

Are Commercial Analytical Systems Fulfilling goals based on Medical Relevance?

A/Prof Graham Jones Department of Chemical Pathology St Vincent's Hospital, Sydney

Are we good enough?

If not, what will we do about it?

Thanks to Dr Ken Sikaris (Melbourne Pathology), Jan Gill (RCPA QAP)

Summary

- Background Concepts
- QC
- EQA

My comments will be added in this type of text

Roles

Profession (e.g., IFCC, JCTLM):

Define analytical objectives: reference measurement systems (traceability chain) and associated clinically acceptable uncertainty (fitness for purpose)

Diagnostic manufacturers:

Implement suitable analytical systems (platform, reagents, calibrators, controls) fulfilling the above established goals

End users (clinical laboratories):

(National) Laboratory Collaboration

Survey assay and laboratory performance through

- IQC: testing system controls to confirm and verify manufacturer's declared performance of commercial systems (CE marked – virtually unbiased)

- EQA (true value in commutable materials): defining uncertainty of laboratory measurements

Medical decision making

- Pathology results are (only) used to assist with medical decisions
- Errors may lead to a patient being:
 - -wrongly given treatment
 - -wrongly denied treatment
 - -wrongly investigated further
 - -wrongly not-investigated further

Medical errors

- An error in one result may affect one patient
- An error in an assay (eg bias) may affect many patients
- An error in a reference interval may affect many patients

Medical decision making

- Pathology results are (only) used to assist with medical decisions
- Errors may lea Many Patients

 wrongly giving treatment
 - -wrongly denied treatment
 - -wrongly investigated further
 - -wrongly not-investigated further

Effect on medical decision-making defines our quality standards

Waste

- Unnecessary testing costs:
- Germany 1.5 Billion US\$ per year
 - German Health Report 1998
- USA 7.5 Billion US\$ per year
 Willie May, Chief Analytical Chemistry NIST
- Australia? (0.5 Billion A\$)

Analytical quality is important: to patients (and payers)

Murphy KE et al. J. Anal. At. Spectrom., 2002, 17, 469–477

Factors Affecting Blood Tests

Patient

Collection

Measuring

USGS				SATON AL WE DEBLIE ALDI CENTO UNI SCHOLDER BOAD MADERS, WESTLICE BREEK WESTLICE FOR HELTSON			
	9.40	PHINIA	NS from NA		ONAL.	DOX REPOR FISH HARC D STATES, 2	HEREES IN
Submittee Nam Deal & Jame Bandmineh UND Planetet arbhreit Samon Camer					Date of Report 1 or Gaussian 2001 Care Soci. 4502, 4603-1625		
1909 Santo-en 11 ⁸ Anna Games-Ric Hi, 2019				Capture Dates: May & last 2009			
Spec	finera o Trà	Capture			Lin-	NWBC	
11	Henders.	Puter 20 Mar 01	Spector.	-	State:	Area Ve.	Trimer Diagness V513-1300.42
8	Webs	20 March	A paster.	- 2	Care.	MAME	VER SA MUS (011 A)
	Wide	Di Marith	If saturds	- 20	in.	100-101-074-091	45-07. B-13. Million (1921)
11		34. 884.00	A coleaverilation	16	Lava	2012/01/01 140-275	VERSION AND ADDRESS OF
11	W-044						
	Ward Medica	11240017	R carrier		Lania	123.127	YEE 84.004
14 64 64	Ward Springs Ward Springs	Li Jace IV Li Jace IV	E cababriano	18	Leve.	125-127	35A.3-0.M30.000
H 64	Ward Springs Ward Springs Ward Springs	11 Jane 119 13 Jane 119 13 Jane 119	E caledrateri E caledrateri		Laria Laria	105-107	95-53-5, MID, 602 V5-5-5-7, MID, 41
H 64 64 64	Warm Springs Warm Springs Warm Springs Warm Springs	11 June 119 13 June 119 13 June 119 13 June 119	E cal-delani E-combon E-terretela	18	Lana Lana Garia	105-107 105-157 108-152	954.345, M35, 000 554.545, M35, 000 554, 565, M35, 600
H GA GA GA M	Ward Springs Ward Springs Ward Springs Ward Springs Lipsons	11 June 117 13 June 117 13 June 117 13 June 117 15 June 117	E calidriano E canadere E termolette A services	18	Gana Gana Gana	106-007 106-007 108-007	95.4.36, M35, D85 55.8.46, M35, M35, A1 55.4.56, M35, M37, M84 565, 565, 989, A7
HAAAAXX	Ward Springs Ward Springs Ward Springs Ward Springs Uptown Editors	12 June 117 13 June 117 13 June 117 13 June 117 15 June 117 14 June 117	E cal-delani E candon E homolet E homolet A service E candelan	18	Lens Lens Lens Lens	104-07 104-10 106-10 109-10 104-10	95-5.3-5, M35, D85 93-5, 5-5, M15, 41 93-5, 56, M15, 004 93-6, 5-6, 5995, Al 93-6, 5-6, 5995, Al
HUNGARK	Ward Springs Ward Springs Ward Springs Varia Springs Editories Editories Editories	Li Jane IV Li Jane IV Li Jane IV Li Jane IV Li Jane IV Li Jane IV Li Jane IV	E caledriane E caledriane E transfere E transfere E caledriane E caledriane E caledriane	18	Lana Lana Lana Lana	104.001 104.001 104.002 104.002 104.002 104.007	914.341, M35.000 914.541, M35, 001 914.543, M15, 001 910, 543, 902, Al 910, 543, 902 910, 543, 902
HAAAAAXXXX	Ward Springs Ward Springs Ward Springs Ward Springs Educate Educate Educate Educate	Li Jane IV Li Jane IV	E cal-delani E candon E homolet E homolet A service E candelan	18	Lana Lana Lana Lana Lana	101-07 101-07 101-02 101-02 101-02 101-02 101-027 101-027 101-027	V1-3-4, M3-5, 002 V1-3-5-4, M3-5, 41 V1-3, V4-3, M3-5, 002 V1-5, V5-5, 902, A1 V1-5, V5-5, 902, A1 V1-5, V5-5, 902 V1-5, V5-5, 902 V1-5, V5-5, 902
HUUUUNXXXXX	Ward Sprop Ward Sprop Ward Sprop Ward Sprop Ward Sprop Ward Sprop Editors Editors Editors Editors Editors Editors Editors	Li Jane IV Li Jane IV Li Jane IV Li Jane IV Li Jane IV Li Jane IV Li Jane IV	E cal-detano E conduce E terretria E terretria E cal-detano P concerno E cal-detano	18	Lana Lana Lana Lana	104.001 104.001 104.002 104.002 104.002 104.007	V1-3-4, M3-5, 002 V1-3-5-4, M3-5, 41 V1-3, V4-3, M3-5, 002 V1-5, V5-5, 902, A1 V1-5, V5-5, 902, A1 V1-5, V5-5, 902 V1-5, V5-5, 902 V1-5, V5-5, 902
HAAAAAXXXX	Ward Sproup Ward Sproup Ward Sproup Ward Sproup Ward Sproup Sproup Editors Editors Editors Editors Chemphray Occupies	17 June 17 13 June 17 13 June 17 13 June 17 15 June 17 15 June 17 15 June 17 15 June 17 15 June 17 15 June 17	E calciderano E canciler E formalet E termalet E termalet E calciderano E calciderano E calciderano	18	Lana Lana Lana Lana Lana Lana Lana	10407 10407 10402 14407 14407 14409 14407	V14.344, M35, 002 V14.444, M15, 002 V14.444, M15, 007 V10, 54, M12, 007 V10, 54, M02 V10, 54, M02 V10, 54, M02 V10, 54, M02 V10, 54, M02, 000, 1
HUUUUNXXXXX	Ward Sproup Ward Sproup Ward Sproup Ward Sproup Ward Sproup Sproup Editors Editors Editors Editors Chemphray Occupies	13 June 17 13 June 17 13 June 17 13 June 17 14 June 17 14 June 17 15 June 17 15 June 17 15 June 17 15 June 17 16 June 17	E cali de para E canader E canader E transfer E transfer E cali de cana E cali de cana	18	Lana Lana Lana Lana Lana Lana Lana Lana	10-107 10-107 10-107 10-107 10-107 10-107 10-107 10-107	Y1A.3+5, M35, 002 Y1A.3+5, M15, 002 Y1A.3+5, M15, 007 Y10, 5+5, M02, A/ Y10, 5+5, M02 Y10, 5+5, M22 Y10, 5+5, M24 Y10, 5+5, M24 Y10, 5+5

