
DIAGNOSIS OF THE THALASSAEMIA SYNDROMES:

MEASUREMENT OF HAEMOGLOBIN A₂

Barbara Wild

UK National External Quality Assessment Scheme London

Globin biosynthesis

The importance of Hb A₂ measurement

Hb A₂ is measured as a *proportion* of the *total* haemoglobins present, not as an absolute amount

Hb A₂ measurement is used as a marker for beta thalassaemia trait. Carrier detection is important because:

Beta thalassaemia carriers are asymptomatic but homozygous beta thalassaemia is a life-threatening disorder

The importance of Hb A₂ measurement

- Accurate and reliable measurement of Hb A₂ is essential for the diagnosis of beta thalassaemia trait
- Small difference (if any) between normal & abnormal levels
- Antenatal women should be screened for beta thalassaemia trait
- Carriers: recommend partner testing
 prediction of genetic risk
- Failure to detect condition may result in newborn with a medically significant condition

Screening for beta thalassaemia trait

- Full blood count with red cell indices: RBC, Mean Cell Volume and Mean Cell Haemoglobin
- Hb A₂ %
- Hb F %
- Screen for haemoglobin variants
- Iron status ferritin, zinc protoporphyrin
- Family history

Measurement of Hb A₂

Automated methods

- High Performance Liquid Chromatography
- Capillary electrophoresis
- Mass spectrometry

Manual methods

- Hb electrophoresis with elution
- Microcolumn chromatography

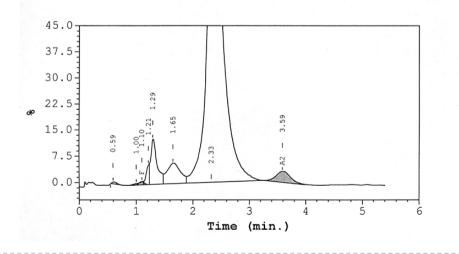
Interpretation

Normal: 2.2-3.5% (usually<3.3%) Beta thalassaemia trait: >3.5%

▶ 4

High performance liquid chromatography

General principle

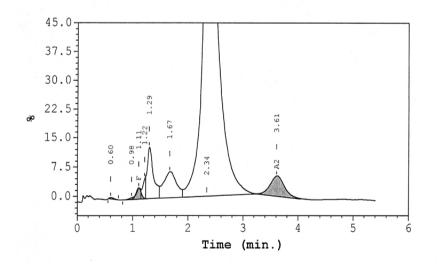

- Utilises a weak cation-exchange column
- Hb molecules adsorb onto the column saurated with low ionic strength buffer
- Buffer with increased ionic strength used to elute haemoglobins from column
- Haemoglobins will elute when ionic strength of eluting solution exceeds that of the haemoglobins
- Retention time of a particular haemoglobin is characteristic and reproducible, *but not unique*

HPLC analysis - normal adult

Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area
Unknown		0.1	0.59	3217
Unknown		0.1	1.00	3321
F	0.3		1.10	7753
Unknown		1.1	1.21	29205
P2		4.8	1.29	125635
Р3		4.7	1.65	121998
Ao		86.0	2.33	2232443
A2	3.1		3.59	70883

Total Area: 2594456

F Concentration = 0.3 % A2 Concentration = 3.1 %

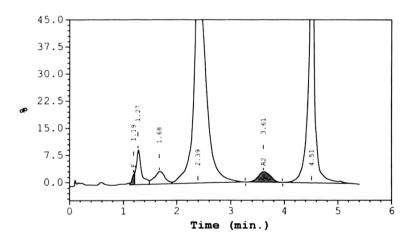

Beta thalassaemia trait

Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area
Unknown		0.1	0.60	2439
Unknown		0.1	0.98	2463
F	1.0		1.11	23374
Unknown		1.0	1.22	26601
P2		5.0	1.29	128590
P3		5.2	1.67	133229
Ao		83.0	2.34	2115341
A2	5.2*		3.61	115816

Total Area: 2547853

F Concentration = 1.0 % A2 Concentration = 5.2* %

*Values outside of expected ranges

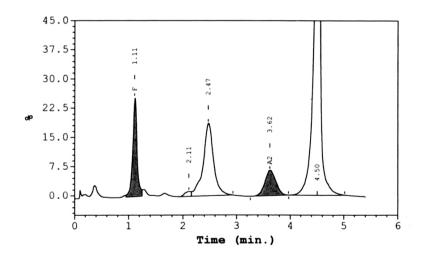


Sickle cell trait

Peak Name	Calibrated Area %	Area 😚	Retention Time (min)	Peak Area
F	0.6		1.19	16136
P2		3.8	1.27	106506
P3		2.8	1.68	78920
Ao		54.8	2.39	1539681
A2	2.9		3.61	75289
S-window		35.3	4.51	991769

