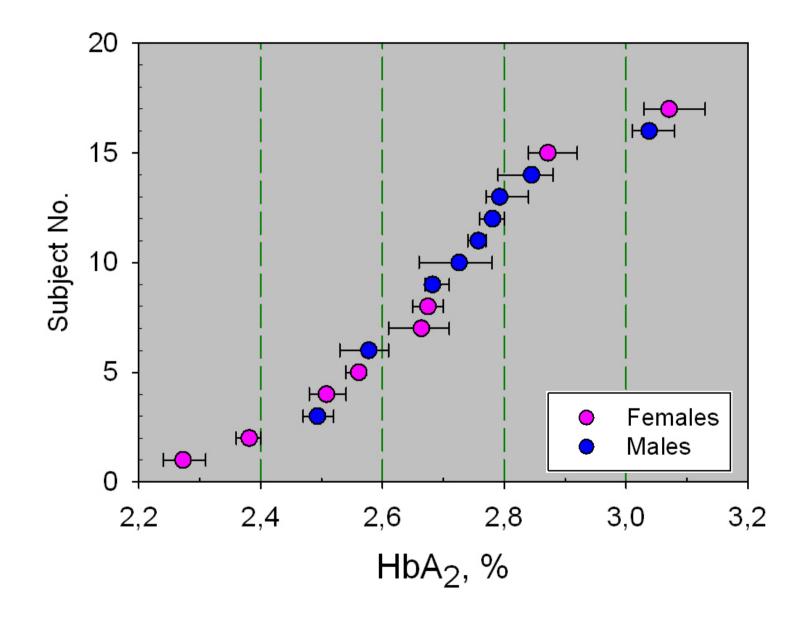
agenda

- Goals for HbA₂
 - Experimental approach
 - Clinical needs/outcomes
 - Opinion of experts

Th ideal protocol for the determination of the biological variability of an analyte

- Apparently healthy subjects
- No drugs or alcohol, usual life styles
- Phlebotomy by the same person at the same time of the day
- Optimal protocol for sample transport, processing and storage at -80 °C
- Analysis of all samples in a single run, in duplicate

Braga et al, Clin Chim Acta 2010;411:1606-1610


Experimental protocol

- N = 18 healthy subjects
 - N = 9 Men
 - N = 9 Women
 - Age: 26 52 y
- Five blood samples (every 2 weeks for 2 months)
- Parameters:
 - HbA_{1c}, glycated albumin, fructosamine, HbA₂
 - RBC, WBC, PLT, Hb, MCH, MCHC, MCV, RDW
- Measurements on fresh blood samples (whole blood cell count) and storage at -80 °C until analysis (minor hemoglobins, glycated albumin and fructosamine)
- Analysis of HbA₂ by HPLC

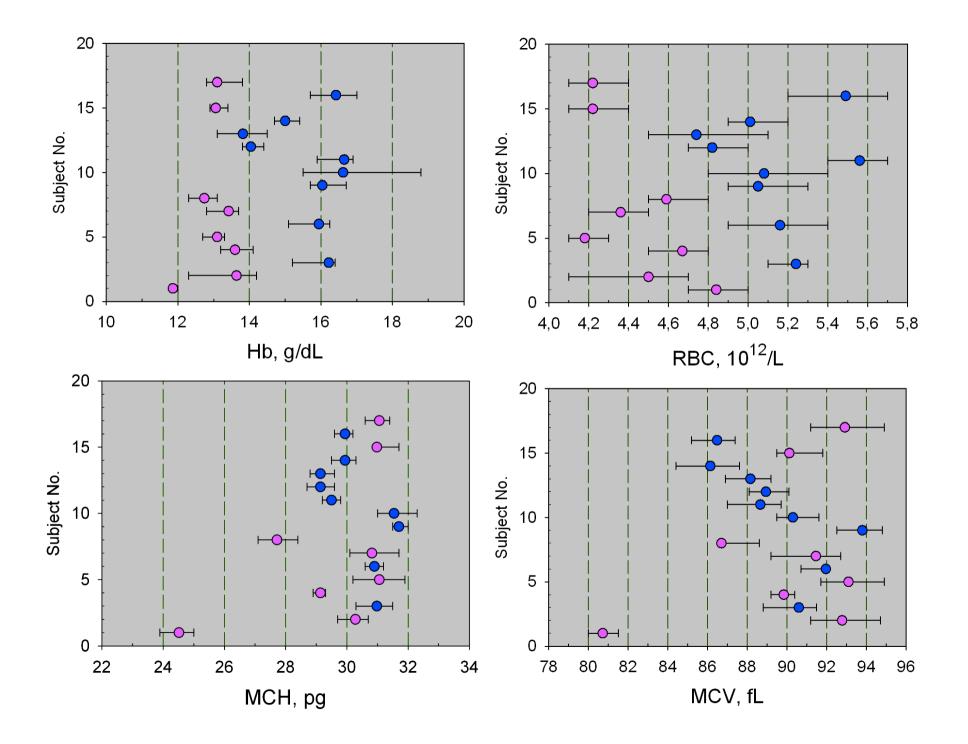
Data analysis

 $\sigma^{2}_{total} = \sigma^{2}_{anal} + \sigma^{2}_{I} + \sigma^{2}_{G}$

- Analytical variation: from the duplicate results for each specimen or from internal QC (whole blood cell count)
- Intra-individual variation: from the serial results for each subject
- Inter-individual variation: from the total variance of data, minus the analytical and intra-individual components

