CIRME

Università degli Studi di Milano

Centre for Metrological Traceability in Laboratory Medicine (CIRME)

site: http://users.unimi.it/cirme

PREANALYTICAL AND ANALYTICAL ASPECTS AFFECTING CLINICAL RELIABILITY OF PLASMA GLUCOSE RESULTS

Sara Pasqualetti

TOTAL VARIABILITY OF LABORATORY TEST RESULTS

$$V_{TOT} = (V_P^2 + V_A^2 + V_I^2)^{1/2}$$

Patient preparation

Sample collection

Delivery to the laboratory

Handling

Storage

SOURCES OF VABIABILITY AFFECTING TEST RESULT

BIOLOGICAL

Within-subject biological variation (Fluctuation of analyte concentrations in a body fluid around the homeostatic setpoint)

ANALYTICAL

Sistematic error Random error

Pre-analitical sources of variation in glucose testing

$$V_{TOT} = (V_P^2 + V_A^2 + V_I^2)^{1/2}$$

CRITICAL ISSUE: TO PREVENT *in-vitro* GLYCOLYSIS

GLUCOSE @ physiological concentrations in sample stored at room temperature IS LOST through an average rate of 5-7% per hour

Clin Chem 1989;35:315-7

GOLD STANDARD FOR SAMPLE COLLECTION

- > NATIONAL ACADEMY OF CLINICAL BIOCHEMISTRY (NACB) GUIDELINES FOR LABORATORY ANALYSIS IN DIABETES
- > WORD HEALTH ORGANIZATION

1- SEPARATE plasma from blood cells IMMEDIATELY after sample collection

OR

2- PLACE the sample tube immediately in an ICE-WATER SLURRY and SEPARATE plasma from the cells WITHIN 30 MIN

OR

3 - USE OF AN EFFECTIVE GLUCOSE STABILIZER

✓ Tubes with only enolase inhibitors, such as FLUORIDE, should not be relied on to prevent glycolysis

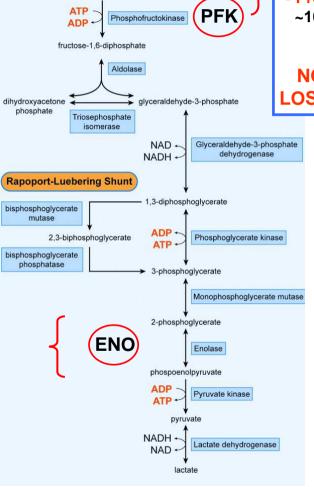
✓ Tube containing a rapidly effective glycolysis inhibitor, such as CITRATE BUFFER, should be used

CITRATE BUFFER

- Acidification to pH 5.3-5.8
- Inhibition of HE and PFK which act earlier in the glycolytic pathways
- Prompt stabilizing effect, guaranteed for ~10 h at room temperature

NO LOSS OF GLUCOSE AFTER 2h LOSS OF GLUCOSE ~1.2% AFTER 24h

FLUORIDE


(and oxalate mixture)

- It forms a complex with enolase in the presence of P and Mg
- Inhibition of ENO which acts downstream in the glycolytic pathway
- Complete stabilizing effect achieved after 4 h from withdrawal

LOSS OF GLUCOSE
DURING THE FIRST HOURS

Embden-Meyerhof Pathway

Hexokinase

Glucosephosphate isomerase

HE

ATP

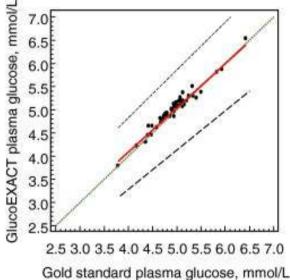
ADP

glucose-6-phosphate

fructose-6-phosphate

Effectiveness and **Reliability** of citric/citrate to prevent in-vitro glycolysis

Table 1. Effect of collection tube type and additives on stability of glucose.


NACB Reference		Mean delta, mmol/L ^a				
Sample type, postdraw storage	Comparator, postdraw storage	Delta (%)	95% CI	<i>P</i> (n) ^b		
Citric acid plasma, 2 h at 37 °C	Heparin plasma, 30 min at 0 °C	6.393 - 6.414 = -0.021 (0.3)	-0.07-0.02	0.33 (30)		
Citric acid plasma, 24 h at 37 °C	Heparin plasma, 30 min at 0 °C	6.393 - 6.316 = 0.07 (1.2)	-0.002 - 0.06	0.05 (30)		
Fluoride plasma, 2 h at 37 °C	Heparin plasma, 30 min at 0 °C	6.393 - 6.099 = 0.294 (4.6)	0.23-0.35	<0.001 (30)		
Fluoride plasma, 24 h at 37 °C	Heparin plasma, 30 min at 0 °C	6.393 - 5.943 = 0.450 (7.0)	0.37-0.53	<0.001 (30)		
Plasma, 30 min, ambient	Serum, 30 min, ambient	5.589 - 5.638 = -0.049 (0.9)	0.021-0.077	<0.001 (90)		
Barrier serum, 24 h at 37 °C	Barrier serum, 30 min, ambient	5.826 - 5.819 = 0.007 (0.1)	-0.011-0.025	0.45 (66)		