Total Area: 2808300

F Concentration = 0.6 % A2 Concentration = 2.9 %


Hb Sβ+thalassaemia

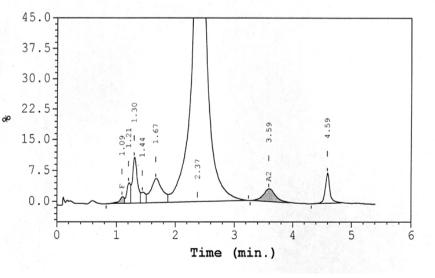
Peak Name	Calibrated	Area 18	Retention	Peak Area
F	9.0*		1.11	153554
Unknown		0.7	2.11	11443
Ao		16.2	2.47	273375
A2	6.5*		3.62	99298
S-window		68.1	4.50	1149258

Total Area: 1686929

FC	Concentration =	9.0* %
A 2	Concentration =	6.5* %

*Values outside of expected ranges

δ chain variant

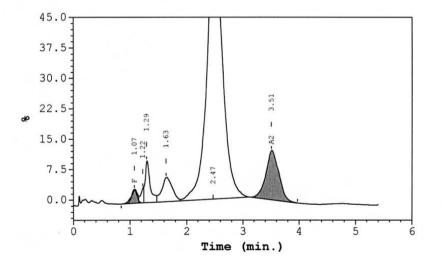

Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area
F	0.5		1.09	9567
Unknown		1.3	1.21	22251
P2		3.7	1.30	64598
Unknown		0.8	1.44	14465
P3		4.5	1.67	78283
Ao		84.2	2.37	1465577
A2	3.1		3.59	44847
S-window		2.4	4.59	41401

Total Area: 1740990

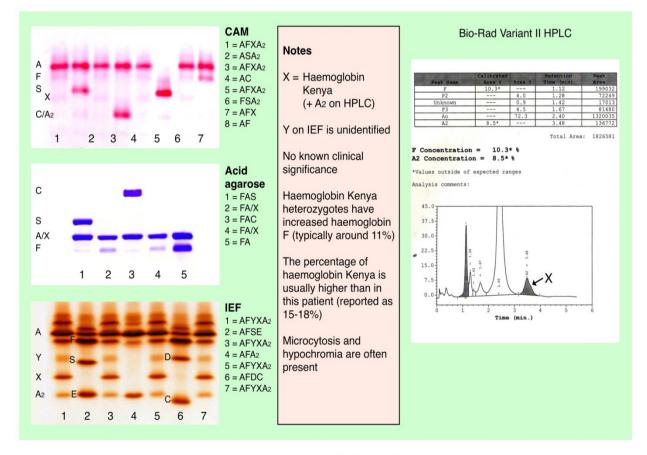
Consider total Hb A₂ and review red cell indices

Note: also check for carry-over *

F Concentration = 0.5 % A2 Concentration = 3.1 %

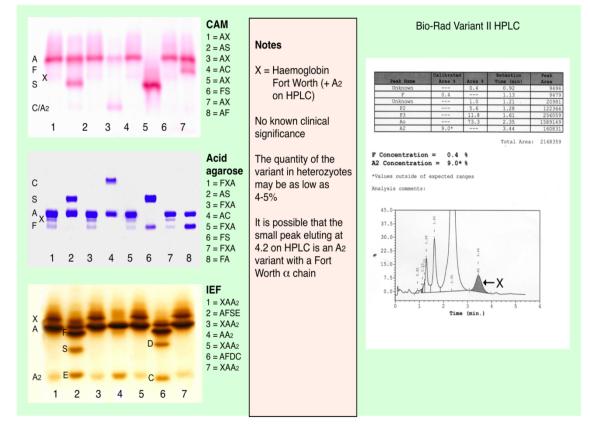

Hb Lepore trait

Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area
F	1.5		1.07	25436
Unknown		0.9	1.22	16792
P2		3.7	1.29	71547
P3		4.6	1.63	88564
Ao		78.0	2.47	1518633
A2	12.2*		3.51	225141


Total Area: 1946114

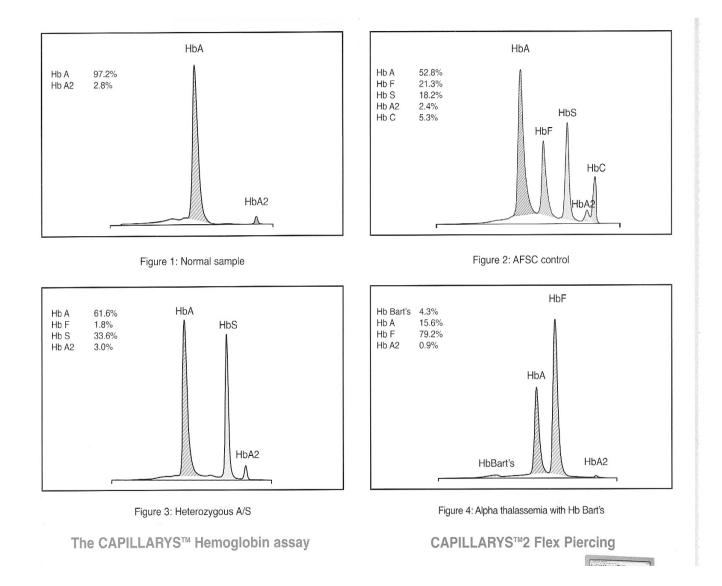
F Concentration = 1.5 % A2 Concentration = 12.2* %