Reporting

3rd September 2010

Interpretation of Pathology Results

- All results interpreted by comparison:
 - -with a population reference interval

Method used to set interval

-with a medical decision point

Method(s) used in clinical trial(s)

with a previous result from the same patient (monitoring)

Same method at a previous time

Professor Per-Hyltoft Petersen – Sydney 2005

Interpreting Pathology

- EVERY result interpretation is affected by uncertainty in TWO items.
- A result on its own is meaningless!
- Laboratories need to put as much effort into the comparator as into the result.
- Comparator: literature, other labs
 outside direct laboratory control

Stockholm Hierarchy

Strategies to Set Global Quality Specifications in Laboratory Medicine

WORLD HEALTH ORGANIZATION

ORGANISATION MONDIALE DE LA SANTE

International Union of Pure and Applied Chemistry

Nobelforum, Karolinska Institutet Stockholm April 24-26, 1999

Stockholm Consensus Conference on Quality Specifications in Laboratory Medicine

- 1. Studies on clinical outcomes
- 2. Clinical decisions in general, data from:
 - biological variation
 - clinicians' opinions
- 3. Published professional recommendations
- Performance goals set by regulatory bodies or organisers of External Quality Assessment Schemes.
- 5. Goals based on the current state of the art as demonstrated by data from EQA or from current

Stockholm Criteria

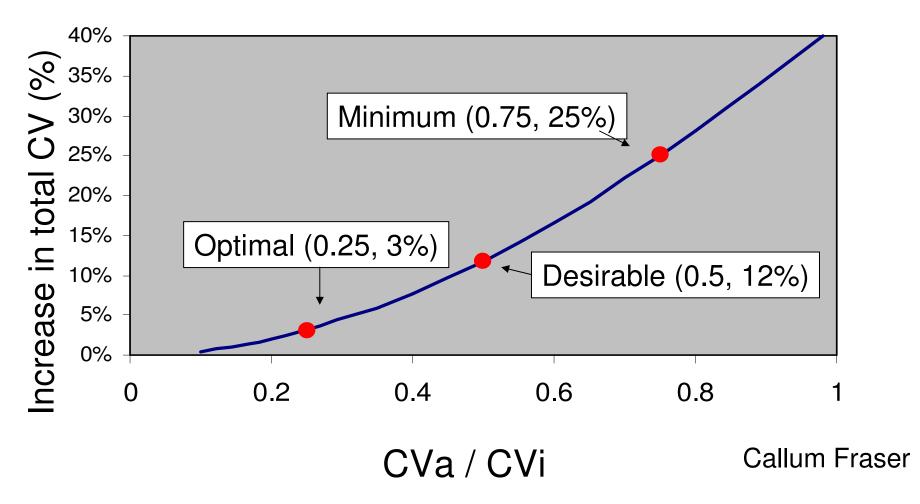
- Used within my lab for:
 - Assessment of method validations
 - Assessment of long term QC results
 - Assessment of EQA results
- Use highest level possible

Stockholm hierarchy vital for quality assessment within laboratories

ISO 15189

- 3.8 Clinical Laboratory
 - examination of materials derived from the human body for the purpose of providing information for the <u>diagnosis</u>, prevention and <u>treatment of disease</u>
- 5.5.1 Examination Procedures
 - The laboratory shall use examination procedures...which meet the needs of the users of laboratory services and are appropriate for the examinations.