Gambino R et al, Clin Chem 2009;55:1019-21

Postdraw storage

T 20-24 °C

Mean Delta %, 0.95% (95% CI, 0.44-1.46)

Bonetti G et al, Prim Care Diabetes 2016;10:227-32

VENOSAFE GRANULAR citric/citrate buffer (TVG) vs. fluoride	AUTHORS	GLUCOSE mmol/L	MEAN DIFFERENCE	
	vs. fluoriae	Szőke D et al Clin Chem Lab Med 2014;52:e87-9	Range 4.5 to 11.1 vs. 4.1 to 10.7	+6.7%
		Bonetti G et al Biochemia Medica 2016;26:68-76	Median (range) 5.60 (5.47 - 5.73) vs. 5.21 (5.05 - 5.32)	+6.8%

GLUCOMEDICS LIQUID citric/citrate buffer (GLD)	AUTHORS	GLUCOSE mmol/L	MEAN DIFFERENCE
vs. fluoride	Dimeski et al Ann Clin Biochem 2014;52:270-5	Mean 5.7 vs. 5.3	+7.5%
	Juricic G et al Clin Chem Lab Med 2016;54:363-71	Mean (±SD) 6.2 (±1.1) vs. 5.7 (±1.0)	+9.9%
CIRME	Juricic G et al Clin Chem Lab Med 2016;54:411-8	Mean (±SD) 6.0 (±0.8) vs. 5.5 (±0.8)	+8.5%
Years 10 th International Sci	Carta M et al <i>Ann Clin Biochem</i> 2016 doi:10.1177/0004563216645621	Median (95%CI) 5.6 (5.5-5.9) vs. 5.1 (4.8-5.3)	+8.9%

The difference between LIQUID vs. GRANULAR citric/citrate buffer

AUTHORS

GLUCOSE mmol/L

MEAN DIFFERENCE

Table 1. Effect of collection tube type and additives on stability of glucose.

			Mean delta,	mmol/L ^a			
	Sample type, postdraw storage	Comparator, postdraw storage	Delta (%)	95% CI	<i>P</i> (n) ^b		
	enosofe Citrote asma, 2 h at 37 °C anula acid plasma, 24 h at 37 °C	Herrace 3, 30 min at 0 °C	6.393 - 6.414 = -0.021 (0.3) 6.393 - 6.316 = 0.071 (1.2)	-0.07-0.02	0.33 (30)		
\ _ (1)	anula acid plasma, 24 h at 37 °C	References as man at 0 °C	6.393 - 6.316 = 0.07 (1.2)	-0.002 - 0.06	0.05 (30)		
Gı	Fluoride plasma, 2 h at 37 °C	Heparin plasma, 30 min at 0 °C		0.23-0.35	<0.001 (30)		
	Fluoride plasma, 24 h at 37 °C	Heparin plasma, 30 min at 0 °C	6.393 - 5.943 = 0.450 (7.0)	0.37-0.53	< 0.001 (30)		
	Plasma, 30 min, ambient	Serum, 30 min, ambient	5.589 - 5.638 = -0.049 (0.9)	0.021-0.077	<0.001 (90)		
	Barrier serum, 24 h at 37 °C	Barrier serum, 30 min, ambient	5.826 - 5.819 = 0.007 (0.1)	-0.011-0.025	0.45 (66)		
			•				

Juricic G et al

Clin Biochem 2016

pii: S0009-120(16)30002-9

Mean
6.0 (2000)

Mean (±SD) 6.0 (1.0) vs.

5.8 (0.9)

+3.4%

The difference between LIQUID vs. GRANULAR citric/citrate buffer: why?

