

Università degli Studi di Milano

Centre for Metrological Traceability in Laboratory Medicine (CIRME)

site: http://users.unimi.it/cirme

CIRME: ten years after

Prof Mauro Panteghini CIRME Scientific Coordinator

Research Centre for Metrological Traceability in Laboratory Medicine (CIRME)

created on 2006 with the scope to join in a sole entity scientists and activities of various Departments of the University of Milan interested in the development of reference methods and calibration materials of high metrological order in the field of biomedical diagnostics.

ACCREDIA VENTE ITALIANO DI ACCREDITAMENTO Mento degli Accord di Manu Reconorinente da Me e LAC Segnory de X. Manul L.C. Mauli Reconorino Agreentes

Laboratorio permanente

TABELLA DI ACCREDITAMENTO

Grandezza	Strumento in taratura	Campo di	misura	Incertezza	Note
				relativa (*)	
		Intervallo di cor	Jcentrazione		
		da	ø		
Attività catalitica	Alanina aminotransferasi (ALT)	0,063 µkat/L (3,8 U/L)	4,17 μkat/L (250 U/L)	2,3 %	
Attività catalitica	Fosfatasi alcalina (ALP)	0,067 µkat/L (4,0 U/L)	10,83 µkat/L (650 U/L)	2,5 %	
Attività catalitica	Aspartato aminotransferasi (AST)	0,063 µkat/L (3,8 U/L)	4,17 μkat/L (250 U/L)	2,5 %	
Attività catalitica	Creatina chinasi (CK)	0,083 µkat/L (5,0 U/L)	10,00 µkat/L (600 U/L)	2,5 %	
Attività catalitica	Gamma-glutamiltransferasi (GGT)	0,023 µkat/L (1,4 U/L)	4,58 µkat/L (275 U/L)	2,5 %	
Attività catalitica	Lattato deidrogenasi (LDH)	0,060 µkať/L (3,6 U/L)	10,00 µkať/L (600 U/L)	2,3 %	
Frazione di quantità di sostanza	Emoglobina glicata (HbA1c) con metodo HPLC-elettroforesi capillare	4 mmol/mol	150 mmol/mol	3,0 %	
Concentrazione di quantità di sostanza	Glucosio con metodo spettrofotometrico	0,28 mmol/l (5 mg/dl)	22,4 mmol/l (400 mg/dl)	1,80 %	

10th International Scientific Meeting. November 17-18, 2016

(*) L'incertezza di misura è espressa al livello di fiducia del 95%.

Example of uncertainty budget for ALT reference measurement procedure

JCTLM database : Laboratory medicine and in vitro diagnostics

CIRME

CELEB

List of reference measurement services

This file was created on 04 November 2010 from the JCTLM-DB website (<u>http://www.bipm.org/jctlm/</u>) Your search criteria: Reference measurement services; Analyte: ALT; Analyte category: Enzymes; Matrix category: Blood serum

CIRME, Italy	
Phone : +39 02 3904 2806 Fax : +39 02 5031 9835	Contact person : Prof. Mauro Panteghini Email : mauro.panteghini@unimi.it
a na	
Analyte	alanine aminotransferase (ALT)
Material or matrix	blood serum, blood plasma
Applicable material or matrix	human serum or plasma (heparin); lyophilized, fresh, or frozen
Quantity	Catalytic activity concentration
Service measurement range	0.063 µkat/l to 4.17 µkat/l
	The conversion factor for enzyme catalytic activity concentrations: 1 U/L =
	0.01667 µkat/L
Expanded uncertainty	(not available) to 2.3%
(level of confidence 95%)	The uncertainty of the lower limit of the measurement range is not available as this enzyme value is clinically unrelevant
Interlaboratory comparison results	RELA - IFCC External Quality assessment scheme for Reference
	Laboratories in Laboratory Medicine at
	http://www.dgkl-rfb.de:81/index.shtml
	Siekmann et al. Clin. Chem. Lab. Med. 2002. 40, 739-745
	Kind and the later state in the state of the
Measurement principle	Kinetic spectrophotometry
JCTLM reference measurement method/procedure	IFCC reference measurement procedure (37 °C) for ALT