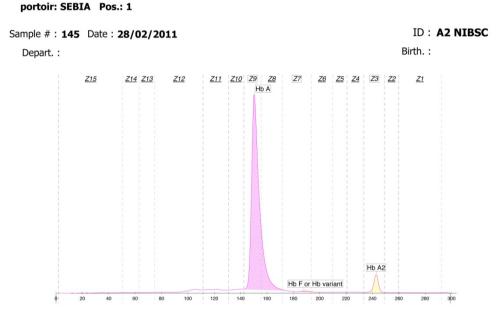
*Values outside of expected ranges



Hb Kenya trait

Haemoglobin Kenya ($\gamma\beta$ fusion) heterozygote


Hb Fort Worth trait


Haemoglobin Fort Worth - α 27 (Glu \rightarrow Gly) heterozygote

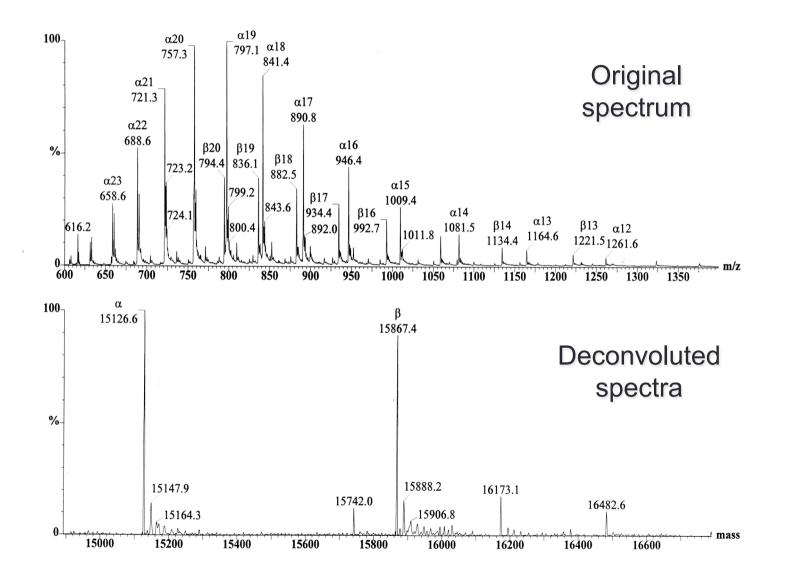
Capillary electrophoresis

- Utilises a thin capillary of silica, diameter approx 50-75vm
- Inner surface of the capillary has a negative charge
- High voltage applied (10-30kv) capillary generates endo-osmotic flow (EOF) towards cathode
- Hbs separated because of different charges-fractions move towards the cathode because of EOF
- Electropherograms of peaks of a particular haemoglobin is characteristic and reproducible, *but not unique*

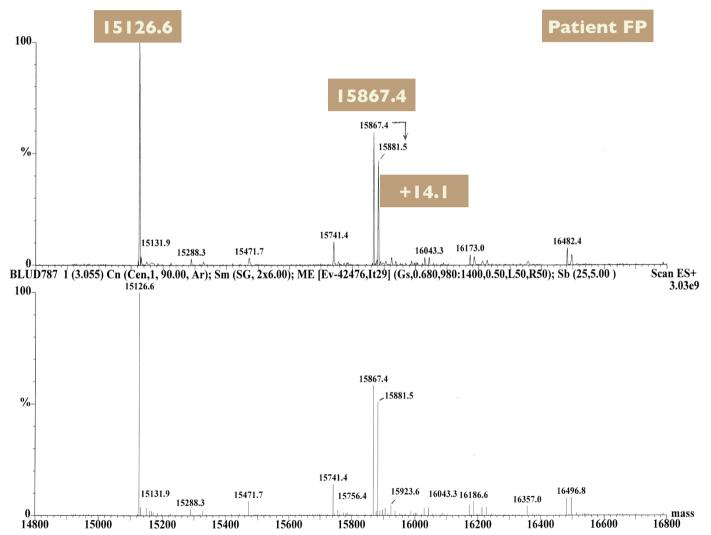
Capillary electrophoresis

Haemoglobin Electrophoresis

Name	%		Normal Values %
Hb A	94,4	<	
Hb F or Hb variant	0,4		
Hb A2	5,2	>	


High throughput haemoglobin variant mutation analysis and protein biomarker quantitation using dried blood spots

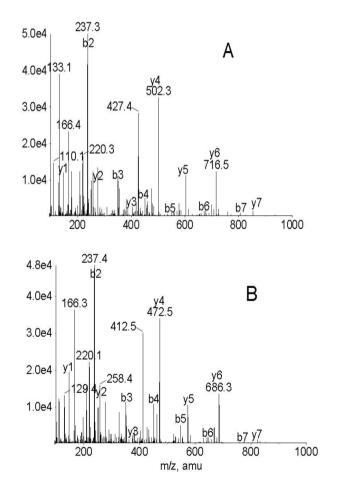
Neil Dalton, Charles Turner & Yvonne Daniel