INCORRECT DILUTION CORRECTION FACTOR

Carta M et al Ann Clin Biochem 2016 doi:10.1177/0004563216645621

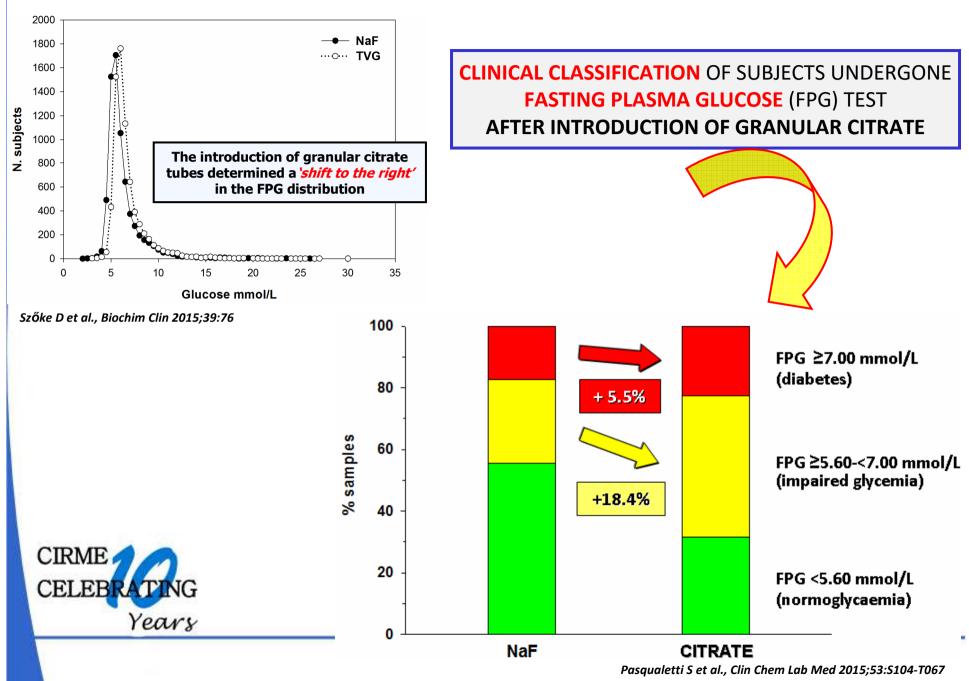
GRANULAR	LIQUID (Diluition Factor, 1.16)	LIQUID (Diluition Factor, *1.10)		
MEAN	MEAN			
5.4 mmol/L	5.6 mmol/L	5.4 mmol/L		

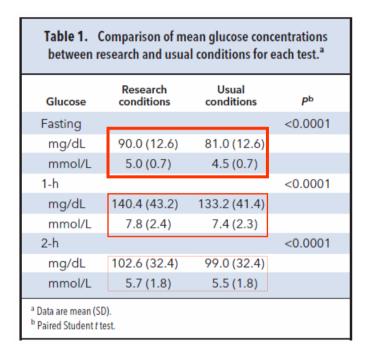
^{*}experimental DF suggested by Dimeski et al Ann Clin Biochem 2014;52:270-5

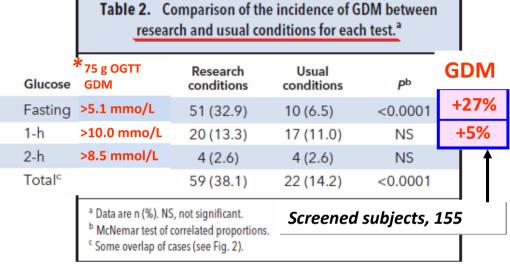
2 IMPRECISE VACUUM ACTION

Perfect correction factor may become incorrect when tubes are not exacty filled as intended ___

....we speculated some problems in tubes manufacturing


- well trained phlebotomists,
- tubes underfilled considered indicative of human error


10th International Scientific Meeting. November 17-18, 2016



CLINICAL CLASSIFICATION OF SUBJECTS UNDERGONE **GESTATIONAL DIABETES MELLITUS** (GDM) TEST

AFTER THE IMPLEMENTATION OF ADA RECOMMENDATION ON PREANALYTICAL FOR GLUCOSE

IADPSG, International Association of the Diabetes and Pregnancy Study Groups, diagnostic criteria*

^{*}According to the HAPO study performed under well controlled preanalytical conditions for glucose testing

HAPO Study Cooperative Research Group. Clin Trials 2006;3:397-407

IADPSG GDM criteria:

- implementation of NACB & WHO protocols
- or tube types that yields compatible results
- To rightfull classificate subjects as diabetics
- To receive the needed treatments that will deprived from in presence of preanalytical invalid conditions.

Daly N et al., Clin Chem 2016;62:387-91 Daly N et al., Am J Obstet Gynecol 2015;213:84:e1-5

The introduction of citrate in clinical practice: which caveat?