Reference Materials, Measurement Methods and Services for In Vitro Diagnostics

Accurate results for patient care

CIRME is a JCTLM Member Organization

www.bipm.org/jctlm

In cooperation with

im

CERTIFICATE OF ANALYSIS ERM[®]- DA470k/IFCC

CERM

	HUMAN SERUM	
Proteins in the	Mass cono	entration
reconstituted material ¹⁾	Certified value 2) [g/L]	Uncertainty ³⁾ [g/L]
o ₂ macroglobulin (A2M)	1.43 %	0.06
a1 acid glycoprotein (AAG)	0.617 50	0.013
o1 antitrypsin (AAT)	1.12 5	0.03
albumin (ALB)	37.2 *	1.2
complement 3c (C3c)	1.00 *	0.04
complement 4 (C4)	0.162 *	0.007
haptoglobin (HPT)	0.889 *	0.021
immunoglobulin A (IgA)	1.80 *	0.05
immunoglobulin G (IgG)	9.17 4	0.18
immunoglobulin M (lgM)	0.723 *	0.027
transferrin (TRF)	2.36 %	0.08
transthyretin (TTR)	0.220 5)	0.018

CERTIFICATE OF ANALYSIS

ERM[®]-AD453k/IFCC

	ENZYME IN BUFFEF	2
	Catalytic activity	concentration 1)
	Certified value 2)	Uncertainty 3)
actate dehvdrogenase	330 U/L	7 U/L
isoenzyme 1 (LD1)	5.50 µkat/L	0.12 µkat/L
Catalytic activity concentration of lac	tate dehydrogenase isoenzyme 1 (LD1	in the reconstituted material, as obta

() Consider a second control on the second control of the secon

uer gougeniese as 7 ... 2) Certified values are values that fulfil the highest standards of accuracy and represent the unweighted mean value of the means of accepted sets of data, each set being obtained in a different laboratory. The certified value and its uncertainty are traceable to the International System of Units (SI). Values were converted from U/L into µkat/L by multiplication with the foldor 1 = 0.0167

Transpondent minimum and a contract of the certified value with a coverage factor k = 2 corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty N Measurement (GUN 1995), ISO, 2008.

The following value for B2M was assigned:

Protein in the reconstituted	Mass concentration		
material (see section 9.3)	Certified value 2) [mg/L]	Uncertainty 3) [mg/L]	
Beta-2-microglobulin (B2M) ¹⁾	2.17	0.07	

 B2M as measured by immunonephelometry, immunoturbidimetry, fluorometric enzyme immunoassay and chemiluminescent immunoassay using a pure protein solution as calibrant.

2) The value is the unweighted mean of 13 accepted mean values, independently obtained by 13 laboratories. The certified mass concentration is traceable to the SI, via calibration with a pure protein solution of B2M.

 Expanded uncertainty U with a coverage factor k = 2, corresponding to a level of confidence of approxiamtely 95 % stimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM), ISO, 1995.

ERM[®]-AD454k/IFCC

	Catalytic activit	y concentration 1)
	Certified value 2)	Uncertainty 3)
lanine aminotransferase	103.8 U/L	2.6 U/L
(ALT)	1.73 µkat/L	0.05 µkat/L

primary reference measurement procedure for the measurement of catalytic activity concentration of alanine aminotransferase at 37 °C. 2) Cartified values are values that fulfil the biobest standards of accuracy and represent the unweighted mean value of

2) Confide values are values that full the highest standards of accuracy and represent the unveighted mean value of the means of accepted sets of data, such set being obtained in a different laboratory. The certified value and its uncertainty are traceable to the International System of units (SI), Values were converted from U/L into µkat/L by multiplication with the factor #=0.01667.

3) The uncertainty is the expanded uncertainty of the certified value with a coverage factor k = 2 corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUMI 1995), ISO, 2008.

ERM[®]-AD455k/IFCC

EN	ZYME IN BUFFER	
	Catalytic activity	concentration 1)
	Certified value 2)	Uncertainty 3)
Creatine kinase isoenzyme MM (CK-MM)	314 U/L 5.23 µkat/L	6 U/L 0.10 µkat/L
 Catalytic activity concentration of creatine ki the IFCC primary reference measurement proc kinase at 37 °C. 	nase isoenzyme MM (CK-MM) in the edure for the measurement of the cat	reconstituted material, as obtained by alytic activity concentration of creatine
 Certified values are values that fulfil the high the means of accepted sets of data, each is uncertainty are traceable to the Internationa multiplication with the factor f = 0.01667. 	hest standards of accuracy and repr set being obtained in a different lat I System of Units (SI). Values were	esent the unweighted mean value of joratory. The certified value and its e converted from U/L into µkat/L by
 The uncertainty is the expanded uncertain level of confidence of about 95 % estimate 	ty of the certified value with a cover d in accordance with ISO/IEC Guid	age factor k = 2 corresponding to a e 98-3, Guide to the Expression of

evel of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO, 2008.