Diagnosis vs Monitoring


<u>Diagnosis</u>

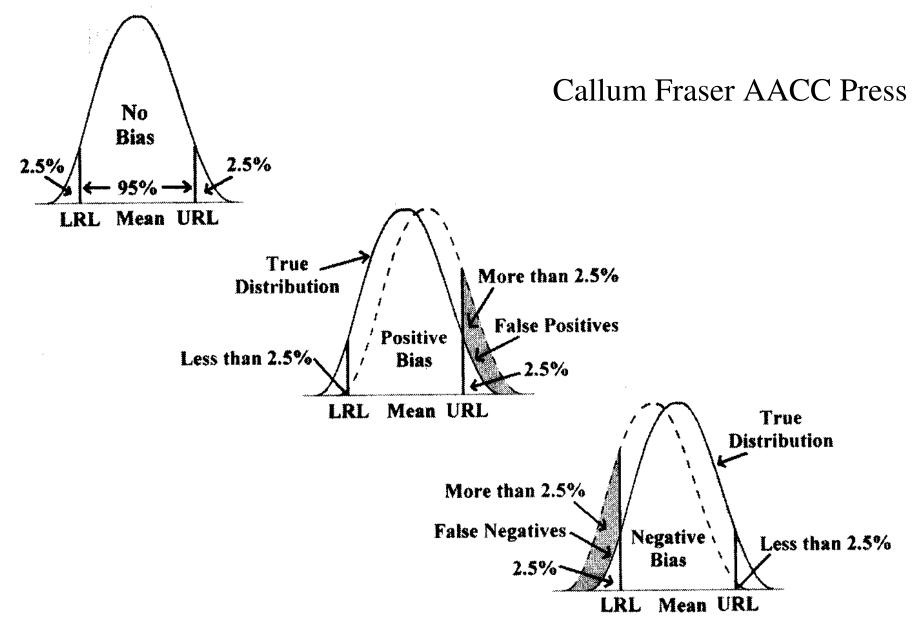
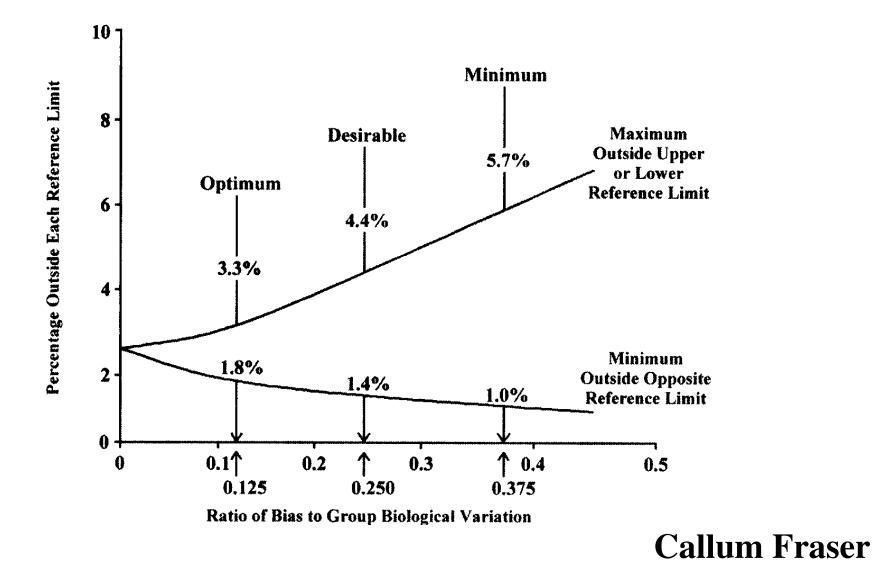
- Compare to Others
 - Healthy / Diseased
 - Reference Intervals (CV_i + CV_g)
 - Imprecision and bias

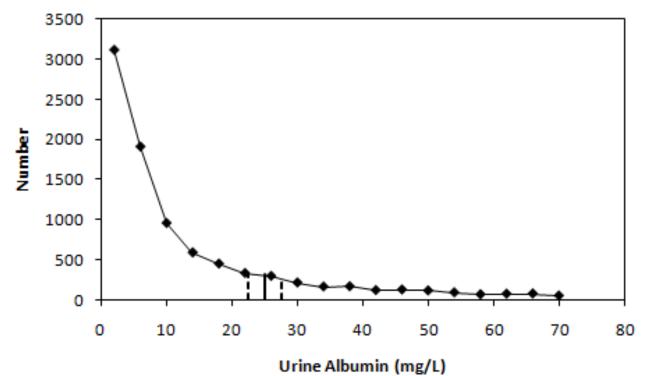
Monitoring

- Compare to Self
 - Worse / Better / No change
 - CV_i Harder to achieve
 - Imprecision (bias is cancelled)

Precision Goals - BVi

Precision goals have <u>meaning</u>: known (small) effect on total result uncertainty


Figure 2.7 Effect of Bias on Reference Values

Meaning: known (small) change in flagging rate

Bias Criteria

- Distribution of urine albumin concentrations submitted to a routine pathology lab (n=9000 samples, 1 per patient).
- Dashed lines: bias of +/- 10% at 25 mg/L.
- Changes the positivity rate from 9% to 7% or 11%.
- A smaller bias will have a lesser effect.

Importance of QA

 If there is no comparison between laboratories (ie EQA) – there <u>will</u> be differences

- G Jones

 Even if there is EQA there may be differences – it is just that we know about them.

Common Databases

- Doctors desktops
- Over 90% of GPs computerised (Aust)
- Now able to <u>integrate</u> results from more than one laboratory (HL7, atomised results LOINC)
- Regional databases
- National databases

Health Technology

- Portable electronic medical records
- Internet
- Smart-Card

• Want to combine results from multiple labs

E-Health: Enabler for Australia's Health Reform

Prepa
... make the implementation of a fully
27 No
functional pathology solution available
in a very short time-scale..

E-Pathology – The penetration of pathology into clinical practice is all pervasive. Considerable progress has been made which would make the implementation of a fully functional pathology solution available in a very short time-scale initially in specific sites with a view to national adoption. This has been a key project undertaken by NEHTA. This will require review of improved times for result reporting⁸ and adherence to principles of Quality use of Pathology.

"

Obama Wants E-Health Records In Five Years

President-elect says medical information on all Americans should be digitized by 2014.

By <u>K.C. Jones</u> InformationWeek January 12, 2009 03:53 PM

President-elect Barack Obama said he wants the federal government to invest in electronic health records so all medical records are digitized within five years.

Obama announced the plans and the deadline during a speech at George Mason University in Fairfax, Va., on Thursday.