The use of Mass Spectrometry for screening and identification of the haemoglobinopathies

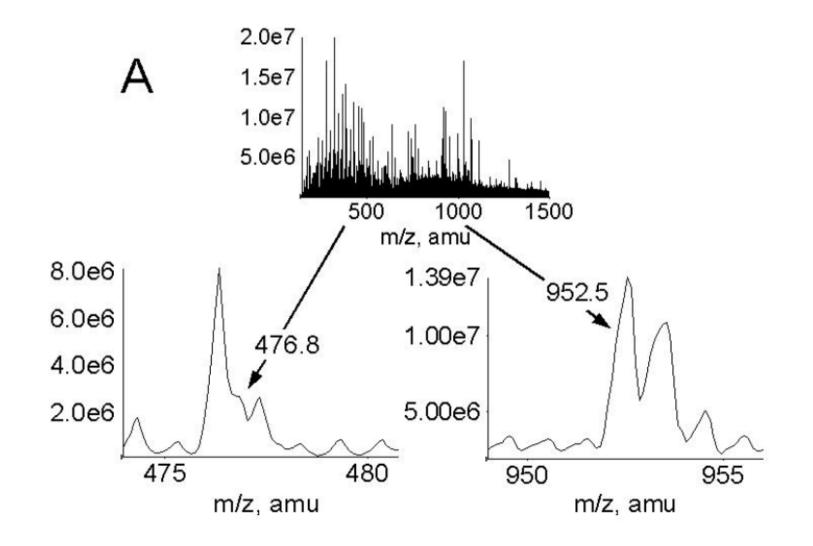
- MS technique based on mass differences in globin chains
- Initially used for identification of variants detected on screening
- Being developed as potential approach for haemoglobinopathy screening

ESI-MS: normal whole blood

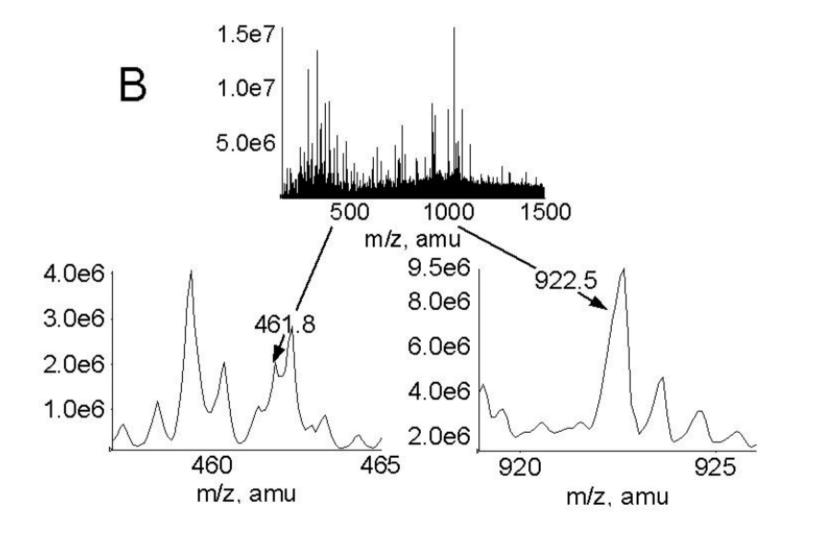
Electrospray ionisation mass spectrometry Hb Johnstown


High throughput haemoglobin variant mutation analysis and protein biomarker quantitation using dried blood spots

Wild-type T1 VHLTPEEK MW 951.5


Doubly charged peptide, m/z 476.8 Product ion (y4), m/z 502.3

Sickle T1 VHLTPVEK MW 921.5


Doubly charged peptide, m/z 461.8 Product ion (y4), m/z 472.5

Wild-type β T1 isolation

Sickle β T1 isolation

High throughput haemoglobin variant mutation analysis and protein biomarker quantitation using dried blood spots

Protein/peptide quantitation: Antenatal screening for β -thalassaemia trait

HbA₂ is about 2% of total haemoglobin 4% in β -thalassaemia trait

HbA is $\alpha_2\beta_2$

HbA2 is $\alpha_2\delta_2$

Could the δ/β ratio be used as a biomarker for β -thalassaemia trait? What are the differences in the peptides?