Traceability of values for catalytic activity concentration of enzymes: a Certified Reference Material for aspartate transaminase

Clin Chem Lab Med 2010;48(6):795-803 © 2010 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2010.146

CIRI CEL

Brigitte Toussaint^{1,49}, Hendrik Emons¹, Heinz G. Schimmel¹, Steffen Bossert-Reuther², Francesca Canalias³, Ferruccio Ceriotti⁴, Georges Férard⁵, Carlo A. Ferrero⁴, Paul EH. Franck⁶, F. Javier Gella⁷, Joseph Henny⁶, Poul J. Jørgensen⁹, Rainer Klauke¹⁰, Jean-Marc Lessinger¹¹, Daniel Mazziotta¹², Mauro Panteghini¹³, Shigeru Ueda¹⁴ and Gerhard Schumann¹⁰ on behalf of the IFCC Committee on Reference Systems for Enzymes

COMMUTABILITY STUDY ON CANDIDATE MATERIALS FOR THREE NEW ENZYME CERTIFIED REFERENCE MATERIALS

<u>B. Toussaint</u>⁴, F. Ceriotti⁸, H. Schimmel⁴, R. Rej¹⁰, M. Besozzi⁶, F.J. Gella², G. Giana⁷, J. Lessinger⁵, M. McCusker¹, M. Orth⁹, M. Panteghini³

Study Setup: 14 serum samples were analysed with existing CRMs and with the new candidate CRMs, using 8 different assays and 1 reference method. Results obtained by different methods were compared paire-wise and the proximity of candidate materials to patient samples in the plots, sign of similar behaviour, was investigated.

Pasqualetti S et al. CCA 2015;450:125

Letter to the Editor

The calibrator value assignment protocol of the Abbott enzymatic creatinine assay is inadequate for ensuring suitable quality of serum measurements

Table 1

Uncertainties for each contributing factor in determination of serum creatinine with Abbott enzymatic assay on Architect c16000 platform after calibration with two different lot of system calibrator. Data obtained by measurements of NIST SRM 967a reference material (certified value \pm expanded uncertainty: L1, 0.847 mg/dL \pm 0.018 mg/dL and L2, 3.877 mg/dL \pm 0.082 mg/dL).

	SRM 967a level 1	SRM 967a Ievel 2
Multigent Clin Chem Calibrator lot no. 40043Y600		
Imprecision (u_{Rw})	0.47%	0.40%
Bias (u _{bias})	3.57%	7.05%
Relative combined standard uncertainty $[u_c = (u_{bias}^2 + u_{Rw}^2)^{0.5}]$	3.60%	7.06%
Expanded uncertainty ($U = k \times u_c$)	7.20%	14.12%
Multigent Clin Chem Calibrator lot no. 40496Y600		
Imprecision (u _{Rw})	0.53%	0.42%
Bias (u _{bias})	4.02%	1.71%
Relative combined standard uncertainty $[u_c = (u_{bias}^2 + u_{Rw}^2)^{0.5}]$	4.05%	1.76%
Expanded uncertainty ($U = k \times u_c$)	8.10%	3.52%

10th International Scientific Meeting. November 17-18, 2016

Creatinine

Expanded uncertainty goals

9.0% minimum 6.0% desirable

CIRME CELEBRATING Years

Letter to the Editor

Dominika Szőke*, Assunta Carnevale, Sara Pasqualetti, Federica Braga, Renata Paleari and Mauro Panteghini

More on the accuracy of the Architect enzymatic assay for hemoglobin A_{1c} and its traceability to the IFCC reference system

Simona Ferraro*, Simona Borille, Assunta Carnevale, Erika Frusciante, Niccolò Bassani and Mauro Panteghini

Verification of the harmonization of human

epididymis protein 4 assays

Conclusions: Abbott and Roche assays exhibited a good comparability in the range of HE4 values around the previously recommended 140 pmol/L cut-off. For patient monitoring, however, the assay used for determining serial HE4 must not be changed as results from different systems in lower and higher concentration ranges can markedly differ.