Evidence 1 - data about the performance of different "citrate tubes" are confused

Evidence 2 - reliable tubes that promptly inhibit *in vitro* glycolysis may lead to a different clinical classification of subjects

Caveat 1 – selection of tubes

requires caution

containing citrate

Caveat 2 – which decision limits should be applied to plasma glucose?

 should these be redefined when tubes are used that promptly inhibit in vitro glycolysis

or

should they be maintained, so that more subjects at increased risk for diabetes will be identified earlier?

Pasqualetti S, Panteghini M. Ann Clin Biochem 2016 doi:10.1177/0004563216659091

Letter to the Editor

Sara Pasqualetti*, Dominika Szőke, Sarah Birindelli, Alberto Dolci and Mauro Panteghini

Optimal collection tubes for plasma glucose determination: confusion reigns supreme

FROM EU MARKET

- ✓ Terumo Venosafe[™] Glycaemia citrate buffer/NaF/Na₂EDTA GRANULAR FORM
- √ Grainer Bio-one GLUCOMEDICS NaF/EDTA & citrate LIQUID FORM
- ✓ Sarstedt GlucoEXACT NaF/citrate LIQUID FORM
- ✓ Grainer Bio-one Vacuette® FC Mix tube citrate buffer/NaF/Na₂EDTA GRANULAR FORM

.... A MESSY STATE OF AFFAIRS

Need for a well-designed clinical study comparing the suitable options using blood acidification offered by the market

..... IN THE MEANTIME

Staying (*returning*) to tubes containing sodium fluoride only as these have been used in the majority of studies generating the current glucose cut-points for diabetes diagnosis

Plasma Glucose and its Biological Variation

$$V_{TOT} = (V_P^2 + V_A^2 + V_I^2)^{1/2}$$

The concentrations of measurands in body fluids are physiologically variable as they

fluctuate around the individual homeostatic set point - of each individual Within-subject (CV;)

- random fluctuation of setting points among individuals **Between-subject** (CV_a)

Application of Biological Variation Data

"Result interpretation"

INDFX OF **INDIVIDUALITY**

To select the right criteria for results interpretation (reference interval, longitudinal variation)

REFERENCE CHANGE **VALUE (RCV)**

Clinically significative change in two consecutive results

BIOLOGICAL VARIATION

SPECIMENS NEEDED TO FSTABILISH INDIVIDUAL'S HOMEOSTATIC SET POINT

ANALITYCAL PERFORMANCE SPECIFICATIONS

"Reliability of test results"

Problems with Biological Variation Data

- Published data are of varying quality and quite heterogeneous
- > Safe application requires prior critical appraisal
- ➤ Need for standards (i.e. a minimum set of attributes to enable the data to be effectively transmitted and applied)

Braga F, Panteghini M. Crit Rev Clin Lab Sci, 2016;53:313-25

Glucose CV_i and CV_a in literature

PLASMA

First Author	Year of Publication	CVi	CV _g
Cummings	1988	4.9	6.1
Godsland	1985	4.6	
Davie	1993	13.1	3.2
Rohlfing	2002	5.7	5.8
Lacher	2005	8.3	12.5
Lacher	2010	7,5	11.7
Bailey	2013	11.4	9.1
Loh	2014	12.2	

DIABETIC

	Year of Publication	CV _i	CV _g
Carlsen	2011	30.5	16.8

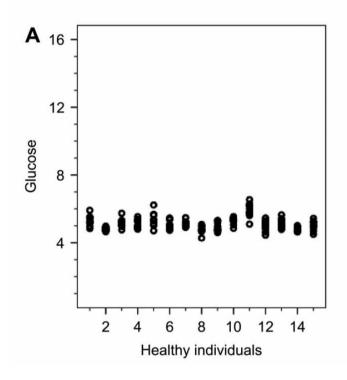
Issues with (Glucose) BV data

SERUM

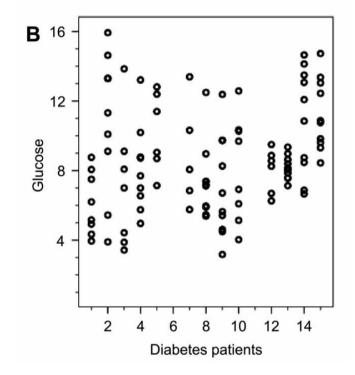
First Author	Year of Publication	CVi	CV _g	Age	Sex
Harris	1970	5.6	7.8		
Young	1971	6.6	2.7		
Williams	1978	11.5, 6.1, 6.3, 6.6, 7.8, 7.8, 6.9	12.9, 5.6, 6.7,8.3, 6.8, 10, 8		
Costangs	1985	13.3; 7.9; 12			
Fraser	1989	4.7	5.4		
Ricos	1989	10.8			
Eckfeldt	1994	4.2	10.8		
Carlsen	2011	5.4	5.6		
Pineda-Tenor	2013	5.5	8.2	>80	3
Pineda-Tenor	2013	3.7	8.8	19-42	3
Pineda-Tenor	2013	6.8	7.3	>80	2
Pineda-Tenor	2013	4.5	7.5	19-42	2
Loch	2015	8.5; 10.4	16.2; 16.8		