	T1	T2	тз
Beta	Val-His-Leu-Thr-Pro-Glu-Glu-Lys	Ser-Ala-Val-Thr-Ala-Leu-Trp-Gly- Lys	Val-Asn-Val-Asp-Glu-Val-Gly-Gly- Glu-Ala-Leu-Gly-Arg
Delta	Val-His-Leu-Thr-Pro-Glu-Glu-Lys	Thr-Ala-Val-Asn-Ala-Leu-Trp-Gly- Lys	Val-Asn-Val-Asp-Ala-Val-Gly-Gly- Glu-Ala-Leu-Gly-Arg
	Τ4	Т5	Т6
Beta	Leu-Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg	Phe-Phe-Glu-Ser-Phe-Gly-Asp-Leu- Ser-Thr-Pro-Asp-Ala-Val-Met-Gly- Asn-Pro-Lys	Val-Lys
Delta	Leu-Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg	Phe-Phe-Glu-Ser-Phe-Gly-Asp-Leu- Ser-Ser-Pro-Asp-Ala-Val-Met-Gly- Asn-Pro-Lys	Val-Lys
	Т7	Т8	Т9
Beta	Ala-His-Gly-Lys	Lys	Val-Leu-Gly-Ala-Phe-Ser-Asp-Gly- Leu-Ala-His-Leu-Asp-Asp-Leu-Lys
Delta	Ala-His-Gly-Lys	Lys	Val-Leu-Gly-Ala-Phe-Ser-Asp-Gly- Leu-Ala-His-Leu-Asp-Asp-Leu-Lys
	T10	T11	T12
Beta	Gly-Thr-Phe-Ala-Thr-Leu-Ser-Glu-Leu-His-Cys-Asp-Lys	Leu-His-Val-Asp-Pro-Glu-Asn-Phe- Arg	Leu-Leu-Gly-Asn-Val-Leu-Val-Cys- Val-Leu-Ala-His-His-Phe-Gly-Lys
Delta	Gly-Thr-Phe-Ser-Thr-Leu-Ser-Glu-Leu-His-Cys-Asp-Lys	Leu-His-Val-Asp-Pro-Glu-Asn-Phe- Arg	Leu-Leu-Gly-Asn-Val-Leu-Val-Cys- Val-Leu-Ala-Arg
	T13	T14	T15
Beta	Glu-Phe-Thr-Pro-Pro-Val-Gln-Ala-Ala-Tyr-Gln-Lys	Val-Val-Ala-Gly-Val-Ala-Asn-Ala-Leu- Ala-His-Lys	Tyr-His
Delta	Asn-Phe-Gly-Lys	Glu-Phe-Thr-Pro-Gln-Met-Gln-Ala- Ala-Tyr-Gln-Lys	Val-Val-Ala-Gly-Val-Ala-Asn-Ala-Leu- Ala-His-Lys
	T16		
Delta	Tyr-His		

Measurement of δ : β globin peptide ratio

- Samples subjected to tryptic digestion
- Multiple Reaction Monitoring undertaken for

 δ T2, T3 and T14 peptides

 β T2, T3 and T13 peptides

 $\delta:\beta$ peptide ratios calculated

Study validated the quantitative δ : β globin peptide ratio as a surrogate marker of Hb A₂

Developed within concept of National Screening Programme needs

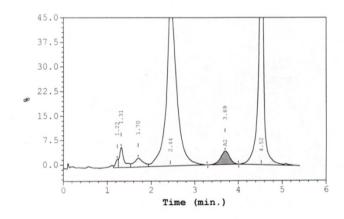
Daniel et al 2007

Interpretation of Hb A₂ levels

Hb A₂ percentage is *increased* in:

- Beta thalassaemia trait
- Presence of an unstable haemoglobin
- Hyperthyroidism
- Some cases of congenital dyserythropoietic anaemia, type I
- HIV infection
- Sickle cell trait or anaemia

HPLC analysis – sickle cell trait

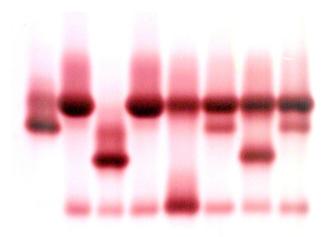

Peak Name	Calibrated Area %	Area 8	Retention Time (min)	Peak Area
Unknown		0.7	1.22	16980
P2		2.7	1.31	66113
P3		2.4	1.70	59077
Ao		51.0	2.44	1269933
A2	4.0*		3.69	87752
S-window		39.8	4.52	990327

Total Area: 2490183

F Concentration = % A2 Concentration = 4.0* %

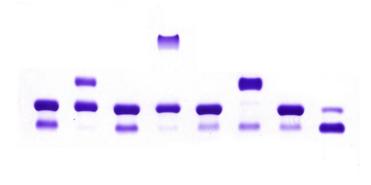
*Values outside of expected ranges

Analysis comments:



Normal FBC

Hb S% : 35-45


Hb A_2 may be raised

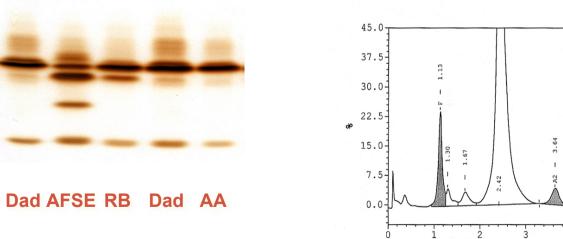
Hb Yokohama trait

FA Dad SF Dad AC RB AS RB

RB

RB AS RB AC Dad SF Dad FA

5


4

Time (min.)