Elena Aloisio, Erika Frusciante, Alberto Dolci, Mauro Panteghini

Estimating folate deficiency and need to predict the effect of assay recalibration

- To improve assay harmonization, some commercial folate methods have recently undergone recalibration to the WHO NIBSC 03/178 International Standard
- After recalibration, a significant change in the average folate measured values was recorded

At a folate concentration around the lower reference limit of the old Roche assay, a positive bias of 50% vs. the new Roche assay can be observed

Regional EQAS exercise no. 4/2016

Taking into account the ~50% difference experimentally found at the lower reference limit (LRL) level, the shift from 4.6 µg/L (Roche recommended LRL for old calibration) to 3.9 µg/L (Roche recommended LRL for recalibrated assay) appears to be inconsistent.

Consequently, a misleading overestimate of the prevalence of folate deficiency is expected if the recalibrated Roche assay will be used together the manufacturer's newly recommended LRL.

New experimental data from healthy individuals have, therefore, to be quickly obtained with the recalibrated assay in order to accurately define the traceable reference interval and derive correct decisional strategies for folic acid supplementation.

rears

CIR

CE

Ferraro S et al., Clin Chem Lab Med 2016: in press

Currently, the full information about calibration is usually not available

CELEB

Years

Manufacturers only provide the name of higher order reference material or procedure to which the assay calibration is traceable, without any description of implementation steps and their corresponding uncertainty.

Hous

we have a problem.

DE GRUY	Clin Chem Lab Med 2015; 53(6): 905–912
Opinion	i Paper
Federica	a Braga*, Ilenia Infusino and Mauro Panteghini
	Table 2:The information that in vitro diagnostics manufacturersshould provide to laboratory users about the implementation of metro-logical traceability of their commercial systems. Adapted from [7].
	 a) An indication of higher order references (materials and/or procedures) used to assign traceable values to calibrators; b) Which internal calibration hierarchy has been applied by the manufacturer, and
	c) A detailed description of each step; d) The (expanded) combined uncertainty value of commercial
CIRME CELEBRAD	calibrators, and e) Which, if any, acceptable limits for uncertainty of calibrators were applied in the validation of the analytical system.
	10 th International Scientific Meeting. November 17-18, 2016

Types of metrological chains that can be used to implement the traceability of blood glucose results*

ALLOWABLE UNCERTAINTY BUDGET FOR PLASMA GLUCOSE

Three main components of uncertainty:

1. Uncertainty of references - reference materials, reference procedures;

2. *Uncertainty of commercial system calibrators* - manufacturer 's calibrator values [transfer process];

3. Uncertainty of random sources – system imprecision, individual lab performance.

Metrological traceability and uncertainty information derived from calibrator package inserts of commercial systems measuring blood glucose marketed by four IVD companies.

					Higher-	order reference		Combined
Company	Platform	Principle of commercial method	Calibrator	Declared standard uncertainty ^a	er Method	nployed Material	Type of traceability chain used ^b	standard uncertainty associated with
~			<u>,</u>		- <u>></u>			the used chain ^c
Abbott	Architect	ND	Multiconstituent calibrator	2.70%	IDMS	NIST SRM 965	А	1.22 - 1.45% ^d
Beckman	AU	Hexokinase	System calibrator	ND	ND	NIST SRM 965	А	1.22 - 1.45% ^d
	Synchron	Hexokinase	Synchron multicalibrator	ND	ND	NIST SRM 917a	D	1.60-3.00% ^e
Roche	Cobas c	Hexokinase	C.f.a.s.	0.84%	IDMS	ND	В	1.70%
	Integra	Hexokinase	C.f.a.s.	0.62%	IDMS	ND	В	1.70%
	Mahla	Hexokinase	C for	0.84%	IDMS	ND	В	1.70%
	wodular	GOD	C.I.a.s.	0.84%	IDMS	ND	В	1.70%
Siemens	4.1.1.	Hexokinase	Cl	1.30%	Hexokinase	NIST SRM 917a	С	$1.88-3.26\%^{f}$
	Advia	GOD	Chemistry calibrator	0.80%	Hexokinase	NIST SRM 917a	С	1.88 - 3.26% ^f

Carobene A et al., Clin Chim Acta 2014;427:100

6A

Creatinine (µmol/L)

CI Percent bias of overall means for the two method macro-categories based on different analytic principle in post-standardization years (2010-2011). The dotted and the dashed line indicate the maximum acceptable bias at desirable ($\pm 4.0\%$) and at minimum quality level ($\pm 6.0\%$), respectively.