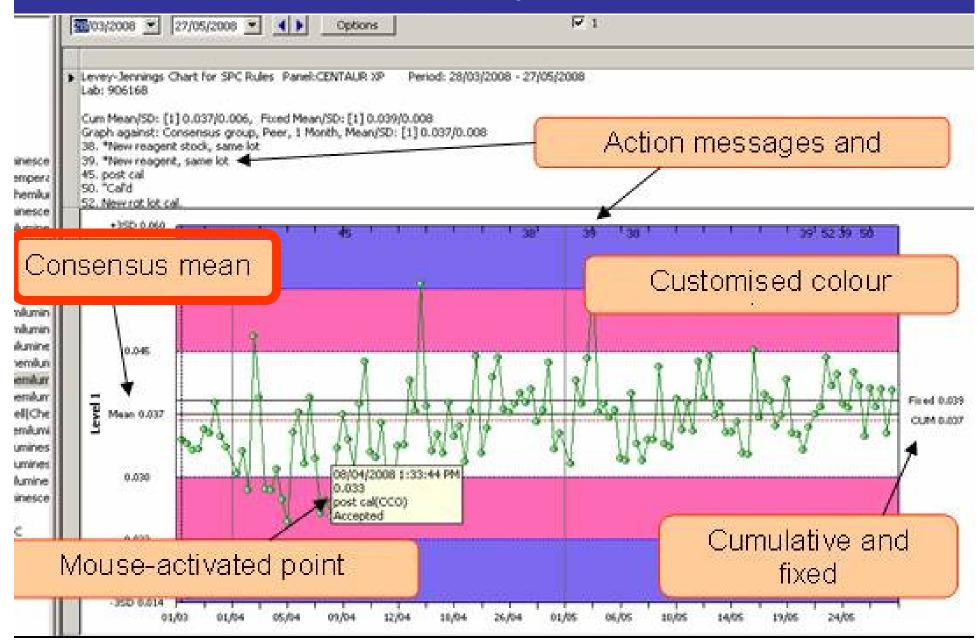
More Insights

White Papers

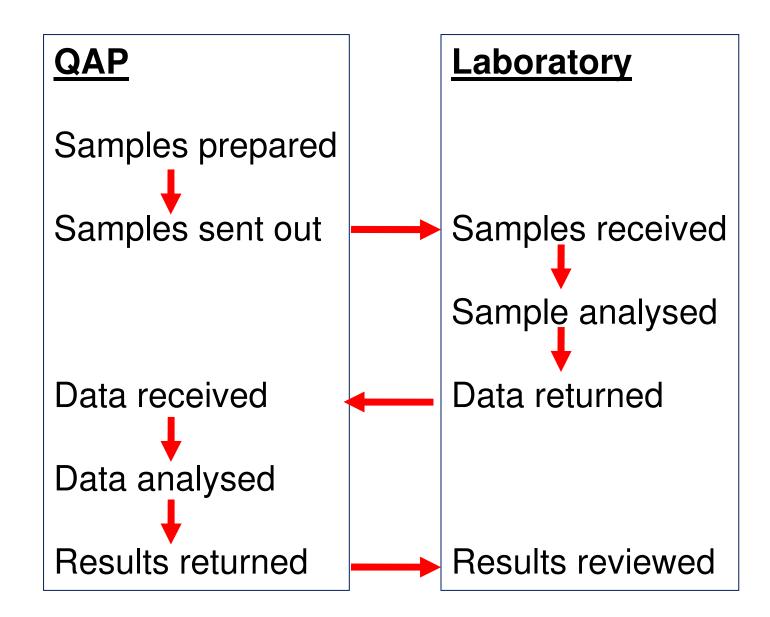
"This will cut waste, eliminate red tape, and free the need to repeat expensive medical tests," he said, adding that the switch also would save lives by

We NEED to be able to combine results in a database, safely & effectively.

Common Databases

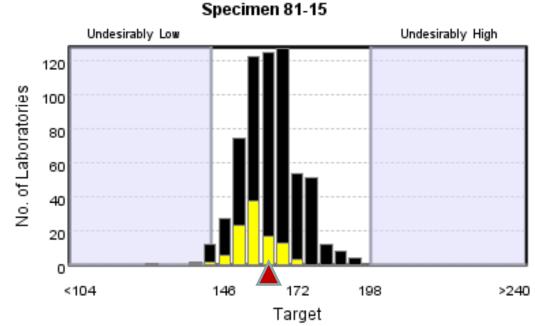

- Combine results from different labs
- Are results close enough to combine?
 - Need Criteria
 - -Need Data
 - Need Organisation
 - Need Coding
 - -Need ongoing assessment

Responsible entity is a regional, national or other relevant body


Quality Assurance

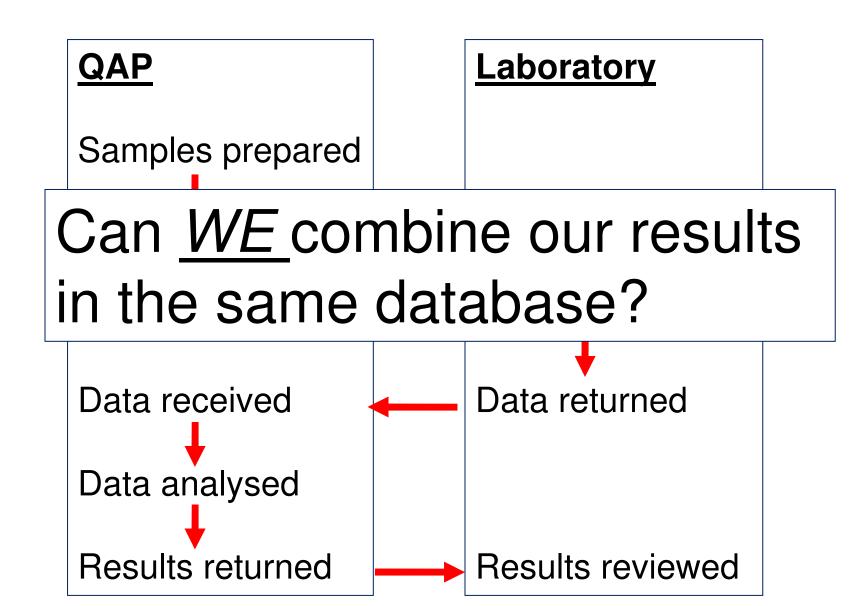
- QC updates
- QA standard model
- QA revised model

Bio-Rad Unity RealTime



Standard QAP

Traditional QA


• Is My lab OK?