- ✓ Heterogeneity of protocols for derive biological variation data
- ✓ CV_i and CVg values possibly dependent from *different biological MATRICES*
- ✓ CV_i and CV_g values different for healthy and diseased individuals

Quantifying Biological Variation

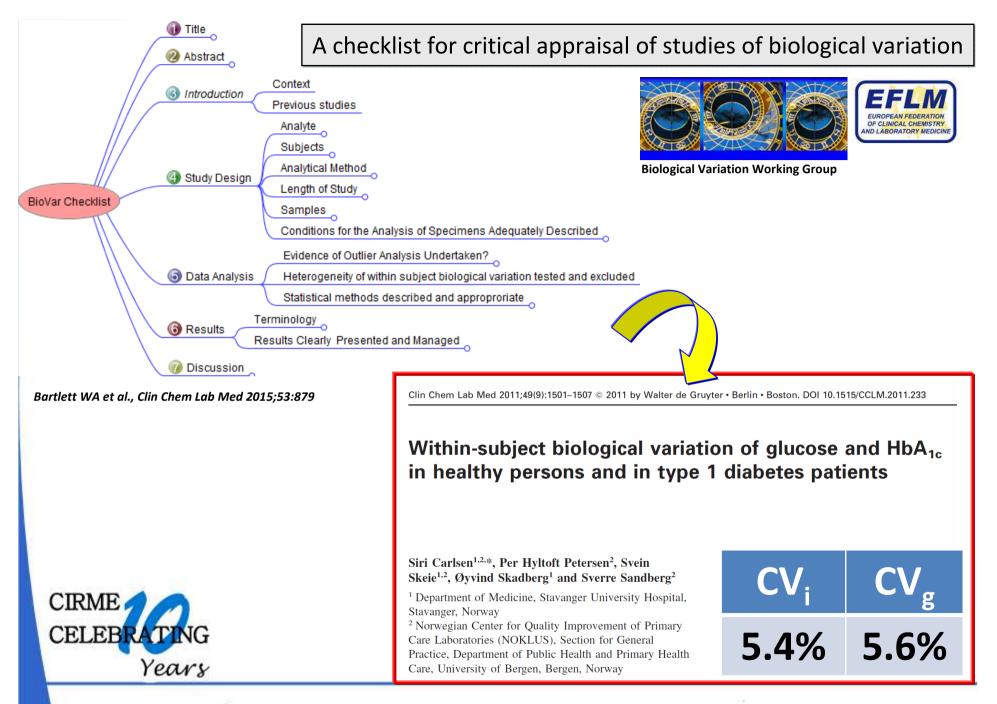

How do you do the experiment?

✓ Subjects	How many?
✓ Collect specimens	Number? Frequency?
✓ Analyse specimens	Minimise analytical variation?
✓ Analyse data	Outliers? Statistics?



Braga F, Panteghini M. Crit Rev Clin Lab Sci, 2016;53:313-25

Biological variation from patients Should they be used?


Inherent biological variability

Inherent biological variability
+
disease (and treatment) related variability

Carlsen S et al., Clin Chem Lab Med 2011;49:1501-7

Assessing the number of specimens (n) required to estimate the individual's homeostatic setpoint of plasma glucose

$$n = 1.96^2*(CV_A^2+CV_i^2)/D^2$$

CV_△, Analytical coefficient of variation

CV_I, Within-subject biological coefficient of variation

D, desired percentage of closeness (usually, 95%)

Glucose = 1.2%

$$HbA_{1c} = 1.2\%$$

Glucose = 5.4%

$$HbA_{1c} = 2.5\%$$

Glucose n = 4.7

HbA_{1c}

Table 2.1-Criteria for the diagnosis of diabetes

FPG ≥126 mg/dL (7.0 mmol/L). Fasting is defined as no caloric intake for at least 8 h.*

2-h PG ≥200 mg/dL (11.1 mmol/L) during an OGTT. The test should be performed as described by the WHO, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.*

A1C ≥6.5% (48 mmol/mol). The test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.*

In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dL (11.1 mmol/L).