 Table 3:
 Metrological traceability and uncertainty information derived from calibrator package inserts of commercial systems measuring serum creatinine marketed by four in vitro diagnostics companies.

Company	Platform	Principle of commercial method	Calibrator	Declared standard	Higher ord employed	ler reference	Type of traceability	Combined standard uncertainty associated
				uncertainty ^a	Method	Material	chain used [⊾]	with the used chain ^c
Abbott	Architect	Enzymatic	Multigent clin chem calibrator	1.48%	IDMS	NIST SRM 967	А	2.12%-2.79% ^d
		ND	Multiconstituent calibrator	2.7%	IDMS	NIST SRM 967	А	2.12%-2.79% ^d
Beckman	AU	Enzymatic	System calibrator	ND	ND	NIST SRM 967	А	2.12%-2.79% ^d
		Alkaline picrate	System calibrator	ND	IDMS	NIST SRM 967	А	2.12%-2.79% ^d
		Uncompensated alkaline picrate	System calibrator	ND	ND	NIST SRM 9091 L2	В	1.51%
	Synchron	ND	LX aqua calibrator	ND	IDMS	NIST SRM 914	D	1.5% ^e
Roche	Cobas c	Enzymatic	C.f.a.s.	0.91%	IDMS	ND	D	1.5% ^e
		Alkaline picrate compensated	C.f.a.s.	1.62%	IDMS	ND	D	1.5% ^e
	_	Alkaline picrate rate-blanked and compensated	C.f.a.s.	1.42%	IDMS	ND	D	1.5% ^e
	Integra/Cobas c111	Enzymatic	C.f.a.s	1.06%	IDMS	ND	D	1.5% ^e
	Integra400/Cobas c111	Alkaline picrate compensated	C.f.a.s	0.30%	IDMS	ND	D	1.5% ^e
	Integra800	Alkaline picrate compensated	C.f.a.s	0.72%	IDMS	ND	D	1.5% ^e
	Modular	Enzymatic	C.f.a.s	0.91%	IDMS	ND	D	1.5% ^e
		Alkaline picrate compensated	C.f.a.s	1.38%	IDMS	ND	D	1.5% ^e
		Alkaline picrate rate-blanked and compensated	C.f.a.s	0.79%	IDMS	ND	D	1.5% ^e
Siemens	Dimension Vista	Enzymatic	ECREA calibrator A	5.08% ^f	ND	NIST SRM 914a	С	NA
			ECREA calibrator B	3.16% ^f	ND	NIST SRM 914a	С	NA
		Alkaline picrate	Chemistry calibrator	1.6%	GC-IDMS	NIST SRM 914a	D	1.5% ^e
	Advia	Enzymatic	Chemistry calibrator	0.45%	IDMS	NIST SRM 914a NIST SRM 967	А	2.12%-2.79% ^d
		Alkaline picrate rate-blanked and compensated	Chemistry calibrator	1.6%	IDMS	NIST SRM 967	А	2.12%-2.79% ^d
CEI	LEBRATING							
	Years	[Braga F, Inf	usino I, Pantegh	nini M. Clin	Chem La	b Med 2015;5	3:905]	

EQAS materials with physiologic (88.4 µmol/L) and borderline (123.8 µmol/L) creatinine concentrations vs. the desirable goal for TE (±8.9%). Notwithstanding the marked difference in size of two groups, it was evident that the vast majority (87%) of laboratories using systems employing enzymatic assays were able to fulfill the desirable performance, while only one third of laboratories using picrate-based systems were able to meet the target.