- Are my results:
 - -Within Program Limits
 - -Within method group

- If not, *I* take some action

Revised QAP

QAP - The New Question

- Can we combine the results in the same database: YES / NO
- If YES good, do it!
- If NO can we <u>fix</u> the problem
 - At the lab level
 - At the manufacturer level
 - If NO, can we manage the problem

"Combining Results"

• What does this mean?

• What criteria do we use?

Reporting "on the same line"

Thanks to Auckland Regional Quality Assurance Group (ARQAG)

Combining results

assays close enoug	gh?				
	Day 1	Day 2	Day 3	Day 4	
	<u>h</u> 1	Lah 2	Lab 3	l ab 2	Range
Sodium 🤇	135	137	136	134*	135-145
Potassium	4.5	4.7	4.9	3.8	3.5-5.0
			Are the intervals		

Not Combining Results

	Day 1	Day 2	Day 3	Day 4	
	Lab 1	Lab 2	Lab 3	Lab 2	Range
Sodium	135	137	136	134*	135-145
Potassium	4.5	4.7	4.9	3.8	3.5-5.0
Troponin I (Centaur)	0.15*			0.08*	< 0.04
Troponin I (Dade)		0.22*			<0.10
Troponin T			0.10*		<0.001

Combining results?

	Day 1	Day 2	Day 3	Day 4	
	Lab 1	Lab 2	Lab 3	Lab 2	Range
Sodium	135	137	136	134*	135-145
Potassium	4.5	4.7	4.9	3.8	3.5-5.0
Troponin I (Centaur)	0.15*			0.08*	< 0.04
Troponin I (Dade)		0.22*			<0.10
Troponin T			0.10*		-0.001
Albumin (BCG)	45	42		42	40-52
Albumin (BCP)			38		35-50

Are these really different?

Do these intervals reflect the assays?

Combining Data - Criteria

- Can monitor patients (CVi) – Optimal, desirable, minimal
- Can diagnose (CVg)
 - Optimal, desirable, minimal
- State of the art
- Clear analytical differences (LDH, Amylase, troponin I)
- Specificity differences (Tumour markers)

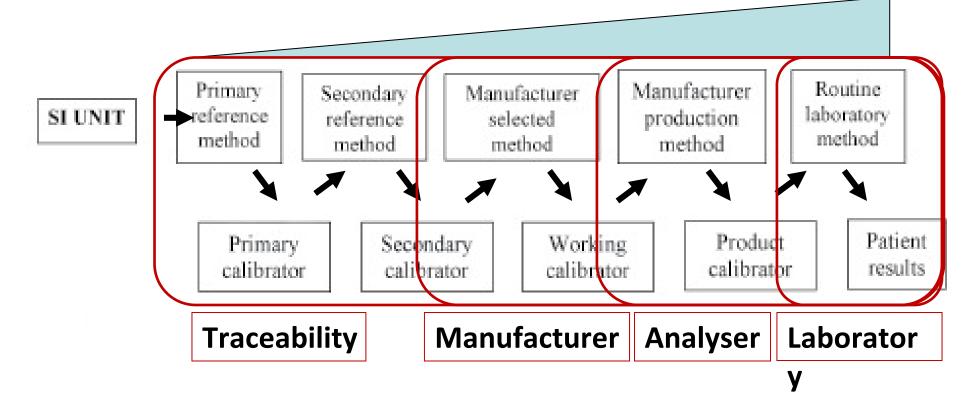
Lumping and Splitting (by who?)

Combining Data - Criteria

- Quality standards
- Two sequential results in a database:
 - Can we use them to monitor a patient?
 - Can we use same criteria as for one lab?
 - Can we use same diagnostic decision points?

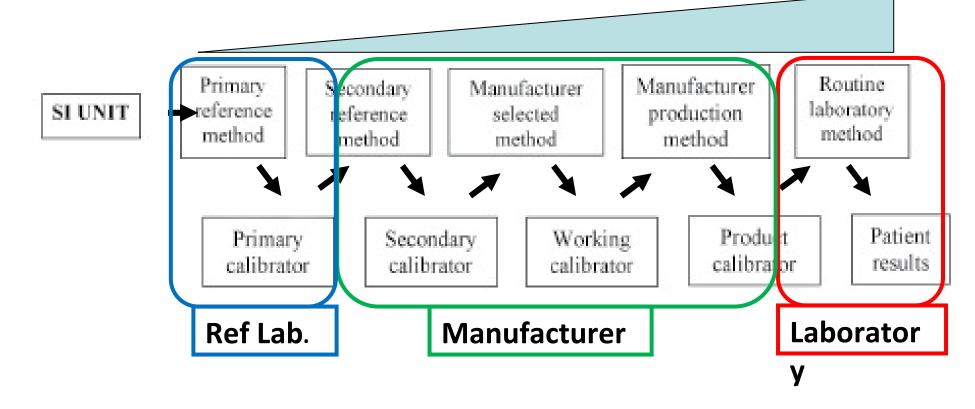
We need quality standards with "meaning"

Can we communicate this meaning?


Lumping and Splitting

Can we combine results:

- All from all sources
- All with the same traceability
- All results from the same manufacturer
- All from the same analyser
- All from the same laboratory network
- All from the same laboratory


Traceability

MEASUREMENT UNCERTAINTY

Traceability

MEASUREMENT UNCERTAINTY

National or regional organisation

Important Paper

State of the Art in Clinical and Anatomic Pathology

State of the Art in Trueness and Interlaboratory Harmonization for 10 Analytes in General Clinical Chemistry

W. Greg Miller, PhD; Gary L. Myers, PhD; Edward R. Ashwood, MD; Anthony A. Killeen, MD, PhD; Edward Wang, PhD; Glenn W. Ehlers, BS/MT, MBA; David Hassemer, MS; Stanley F. Lo, PhD; David Seccombe, MD, PhD; Lothar Siekmann, PhD; Linda M. Thienpont, PhD; Alan Toth, BS