*In the absence of unequivocal hyperglycemia, results should be confirmed by repeat testing

Diabetes Care 2016:s1-112

CELEBRATING Years

Sverre Sandberg*, Callum G. Fraser, Andrea Rita Horvath, Rob Jansen, Graham Jones, Wytze Oosterhuis, Per Hyltoft Petersen, Heinz Schimmel, Ken Sikaris and Mauro Panteghini

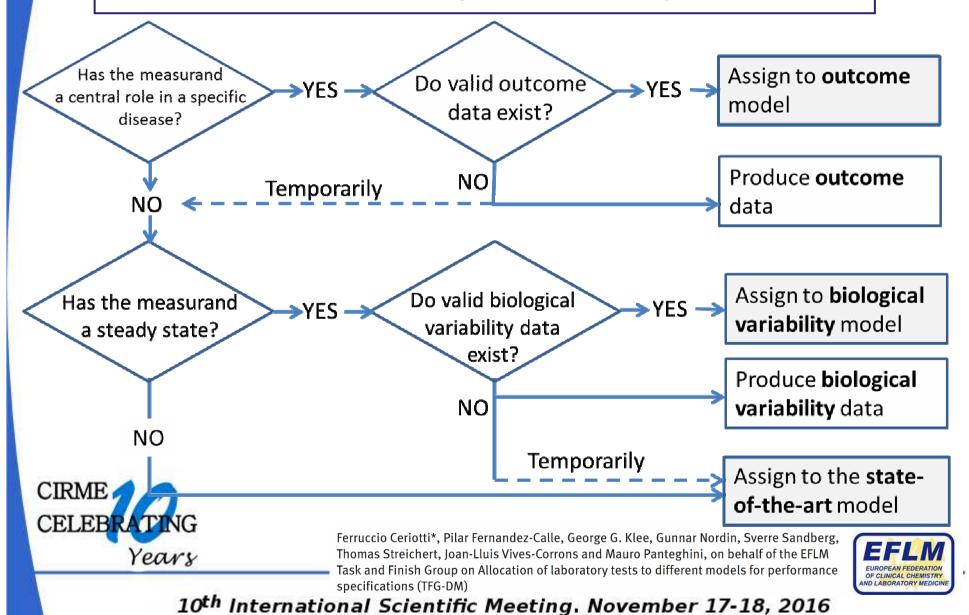
Defining analytical performance specifications: Consensus Statement from the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine

Model 1: Based on the effect of analytical performance on clinical outcomes

- a. Done by direct outcome studies investigating the impact of analytical performance of the test on clinical outcomes;
- b. Done by indirect outcome studies investigating the impact of analytical performance of the test on clinical classifications or decisions and thereby on the probability of patient outcomes, e.g., by simulation or decision analysis.

Model 2: Based on components of biological variation of the measurand.

Model 3: Based on state of the art of the measurement (i.e., the highest level of analytical performance technically achievable).


Opinion Paper

Ferruccio Ceriotti*, Pilar Fernandez-Calle, George G. Klee, Gunnar Nordin, Sverre Sandberg, Thomas Streichert, Joan-Lluis Vives-Corrons and Mauro Panteghini, on behalf of the EFLM Task and Finish Group on Allocation of laboratory tests to different models for performance specifications (TFG-DM)

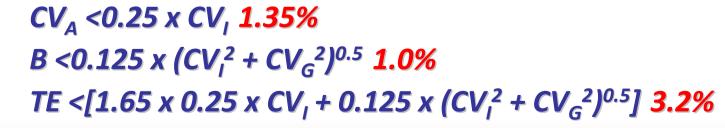
Criteria for assigning laboratory measurands to models for analytical performance specifications defined in the 1st EFLM Strategic Conference

- The measurand has a central role in diagnosis and monitoring of a specific disease ⇒ outcome model → Plasma Glucose
- 2. The measurand has a high homeostatic control \Rightarrow biological variability model
- Neither central diagnostic role nor sufficient homeostatic control ⇒ state-of-the-art model

Workflow for allocation of laboratory measurands to different models for performance specifications

Analytical performance specifications for plasma glucose based on data of biological variability of the analyte

Model 2


Minimum

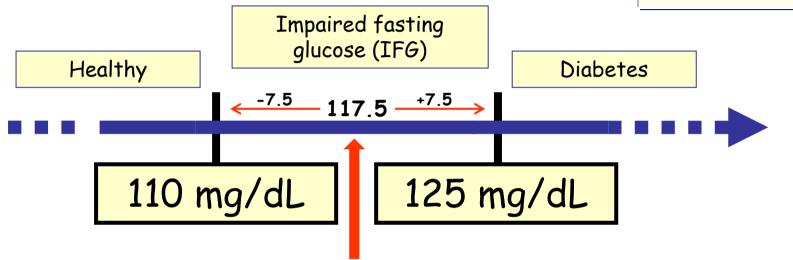
$$CV_A < 0.75 \times CV_I + 4.05\%$$

 $B < 0.375 \times (CV_I^2 + CV_G^2)^{0.5} + 3.0\%$
 $TE < [1.65 \times 0.75 \times CV_I + 0.375 \times (CV_I^2 + CV_G^2)^{0.5}] + 9.6\%$