10th International Scientific Meeting. November 17-18, 2016

DE GRUYTER

Letter to the Editor

Federica Braga*, Erika Frusciante, Ilenia Infusino, Elena Aloisio, Elena Guerra, Ferruccio Ceriotti and Mauro Panteghini

Evaluation of the trueness of serum alkaline phosphatase measurement in a group of Italian laboratories

Research Centre for Metrological Traceability in Laboratory Medicine (CIRME) – Educational activities

CIRME organizes international and national conferences on the topic of Traceability and Standardization in Laboratory Medicine and works actively to promote postgraduate specialization courses

Lack of proper reference intervals/decision limits may hamper the implementation of standardization

- The implementation of standardization can modify the analyte results
- Without adequate R.I./D.L. this situation can impair the interpretation of the results and, paradoxically, worsen the patient's outcome
- The absence of reliable R.I./D.L. for the newly standardized commercial methods hampers their adoption

[Adapted from Ceriotti F, Hinzmann R, Panteghini M. Ann Clin Biochem 2009;46:8]

Traceable reference intervals as 4th pillar of the reference measurement system: how a problem becomes a solution

Infusino I, Schumann G, Ceriotti F, Panteghini M. CCLM 2010;48:301 Ferraro S, Braga F, Panteghini M. CCLM 2016;54:523 CLINICAL CHEMISTRY AND LABORATORY MEDICINE

Reference Intervals for Serum Creatinine Concentrations: Assessment of Available Data for Global Application Ferruccio Ceriotti,^{1*} James C. Boyd,² Gerhard Klein,³ Joseph Henny,⁴ Josep Queraltó,⁵ Veli Kairisto,⁶ and Mauro Panteghini,⁷ on behalf of the IFCC Committee on Reference Intervals and Decision Limits (C-RIDL)

	Age (gender) group	Percentile value,	mg/dL ^a
		2.5th	97.5th
	Cord blood	0.52	0.97
	Preterm neonates 0–21 d	0.32	0.98
	Term neonates 0–14 d	0.31	0.92
	2 m-<1 y	0.16	0.39
	1 y-<3 y	0.17	0.35
	3 y - < 5 y	0.26	0.42
	5 y-<7 y	0.29	0.48
	7 y - < 9 y	0.34	0.55
	9 y - < 11 y	0.32	0.64
	11 y - < 13 y	0.42	0.71
	13 y – < 15 y	0.46	0.81
	Adult (males)	0.72	1.18
	Adult (females)	0.55	1.02
CIRME	ªTo express creatinine values	in µmol/L, multiply th	ie values
CELEBRATING	by 88.4. d, days; m, months;	y, years.	
Years			

Table 1: Traceable reference intervals for enzymes with established reference measurement systems obtained in European and Asian adults.

Enzyme		European	Asian		
	Females	Males	Females	Males	
AST	11-	34	14-32		
ALT	8-41	9-59	11-31	14–54 15–68	
GGT	6-40	12-68	15-43		
LDH	125-	220	138–235		
СК	34-145	46-171	40-152	58–261	
AMY	31-107		47-136		
ALP	33–98	43-115	40-106	48-131	
Years	Infusino I et al. Clin Chem Lab Med 2016;in press.				
10 th	International Sci	ientific Meeting.	November 17-18	, 2016	

The implementation of standardization in clinical practice needs first the availability of the 3 main pillars:

- Reference measurement procedures
- Reference materials
- Accredited reference laboratories

Then, it needs to define a 4th pillar:

•Traceable reference intervals/decision limits

And, an appropriately organized analytical (internal and external) quality control should become the 5th pillar.

4th CIRME International Scientific Meeting **RETHINKING QUALITY CONTROL IN THE TRACEABILITY ERA** Milano - 30 November 2010

Monitoring the reliability of the analytical system through Internal Quality Control: Component I. Check alignment ("system traceability")

Braga F et al. J Med Biochem 2015:34:282

Control material(s)

Clinical laboratories must verify the consistency of declared performance during routine operations performed in accordance with the manufacturer's instructions, by checking that values of control materials provided by the manufacturer as component of the analytical system are in the established range, with no clinically significant changes in the assumed traceable results.

na 1997 – Alexandra and salar dha salar na salar na salar salar 🖬 shina salar salar salar da salar da salar salar

Monitoring the reliability of the analytical system through Intrnal Quality Control: Component II. Estimating the measurement uncertainty due to random effects ("imprecision")