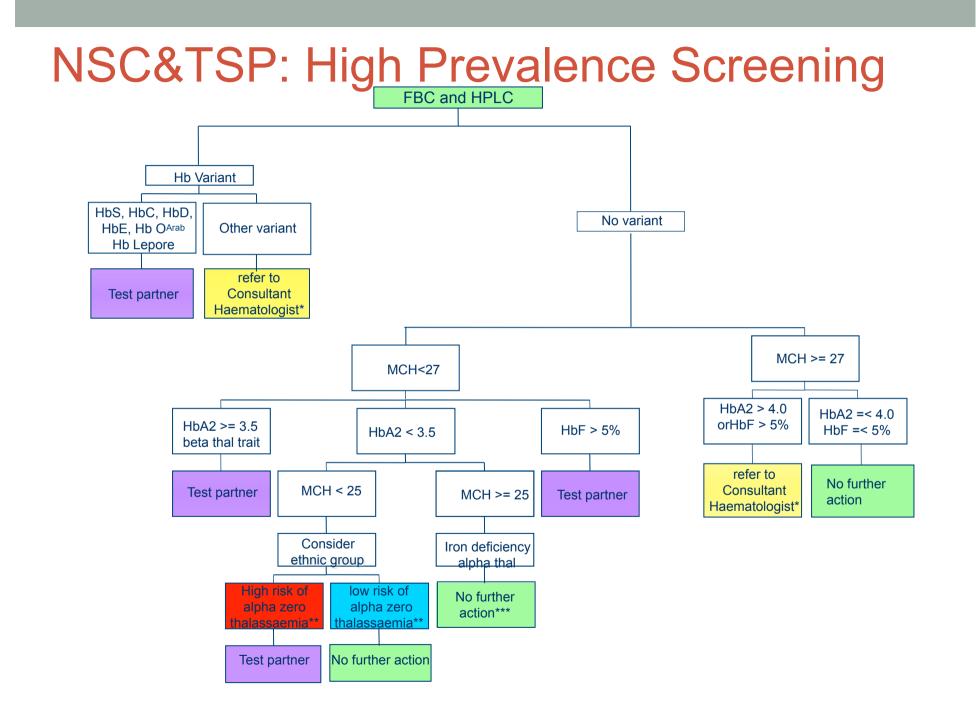
6

F Concentration = 10.3* % A2 Concentration = 4.2* %

*Values outside of expected ranges

Interpretation of Hb A₂ values

Haemoglobin A₂ percentage is decreased in


- δ thalassaemia
- Delta/beta thalassaemia
- α thalassaemia trait or haemoglobin H disease
- Severe iron deficiency

National Sickle & Thalassaemia Screening Programme

- Established to provide a linked screening programme for antenatal women and newborn
- Universal screening
- Established laboratory standards
- Standardised reporting formats
- Standardised methodology (newborn)

• Decision algorithm (antenatal)

From : Haemoglobinopathy diagnosis, BJ Bain

Mutation	Origin	Usual mean Hb A ₂ (%)	Usual mean MCH (pg)	Usual mean MC\ (fL)
Silent β thalassaemia tra	ait (normal MCV, M	ICH, and Hb A	2 %)	
$-101 (C \rightarrow T)$	Mediterranean	3.3	28	85
$-92 (C \rightarrow T)$	Mediterranean	3.5	28	82
IVSII-844 (C \rightarrow G)	Mediterranean (Italian)	3.5		85
$+33 \text{ C} \rightarrow \text{G} [64]$	Mediterranean (Greek Cypriot)	3.0	29	86
+10 (-T) [65]	Mediterranean (Greek, one case)	2.6	32	97
+1480 C \rightarrow G (termination	Mediterranean	2.7 [62]	28	88
$\operatorname{codon} + 6C \rightarrow G)$	(Greek)	2.4 [61]		
Almost silent β thalassa	emia trait (reduce	d MCV, MCH, r	normal Hb A2 %)	
IVSI-6 (T \rightarrow C)	Mediterranean*	3.5	23	71
Codon 27 (G \rightarrow T) (haemoglobin Knossos [†])	Mediterranean and Middle Eastern	2.1	25	71
IVSI-5 (G \rightarrow A) Corfu $\delta\beta^{\ddagger}$	Mediterranean			
IVSI-128 (T \rightarrow G)	Saudi	3.5	25	70
$CAP+1 (A \rightarrow C)$	South Asian	3.4	25	80
Mutation not linked to β globin gene cluster [43]	Italian	1.6 [§]	23.5 [§]	76 [§]
$+22 \mathrm{G} \rightarrow \mathrm{A}[66]$	Turkish, Bulgarian	3.9	23.5	79
ndices typical of thalass	aemia trait but Hb	A2 % normal		
β Thalassaemia caused by deletion of the locus control region	Various	Normal	Typical of β thalassaemia	Typical of β thalassaemia
γδβ Thalassaemia	Various	Normal	Typical of β thalassaemia	Typical of β thalassaemia

Risk assessment:

UK National screening programme

- The following conditions will be missed:
- Silent or near silent beta thalassaemia carrier
- Possible beta thalassaemia carrier obscured by severe iron deficiency
- Alpha zero thalassaemia occurring outside of the defined at-risk family origins
- Dominant haemoglobinopathies where the woman has no haemoglobinopathy
- Any significant variant not detected by HPLC

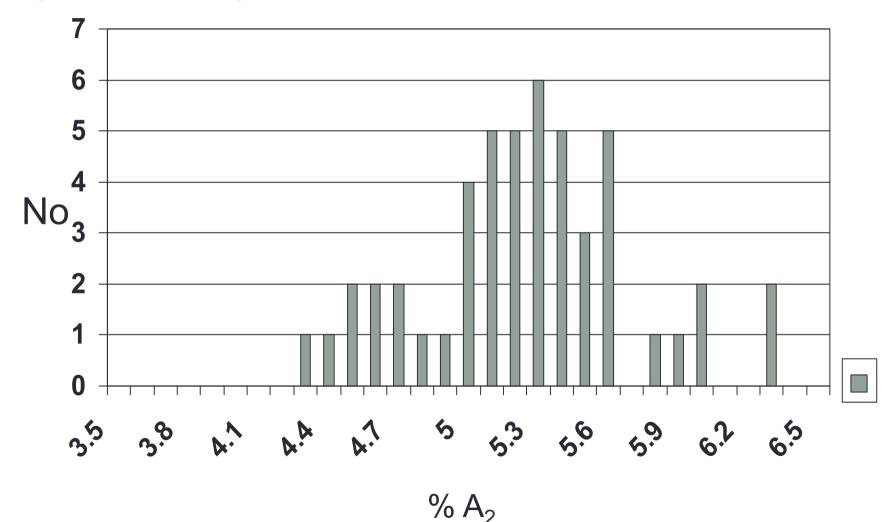
Normal Hb $A_2 \beta$ thalassaemia in Europe

Aim: To determine the extent of the problem associated with normal Hb $A_2 \beta$ thalassaemia mutations

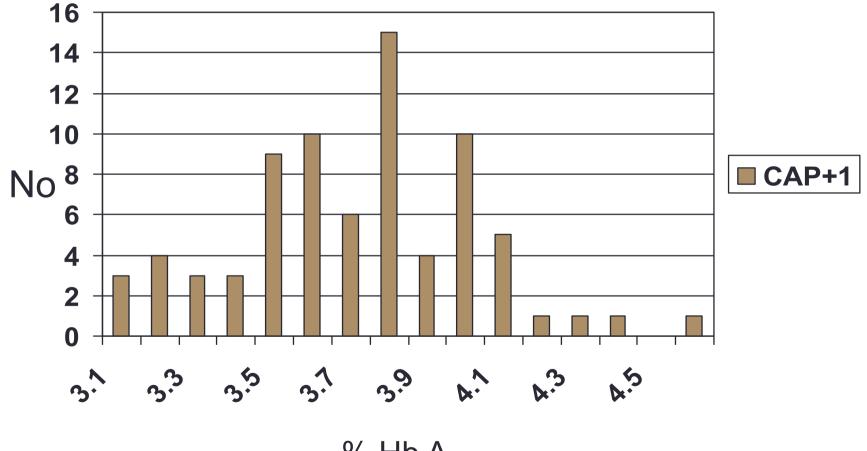
Subjects: 226 patients from Tunisia, Greece, Cyprus and UK

Criteria for selection: Hb A₂ values of 3.3-3.8%

Methods: Samples analysed by ARMS-PCR & β sequencing


Normal Hb $A_2 \beta$ thalassaemia in Europe

- 22 cases were outside of the 'average' A₂ and MCH groups
 - Of these:


All of the IVS1-6 patients had a reduced MCH 10/13 of the CAP+1 patients had a reduced MCH

• An additional 35 patients with Hb A₂ values >3.5% gave normal β gene sequencing results

Hb A₂ values of a standard β -thalassaemia mutation (IVSI-5 G \rightarrow C): 4.5% - 6.5%

Hb A₂ values of an atypical β -thalassaemia mutation (CAP+1 A \rightarrow C)