Desirable

$$CV_A < 0.50 \times CV_l$$
 2.7%
 $B < 0.250 \times (CV_l^2 + CV_G^2)^{0.5}$ 1.95%
 $TE < [1.65 \times 0.50 \times CV_l + 0.250 \times (CV_l^2 + CV_G^2)^{0.5}]$ 6.4%

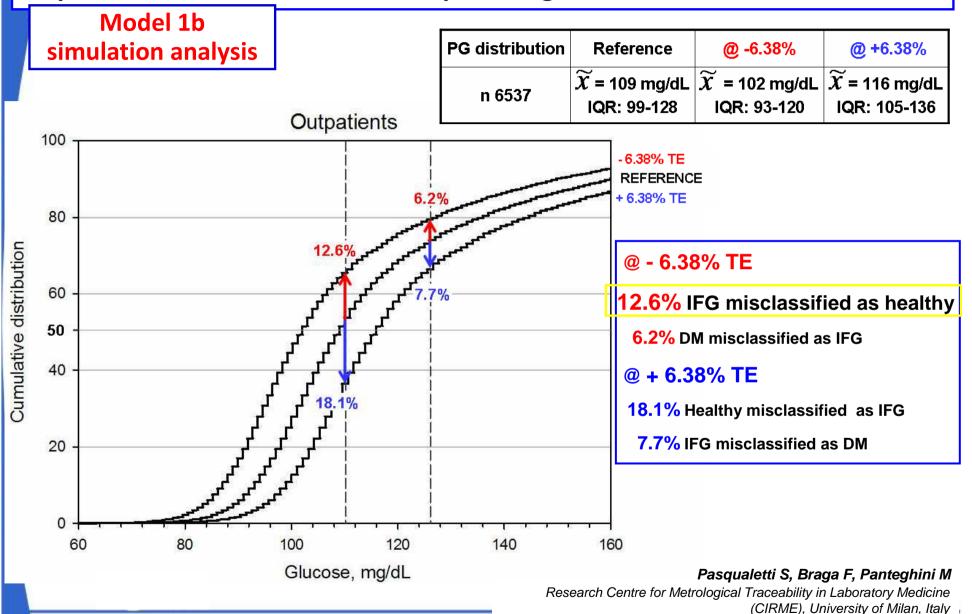
Optimum



Defining analytical performance specifications using indirect outcome data (Model 1b)

- Impact of analytical performance of test on clinical classifications or decisions and thereby on probability of outcomes (simulation or decision analysis).
- To model the clinical outcomes of misclassification requires clinical evidence about the consequences for patients.
- Where clinical evidence about these consequences is not available, the model estimates will be based on assumptions drawn from what evidence there is about disease prognosis, treatment benefits, harms, etc.

Defining analytical performance specifications for plasma glucose using *indirect* outcome data *Model 1b*


A subject with a FPG of 117.5 mg/dL must be differentiate from healthy condition (from one side) and a frank diabetes diagnosis (from the other side).

Therefore, TE of FPG measurement should be kept <7.5/117.5 = <6.38%, so that a subject with an IFG cannot be misclassified as diabetic (FPG >125 mg/dL) or healthy (FPG <110 mg/dL).

Model 2 - TEa <[1.65 x 0.50 x $CV_1 + 0.250$ x $(CV_1^2 + CV_G^2)^{0.5}$] 6.4%

Impact of measurement error of plasma glucose on clinical classification

10th International Scientific Meeting. November 17-18, 2016

Analitical aspects of glucose testing

$$V_{TOT} = (V_P^2 + V_A^2 + V_I^2)^{1/2}$$

Laboratory customers (i.e., doctors and patients) expect lab results to be equivalent and interpreted in a reliable and consistent manner