Arch Pathol Lab Med. 2008;132:838–846

Miller et al

Та	able 3. Peer Groups With	Peer Groups With Excessive Bias Versus a Reference Measurement Procedure (RMP)						
	RMP Values	Peer Groups, No.	Groups With Significant Bias _ (P < .001), %	Groups With Biases Greater Than Biologic Variability Criteria, %				
Analyte				Optimum	Desirable	Minimum		
Bilirubin	0.36 mg/dL	45	48.9	60.0	51.1	35.6		
Chloride	104 mEq/L	30	70.0	86.7	80.0	60.0		
Glucose	98.5 mg/dL	32	40.6	28.1	12.5	0.0		
Iron	65.4 mg/dL	30	56.7	33.3	10.0	0.0		
Magnesium	1.59 mEg/L	25	56.0	88.0	64.0	56.0		
Phosphate	3.25 μg/dL	29	89.7	93.1	48.3	20.7		
Potassium	4.38 mEg/L	29	62.1	48.3	3.4	0.0		
Sodium	140.7 mEg/L	31	67.7	90.3	77.4	67.7		
Urea nitrogen	12.18 mg/dL	27	85.2	88.9	70.4	14.8		
Uric acid	5.38 mg/dL	22	68.2	31.8	4.5	0.0		

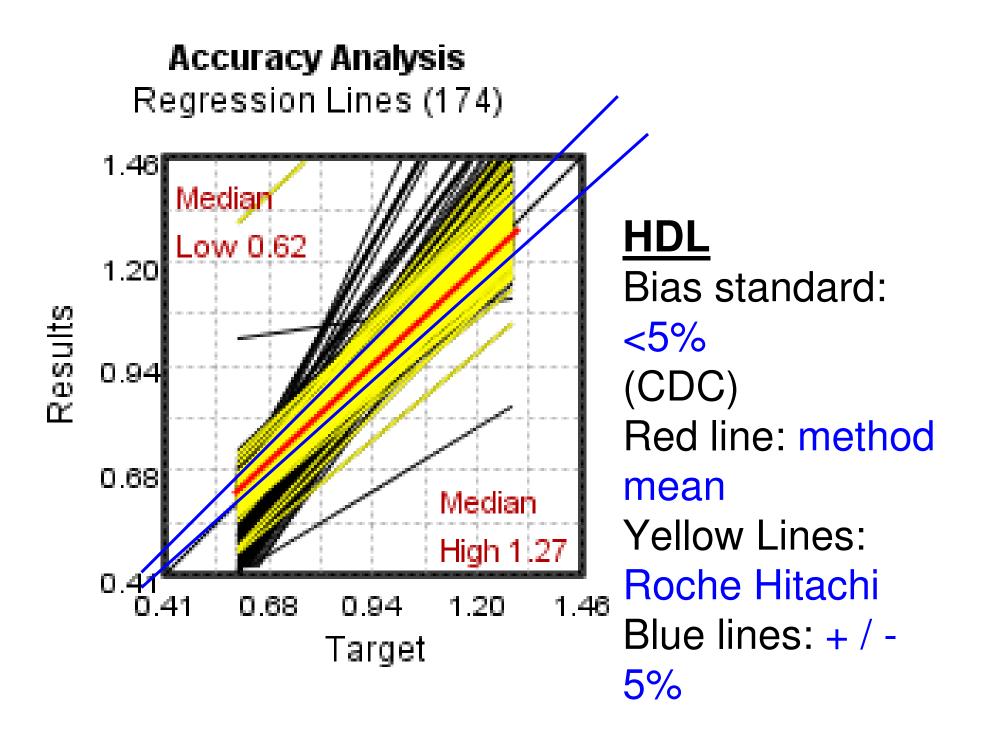
Glucose, Iron, Potassium, Urate: Can combine results and use common reference intervals

Miller et al

- Some assays already have very low between-method differences
- <u>Can</u> combine results
- <u>Can</u> use common reference intervals

 Provided the people are the same
- Some are not at that stage

- Need to work to achieve this goal


Are we responding to data that already exists? Whose job is it?

WITHIN-METHOD BIAS ASSESSMENT USING QAP DATA

Graham Jones and Jan Gill RCPA QAP - Adelaide

Bias within minimal limits

	Hitachi Roche	Cobas Roche	Beckman coulter	Abbott	Olympus	Ortho	Bayer Siemens	Dade Siemens	Method
TEST	nucile	noche	couller				Siemens	Siemens	Average
Sodium	65%	61%	58%	47%	58%	75%	77%	54%	62%
Magnesium	49%	70%	79%	67%	75%	54%	75%	72%	68%
Creatinine	86%	82%	41%	89%	47%	68%	64%	90%	71%
Bicarbonate	56%	67%	80%	44%		79%	88%	75%	70%
chloride	72%	75%	78%	71%	82%	86%	81%	78%	78%
lactate	92%	87%	52%			92%			81%
protein	80%	87%	51%	96%	91%	77%	100%	90%	84%
Calcium	85%	84%	78%	91%	97%	84%	75%	90%	85%
Cholesterol	72%	88%	97%	98%	79%	72%	100%	91%	87%
HDL Cholesterol	80%	84%	69%	95%	81%	95%	100%	98%	88%
albumin	81%	89%	93%	57%	100%	94%	100%	98%	89%
phosphate	98%	98%	45%	100%	100%	97%	100%	100%	92%
potassium	94%	98%	92%	71%	100%	100%	100%	94%	94%
transferrin	89%	93%	100%	100%	100%	89%	100%	83%	94%
urea	99%	100%	87%	100%	100%	100%	93%	100%	97%
iron	98%	100%	100%		100%	100%	100%	86%	98%
urate	98%	99%	100%	88%	100%	100%	100%	100%	98%

Analytes able to meet criteria

	Method Average
TEST	J
phosphate	92%
potassium	94%
transferrin	94%
urea	97%
iron	98%
urate	98%

Individual methods able to meet sharing criteria **Actions:**

- Laboratories: outliers take action
- Other: able to share results and ref. intervals

Analytes unable to meet criteria

	Method Average
TEST	_
Sodium	62%
Magnesium	<mark>68%</mark>
Creatinine	71%
Bicarbonate	70%
chloride	78%

Individual methods unable to meet sharing criteria **Actions:**

- Individual laboratories: check bias and respond
- Manufacturers: improve calibration processes
- Other: wider reference intervals