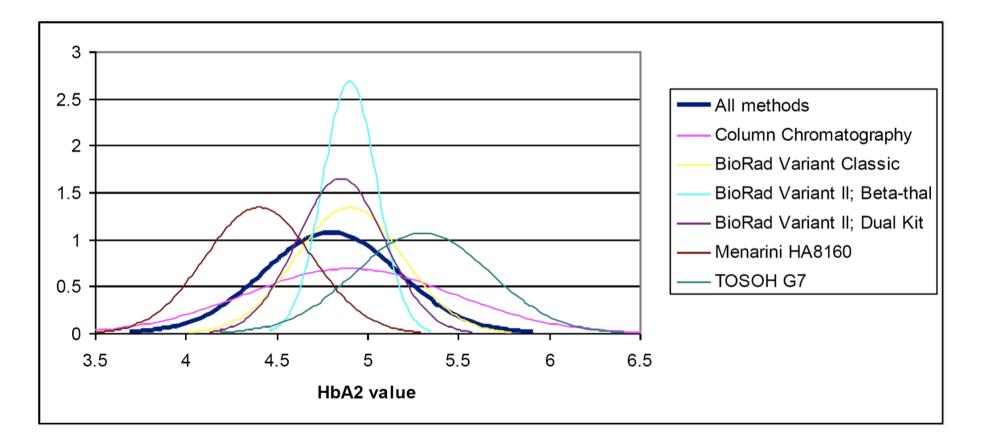
% Hb A_2

Average values

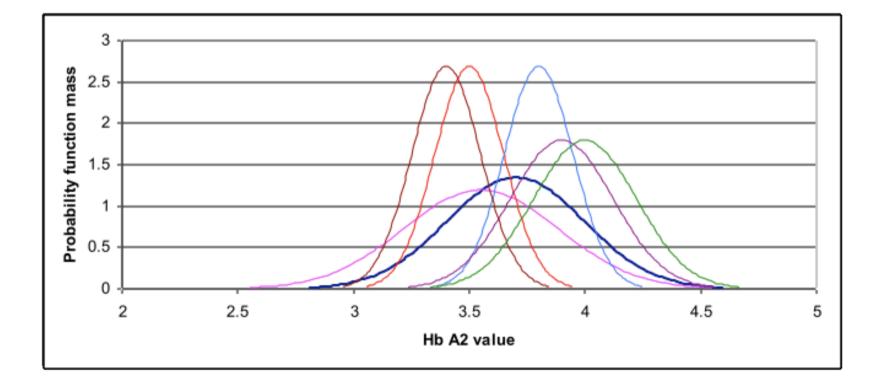
mutation	cases	Hb A ₂	MCH	MCV
+1480 (C→G)	18	2.9	28.2	89
-101 (C→T)	42	3.8	29.0	89
CAP+1 (A→C)	75	3.7	25.4	79
IVSI-6 (T→C)	34	4.2	22.7	72
Poly A (A \rightarrow G)	10	3.9	24.7	76
Poly A (T \rightarrow C)	5	4.0	22.4	73
Poly A (-AT)	2	3.8	22.7	72
Poly A (-AA)	8	4.0	23.6	73

Patients with a raised Hb A_2 and no β -thalassaemia

- 3 had MCH below 27 pg with normal α -genotype
- Possible causes: mutation in LCR or enhancer sequence
- 21 had a MCH above 27pg: Are these patients normal?
- Possible known causes:
 - HIV drug treatment,
 - Hyperthyroidism
- Is it the tail end of the range for normal individuals?


UKNEQAS: UK National External Quality Assessment Scheme

- Participants are required to give analytical results and an interpretation
- With increase in technologies:
- Results of Hb A₂ measurement related to methodology used
- Identified differences in values obtained from different technologies and/or kits


Normal sample: Hb A₂ 2.6%

Beta thal trait sample: Hb A₂ 4.8%

Borderline sample: Hb A₂ 3.7%

Performance scoring for Hb A₂: Considerations for UKNEQAS

 Use of different normal ranges – variation even within same instrument group

Use of a universal cut-off
 Instrument bias – impact on borderline values

Measurement of Hb A₂ ICSH recommendations ISLH Oct 2011

- Previous ICSH recommendations written in 1978
- Hb A₂ is measured as a percentage of haemoglobin present relative to any other haemoglobin present – not an absolute value
- Therefore analytically important to measure the A₂ and any other fractions present – separation, resolution and integration crucial
- In the presence of an Hb A₂ variant, it is the total of the normal and abnormal Hb A₂ which is significant

ICSH recommendations ISLH Oct 2011

- Fraction separation by
- Electrophoresis with elution or microcolumn chromatography
- Quantification by spectrophotometry at 415nm
- HPLC
- Capillary Zone Electrophoresis
- Capillary Isoelectric Focusing

- DNA analysis is required for the characterization of
- beta thalassaemia mutations

ICSH recommendations ISLH Oct 2011

- Measurement of the Hb A₂ alone cannot absolutely confirm or exclude the carrier state as the there may be little difference between A₂ in normals and some beta thalassaemia carriers
- Precision levels should be +/- 0.1% of the final answer (SD 0.05%)
- Common beta thalassaemia trait Hb $A_2 = 4.0 6.0\%$
- Beta thalassaemia trait overall usually Hb $A_2 = 3.5 7.0\%$
- Normal subjects usually Hb $A_2 = 2.2-3.3\%$

Current developments

Instrument calibration-use of calibrant(s)

- Target value for performance scoring:
 - all methods mean
 - method-specific mean current target
 - submethod-specific mean
 - Development of new Hb A₂ reference material

Acknowledgements

For information on beta thalassaemia mutations in Europe:

Dr John Old National Haemoglobinopathy Reference Laboratory, Oxford

For assessment of Hb A₂ in UKNEQAS scheme: Barbara Dela Salle, UKNEQAS Hannah Batterbee, Royal Hallamshire Hospital / UKNEQAS