CIRME CELEBRATING Years

Braga F et al. J Med Biochem 2015;34:282 Braga F, Infusino I, Panteghini M. Clin Chem Lab Med 2015;53:905

Remain Manuality Contribution Series Manuality Contribution FEM Strategic Conterence Series Manuality Conterence FIN Strategic Conterence Series Manuality Conterence <th>OUTE: Another a Rite Horvath, Rob Jansen, Graham Jones, Wytze erhuis, Per Hyltoft Petersen, Heinz Schimmel, Ken Sikaris and Mauro Panteghini fining analytical performance specifications: nsensus Statement from the 1st Strategic nference of the European Federation of Clinical emistry and Laboratory Medicine Model <i>1: Based on the effect of analytical performance of the test on clinical outcomes</i> a. Done by direct outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcomes, e.g., by simulation or decision analysis. <i>Model 2: Based on components of biological variation of the measurand</i>.</th>	OUTE: Another a Rite Horvath, Rob Jansen, Graham Jones, Wytze erhuis, Per Hyltoft Petersen, Heinz Schimmel, Ken Sikaris and Mauro Panteghini fining analytical performance specifications: nsensus Statement from the 1st Strategic nference of the European Federation of Clinical emistry and Laboratory Medicine Model <i>1: Based on the effect of analytical performance of the test on clinical outcomes</i> a. Done by direct outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcome studies – investigating the impact of analytical performance of the test on clinical outcomes; b. Done by indirect outcomes, e.g., by simulation or decision analysis. <i>Model 2: Based on components of biological variation of the measurand</i> .
Vacantial and State and St	Model 3: Based on state of the art of the measurement (i.e., the highest level of analytical performance techni- cally achievable).

Analytical performance specification (APS) derivation should be added to the Miller's EQAS categorization

[Miller WG et al. Clin Chem 2011;57:1670]

C]

Evaluation capability

					Accuracy				
					Individua	Individual laboratory			
		Sample	e characteris	tics		Relative to par- ticipant results		Reproducibility	
Ca	ategory	Commutable	Value assigned with RMP ^a or CRM	Replicate samples in survey	Absolute vs RMP or CRM	Overall	Peer group	Individual laboratory intralab CV	Measurement procedure interlab CV
	1	Yes	Yes	Yes	Х	Х	Х	Х	Х
	2	Yes	Yes	No	Х	Х	Х		Х

Category $1/2A \rightarrow Milan \mod 1 \text{ or } 2 \text{ as basis for APS}$ Category $1/2B \rightarrow Other models$

9th CIRME International Scientific Meeting

STRUCTURING EQAS FOR MEETING METROLOGICAL CRITERIA:

READY FOR PRIME TIME

Milano – 27 November 2015

EFLM Strategic Conference Defining analytical performance goals 15 years after the Stockholm Conference The application of the analytical performance specifications can be modulated depending on its use. For example:

Reference material providers

Manufacturers producing calibrators

Individual laboratories who provide patient results

EQAS organizations

This approach should be applied to every analyte measured in the clinical laboratory in order to establish if the current status of the uncertainty budget of its measurement associated with the proposed metrological traceability chain is suitable for clinical application of the test.

[Panteghini M, Clin Chem Lab Med 2012;50:1237]

Turning the problem upside down Focus first on the field assays

IFCC WG-TNI Technical Discussion Value assignment of NIST SRM 2922 and measurement uncertainty

Measurand definition

TO "THE TRACEABILITY REVOLUTION MANIFESTO"

raga F & Panteghini M, Clin Chim Acta 2014;432:55

- Definition and approval of reference measurement systems, possibly in their entirety;
- Implementation by IVD industry of traceability to such reference systems in a scientifically sound and transparent way;
- Definition by the profession of the clinically acceptable measurement uncertainty for each of the analytes used in the clinical field;
- Adoption by EQAS providers of commutable materials and use of an evaluation approach exclusively based on trueness;
- Monitoring of the analytical performance of individual laboratories by the participation in EQAS that meet metrological criteria and application of clinically acceptable limits;
- CI Abandonment by users (and consequently by industry) of CE nonspecific methods and/or of assays with demonstrated insufficient quality.