Quality Standards for Reference Laboratories

- Currently devised as a fraction of "field" Quality Standards
- Eg RELA limits of equivalence
- Note:
 - Very different field standards
 - Very different criteria
 - Regulatory
 - Statistical
 - Clinical

External Quality Assessment: Currently Used Criteria for Evaluating Performance in European Countries, and Criteria for Future Harmonization

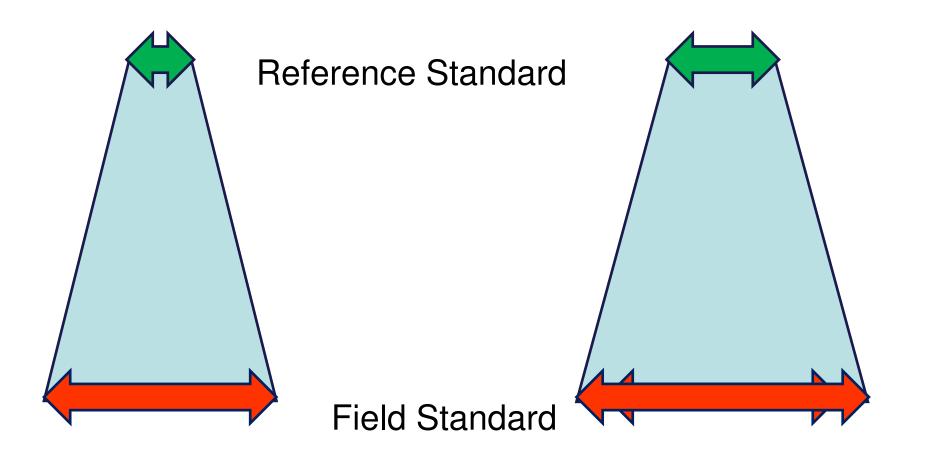
Carmen Ricós¹, Henk Baadenhuijsen², Jean-Claude Libeer³, Per Hyltoft Petersen⁴, Dietmar Stöckl⁵, Linda Thienpont⁶ and Callum G. Fraser⁷

	Cholesterol	Pi	Lithium	Lactate dehydrogena	Urate	Alkaline phosphatase	Amylase
Denmark	8.1	12.0		12.0	13.0	10.0	11.0
Netherlands	8.1		5.0	3.0	10.0	8.0	10.0
Belgium	8.4	14.0	10.0	15.0	15.0	10.0	17.0
Germany ^a	18.0	15.0	12.0	21.0	18.0	21.0	21.0
Finland	5.0	5.0	5.0	10.0	5.0	0.01	10.0
Switzerland	3.0	10.0	6.0	15.0	10.0	15.0	20.0
Croatia	10.0	10.0	-	20.0	10.0	20.0	
Lithuania	7.0	5.0		7.0	7.0	7.0	10.0
United Kingdom	7.6	7.8	11.0	13.0	7.7	15.0	11.0
Spain	9.8	12.0	22.0	17.0	15.0	22.0	56.0
Italy	5.5	9.5	-	10.0	8,0	18.0	-
France	16.5		10.0	20.0	16.0	20.0	25.0
Portugal	5.0	8.0		16.0	9.0	29.0	
Australia	5.0	10.0	8.0	15.0	7.8	15.0	15.0
CLIA	10.0		20.0	20.0	17.0	30.0	30.0
Range:	3-18	5-14	5-22	3-21	5-18	7-30	10-56

Tab. 3 Currently used European EQA limits (given in % deviation from the target)

EQA Quality standards

- How good we are: Outliers identified
 - Statistical
 - +/- 2SD
 - 95th centile


How bad we don't want to be: Exclude poor

- Current state-of-the-art, and then some
- Regulatory programs
- How good we want to be:
 - Biological variation
 - Established clinical criteria

Promote improvement

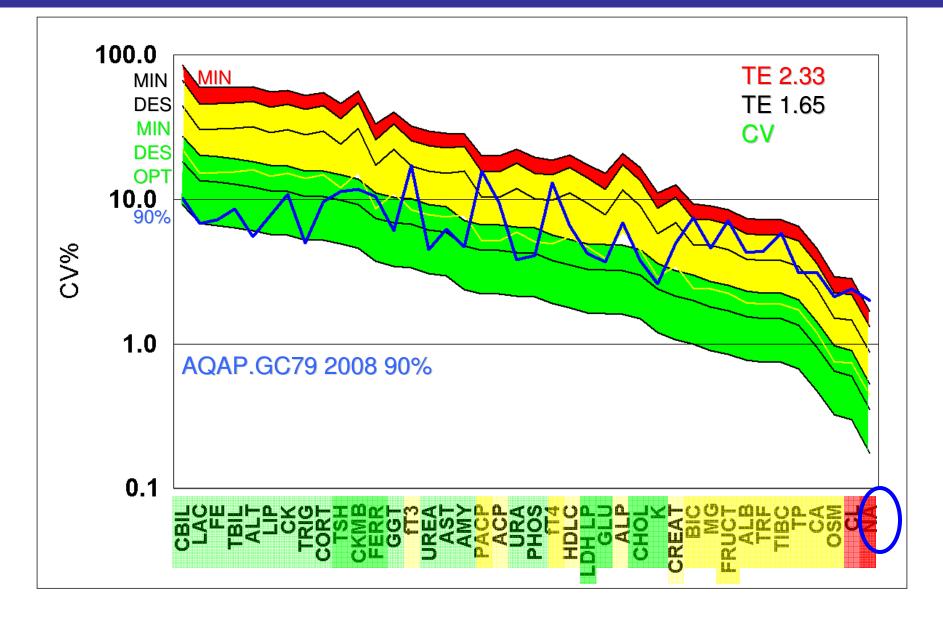
labs

Reference Quality Standards

Quality of reference standard may affect field standards Eg Reference interval for serum sodium

General Serum Chemistry & Therapeutic Drugs Program REVISION OF ALLOWABLE LIMITS OF PERFORMANCE 23 August 2010