Biologic variation of HbA₂

Group	HbA ₂ %	CV %	CV _G %
Males	2.74	0.8	5.4
Females	2.63	0.6	9.2
All	2.69	0.7	7.7


No difference in HbA_2 mean values between genders (p=0.265)

HbA₂, analytical goals (1)

- Biologic variation -

Analytical	Quality level				
goal	Minimal	Desirable	Optimal		
Imprecision, %	0.5	0.3	0.2		
Bias, %	2.9	1.9	1.0		
Total error, %	4.5	3.0	1.5		

HbA₂

Parameter	,	Value	CV_1 %	CV _G %
Hb, g/dL	M	15.5	2.6	6.0
	F	13.1	3.2	3.9
	All	14.4	2.8 <mark>2.8</mark>	10.2 <u>6.6</u>
MCH, pg	M	30.3		2.9
	F	29.4	1.2	7.3
	All	29.9	0.7 <mark>1.6</mark>	5.5 5.2
MCV, fL	M	89.3	1.0	2.4
	F	89.8	1.1	4.3
	All	89.5	1.0 <u>1.3</u>	3.4 4.8
RBC , 10 ¹² /L	M	5.1	2.9	4.7
	F	4.4	3.0	4.8
	All	4.8	2.9 <mark>3.2</mark>	8.5 6.1

data from Westgard's database

Whole blood cell count

	Desirable	analytica	l goal
Parameter	Imprecision %	Bias %	TE %
Hb	1.4 1.4	2.6 1.8	7.3 4.1
мсн	0.4 0.8	1.4 1.4	2.5 2.7
MCV	0.5 0.7	0.9 1.2	2.6 2.3
RBC	1.5 1.6	2.3 1.7	7.1 4.4

data from Westgard's database

HbA₂, analytical goals (2)

- clinical needs -

HbA₂ = 3.3 % (upper normal) HbA₂ = 3.8 % (low β -thal carrier)

$$HbA_2 = 3.55 \% \rightarrow ?$$

TE = 0.25/3.55 x 100 = 7.0 %

HbA₂, analytical goals (3a)

- opinion of the experts -

Case no. Description/question

A pregnant woman is tested for β-thalassemia as part of her antenatal screening blood tests. The HbA₂ result is 3.5%. RBC, MCH, MCV are within the normal range. A repeat test is taken and this gives a result of 3.2%. Do you believe this new HbA₂ result to be significantly different from the previous value of 3.5%? Yes/No

Case no.	2	HbA ₂ change, %	TE, %	Team		Significancy (percent of the answers)
1	3.35	0.3	9.0	А	11	No (73%)
				В	83	No (64%)

Mosca et al, Clin Chem Lab Med 2012, October (ahead of print)

HbA₂, analytical goals (3b)

- opinion of the experts -

2 A pregnant woman is tested for β -thalassemia as part of her antenatal screening blood tests. The HbA₂ result is 3.2%. Iron studies undertaken at the same time indicate that she has iron deficiency. She is given iron supplements for 3 months after which time still MCV, MCH and Hb are low and a repeat test is taken. This gives a result of 3.7%.

Do you believe this difference to be significant? Yes/No

Case no.	HbA ₂ , mean, %	HbA ₂ change, %	TE, %	Team		Significancy (percent of the answers)
1	3.35	0.3	9.0	Α	11	No (73%)
				В	83	No (64%)
2	3.45	0.5	14.5	А	12	Yes (75%)
				В	83	Yes (81%)

Mosca et al, Clin Chem Lab Med 2012, October (ahead of print)

HbA₂, analytical goals (4)

- Summary -

approach	total error, %
Biologic Variability	4.5
Clinical needs	7.0
Opinion of the	9.0÷15
Opinion of the experts	9.0÷15

Conclusions

- The biological variability of HbA₂ is very small
- CV_I is < than CV_G: limit to the use of reference intervals based on populations
- The analytical goal for CV_a is very stringent
- The analytical goals can be different depending on the criterium
- More time is needed to accomplish a complete reference system for HbA₂ → IQC and EQAS are essential in order to keep under strict control the HbA₂ methods

Aknowledgments

Martina Montagnana, Gian Cesare Guidi (Verona University Hospital, Verona) (protocol, subjects)

Barbara Wild (UK NEQAS, UK) (opinion of the experts)

Looking forward to meeting you at

EUROMEDLAB Milano 2013

20th IFCC-EFCC European Congress of Clinical Chemistry and Laboratory Medicine

www.milan2013.org