

Towards a Certified Reference Material for HbA₂

amalia.MUNOZ-PINEIRO@ec.europa.eu

Joint Research Centre

Serving society Stimulating innovation Supporting legislation

What are Reference Materials (RMs)? RMs are essential tools to achieve traceability and ensure long-term comparability of results.

CRM Requirements

Traceability of values

• To ensure the continuity of measurement results from assays calibrated against successive reference materials

Commutability: resemble patient samples

Homogeneity

• The difference between the vials must be sufficiently small

Stability

• The material must be stable over many years

Correct concentration range:

• The relevant decision interval should be covered 2.0 - 8.1 %

Low turbidity (for turbidimetry, nephelometry)

Traceability

Being traceable to a common standard or stated reference should ensure that independently obtained measurement results will overlap within their stated uncertainties and at a certain level of confidence with the true value and consequently with each other

- provided that measurement procedures applied in the traceability chain determine the same measurand
- -if the comparison measurements do not introduce **unrecognised bias** (e.g. matrix effects, differential extraction etc.)
- if all relevant uncertainty components are included in the estimate of the combined uncertainties

Traceability chain

Uncertainty

Value is assigned together with uncertainty

Certified value	U _{CRM} (<i>k</i> = 2)
[mg/L]	[mg/L]
XX.X	X.X

Main components of the uncertainty budget:

- \checkmark characterisation
- ✓ calibrant purity
- ✓ homogeneity (bb)
- \checkmark stability

$$U_{CRM} = k \sqrt{u_{char}^2 + u_{cal}^2 + u_{bb}^2 + u_{lts}^2}$$

CRM unsuitable

Method suitable?

HbA_2 marker for β -thalassemia

Feasibility study

- Characterisation
- Correlation studies:
 - do results on clinical samples form different methods correlate? If not, harmonisation is not possible by recalibration only
- Commutability studies:
 - can we select an process a material so that is has similar properties as clinical samples?
- Stability:
 - producing a material stable for 10-20 years
- Value assignment:
 - develop a strategy for assigning values to the reference material

HbA2 – marker for β -thalassemia

First batch

- human hemolysate with normal HbA₂ concentration
- lyophilized form
- 100 vials

Processing

Characterization

Characterization

	Total Hb g/L	Met Hb %
Mean	129	0.8
SD	1	0.2
n	9	4

Hemoglobin absorption spectrum

- Typical of oxygenated Hb, no oxidation

Total hemoglobin and derivatives

- Concentrations similar to that of whole blood

Comparing the response of Reference Materials (RMs) with the response of patient samples

• Patient samples

Commutability test

- Non-commutable RM,
- assigned value 100
- Calibration with noncommutable RM
- Commutable RM, assigned value 100
- Calibration with commutable RM

-95 % prediction interval

Commutability test

Research Centre

Sort Term Stability

lyophilized material - June 2009 -

storage temp. +4 °C

Long Term Stability

storage temp. -20 °C - October 2012 -

Second batch Processing

Second batch

human hemolysate with normal HbA2 concentration

Preparation of stabilized hemolysate Milan (Oc. 2010)

Lyophilization under argon atmosphere to prevent oxidation during storage *IRMM* (Feb. 2011)

storage temp. +4 °C

Conclusions

Lyophilised human hemolysate

- Characterisation by: UV, CE, electrophoresis \checkmark
- Commutable 🗸

- Correlation: further investigation on the differences in value assignment when using polyCATA, RP C4 globin and Sebia Hydrasys 🗸

- STS : stable at 4 °C for 4 weeks 🗸
- LTS : stable at: -20 °C ✓ +4 °C under N₂ ✓
- Value assignment of purified calibrant: by LC/MS 🗸

A. Mosca, R. Paleari

Dept. of Science and Biomedical Technology Centro Riferibilità Metrologica in Medicina di Laboratorio (CIRME) Milano, Italy

H. Schimmel European Commission DG JRC - IRMM Standards for Innovation and Sustainable Development (SID) Geel, Belgium