Chemical Pathology


In association with the Australasian Association of Clinical Biochemists

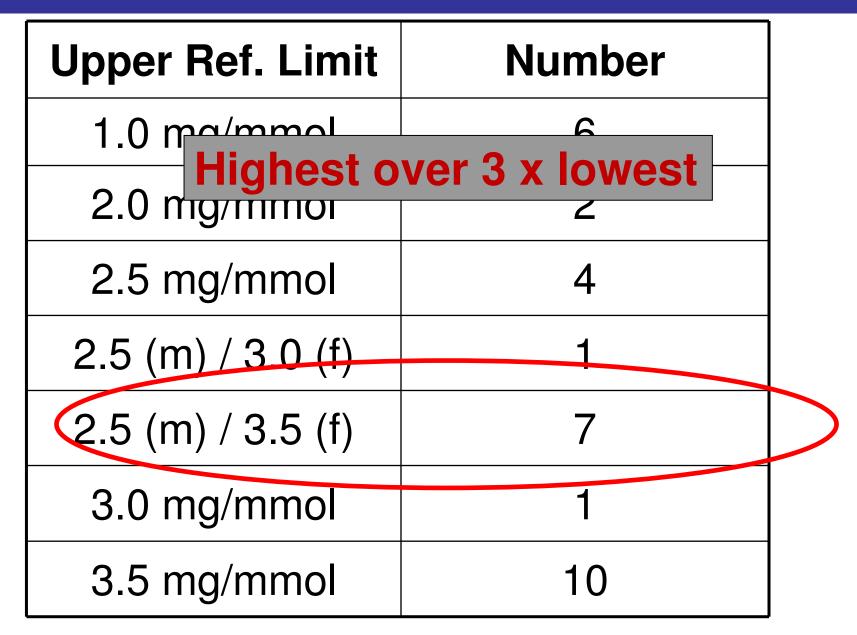
RCPA QAP

- Allowable Limits of Performance (ALP)
- "Quality Standard"
- Clinically based
 - Previously "expert opinion"
- Revised 2010
- Hierachy:
 - Monitoring (CVi): optimal, minimal, desirable
 - Diagnosis (CVg+CVi): opt, min, desirable
 - Need about 80% of labs to reach criteria

Quality Standards with Meaning

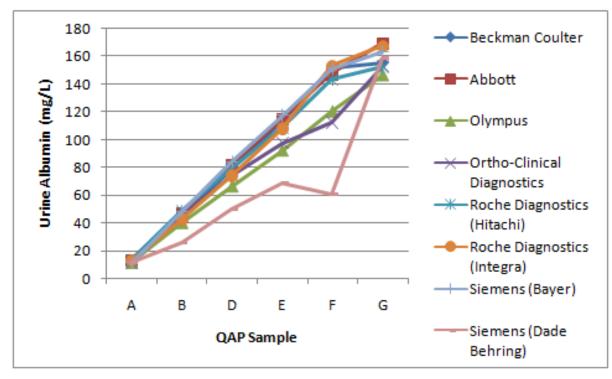
RCPA QAP - Performance

RCPA QAP ALP


Comment	Level	Basis					
Same	Optimal	Imprecision					
Same	Minimal	Imprecision					
Same	Minimal	Total Error					
Looser	Desirable	Imprecision					
Looser	Desirable	Imprecision					
Tighter	Optimal	Imprecision					
Tighter	Minimal	Imprecision					
Same	Desirable	Imprecision					
	Same Same Same Looser Looser Tighter Tighter	SameOptimalSameMinimalSameMinimalLooserDesirableLooserDesirableTighterOptimalTighterMinimalSameDesirable					

- loosened in 8 (19%)

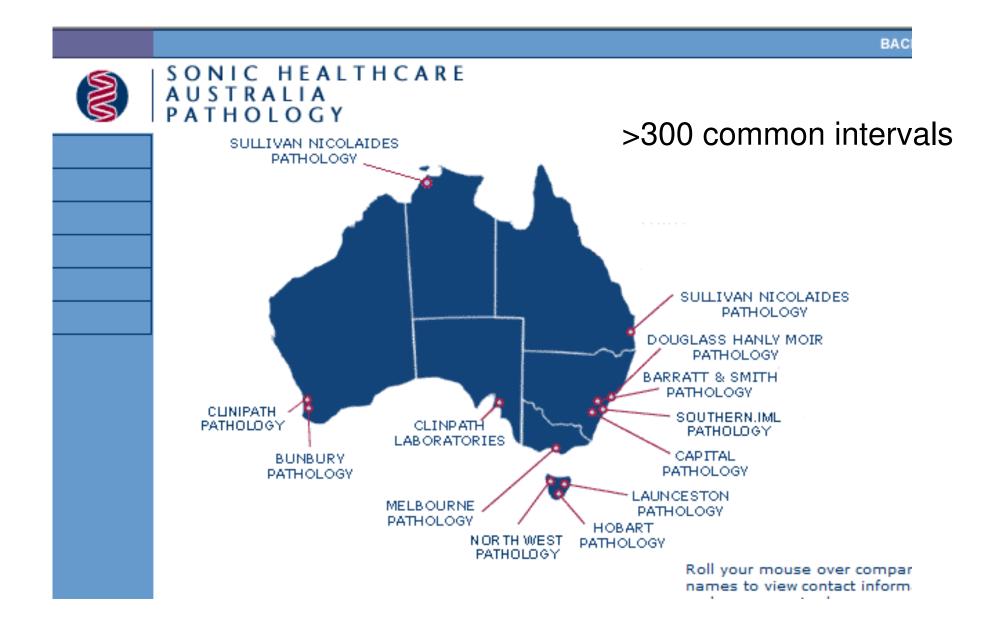
Г


- largely unchanged in 13 (31%)

Reference Intervals – Alb Cr Ratio

Reference Interval Differences

- Different assays?
 - Not related to assays (from Survey)
 - No evidence of assay Difference



RCPA QAP Urine Albumin 2009 data

Common Decisions

- Units, reference intervals, Quality specifications, lumping and splitting
- Australasian Groups
 - Units for drug measurements
 - Creatinine, eGFR
 - Urine albumin, protein
 - HbA1c units and diagnosis
 - Serum urate reporting
- RCPA, AACB, clinical organisations

Sonic Healthcare

Summary

- Analytical variability does affect patient care
- QA can measure the variability, but <u>action</u> is required to fix or manage it
- Action needed at all the usual levels ...
- For communal activities, <u>communal action</u> is required
- Quality standards <--> Clinical use