The three most highly cited CIRME papers

The Scandinavian Journal of Clinical & Laboratory Investigation, Vol. 68, No. S241, June 2008, 84–88

Available online at www.sciencedirect.com

CLINICAL BIOCHEMISTRY

Clinical Biochemistry 42 (2009) 236-240

ORIGINAL ARTICLE

Enzymatic assays for creatinine: Time for action

Mauro Panteghini*

Centre for Metrological Traceability in Laboratory Medicine (CIRME) University of Milan, Milan, Italy

Traceability as a unique tool to improve standardization in laboratory medicine

Mauro Panteghini*

Centre for Metrological Traceability in Laboratory Medicine (CIRME), University of Milan, Milan, Italy

REVIEWS

RASSEGNE

biochimica clinica, 2007, vol. **31**, n. 4 247

Traceability, reference systems and result comparability

Mauro Panteghini Centro per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME), Università di Milano

Clin Chem Lab Med 2001; 39(9):795-800 © 2001 by Walter de Gruyter · Berlin · New York

Opinion Paper

CIRME

Years

Establishing a Reference System in Clinical Enzymology

Mauro Panteghini¹, Ferruccio Ceriotti², Gerhard Schumann³ and Lothar Siekmann⁴

Mini-Review

AMAR

Clin Biochem Rev Vol 28 November 2007 155

Traceability in Clinical Enzymology

Ilenia Infusino, Roberto Bonora, *Mauro Panteghini Enzyme Reference Laboratory, Centre for Metrological Traceability in Laboratory Medicine (CIRME), University of Milan, 20157 Milano, Italy

Minireview

Standardization in clinical enzymology: a challenge for the theory of metrological traceability

Clin Chem Lab Med 2010;48(3):301-07 @ 2010 by Valter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2010.075

Ilenia Infusino¹, Gerhard Schumann², Ferruccio Ceriotti³ and Mauro Panteghini^{1,*}

¹ Enzyme Reference Laboratory, Center for Metrological Traceability in Laboratory Medicine (CIRME), University of Milan, Milan, Italy

Clin Chem Lab Lied 2016; acp

Mini Review

Ilenia Infusino*, Erika Frusciante, Federica Braga and Mauro Panteghini

Progress and impact of enzyme measurement 10th Internation: standardization

Review

Federica Braga*, Sara Pasqualetti, Simona Ferraro and Mauro Panteghini

Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis

Serum human epididymis protein 4 vs carbohydrate antigen 125 for ovarian cancer diagnosis: a systematic review

Simona Ferraro, 1 Federica Braga, 1 Monica Lanzoni, 2,3 Patrizia Boracchi, 2,3 Elia Mario Biganzoli, 2,3 Mauro Panteghini 1

J Clin Pathol 2013;66:273.

DE GRUYTER

Soluble Transferrin Receptor (sTfR) and sTfR/log Ferritin Index for the Diagnosis of Iron-Deficiency Anemia

A Meta-Analysis

Ilenia Infusino,^{1,2} Federica Braga,^{1,2} Alberto Dolci, MD,² and Mauro Panteghini, MD,^{1,2}

DOI 10.1515/cclm-2013-0738 — Clin Chem Lab Med 2014; 52(6): 767–777

Review

Simona Ferraro*, Roberta Mozzi and Mauro Panteghini

CE Tracing a roadmap for vitamin B₁₂ testing using the health technology assessment approach

10th International Scientific Meeting. November 17-18, 2016

Years

ISO normative standards related to metrological traceability of IVD MD [ISO/TC 212 Working Group 2, Reference systems]

 IVD MD — Mea values assigned

Revised version under development

ical traceability of

- IVD MD Measurement of quantities in biological samples Metrological traceability of values for cata To be incorporated into revised 17511 control materials (ISO 18153:20---,
- IVD MD Measurement of quantities in samples of biological origin Requirements for content and presentation of reference measurement procedures (ISO 15193:2009, 2nd ed.)
- IVD MD Measurement of quantities in samples of biological origin Requirements for certified reference materials and the content of supporting documentation (ISO 15194:2009, 2nd ed.)
- Laboratory medicine Requirements for reference measurement laboratories (ISO 15195:2003)
- ISO/NP 20914 Medical laboratories Practical guide for the estimation of measurement uncertainty
- CIF ISO/NP 21151 IVD MD -- Measurement of quantities in samples of biological origin --CE Requirements for international harmonization protocols intended to establish metrological

traceability of values assigned to product (end user) calibrators and patient samples