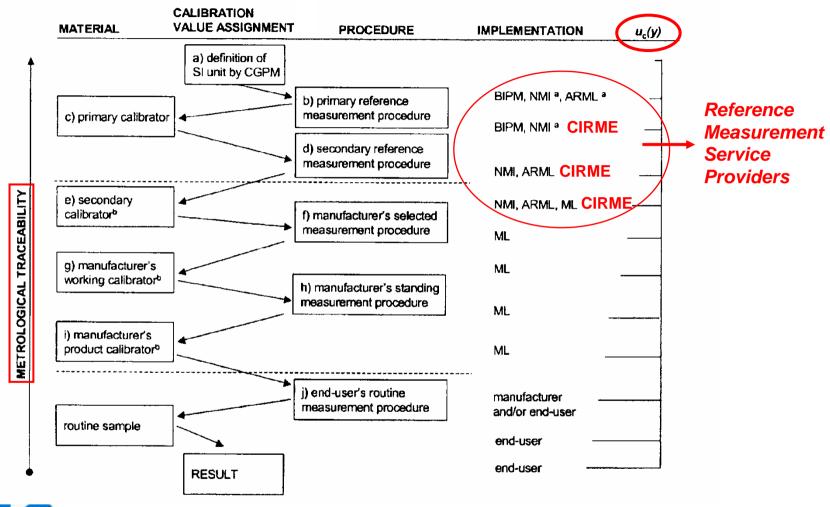
STANDARDIZATION

to achieve metrological traceability of patient results to higher-order references

Definition of higher order references in order to implement the appropriate trueness transfer process to commercial calibrators

Measurement uncertainty budget

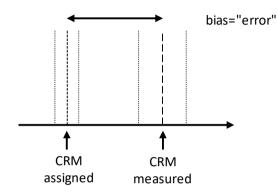
Definition of allowable limits for uncertainty


Post-market surveillance

Survey - suitability of assays and laboratory performances

Panteghini M. Clin Chem Lab Med 2012;50:1237-41

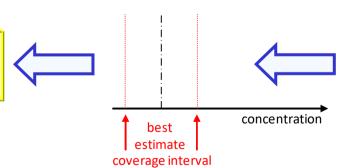
TRACEABILITY ESTABLISHMENT


ISO 17511:2003. In vitro diagnostic medical devices - Measurement of quantities in biological samples - Metrological traceability of values assigned to calibrators and control materials.

CIRME

Years

MEASUREMENT UNCERTAINTY AND BIAS CORRECTION

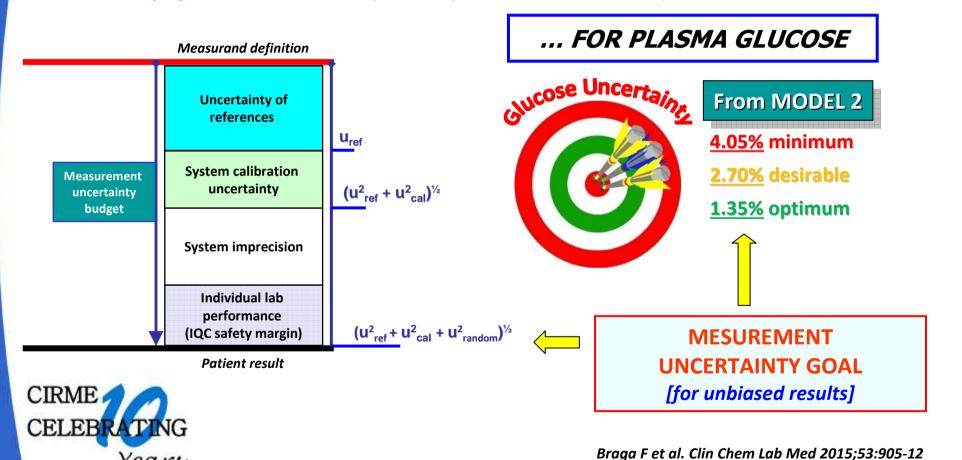

"Non-negative parameter characterizing the dispersion of the quantity values being reasonably attributed to a measurand, based on the information used"

Bias, systematic measurement error

Uncertainty

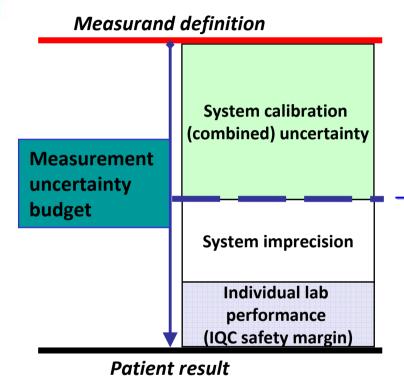
Bias correction,

realignment of measuring system by adjusting the value assigned to the calibrator


Uncertainty of calibrator

ALLOWABLE UNCERTAINTY BUDGET

Three main components of uncertainty:


Years

- 1. *Uncertainty of references* reference materials, reference procedures;
- 2. Uncertainty of commercial system calibrators manufacturer 's calibrator values [transfer process];
- 3. *Uncertainty of random sources* system imprecision, individual lab performance.

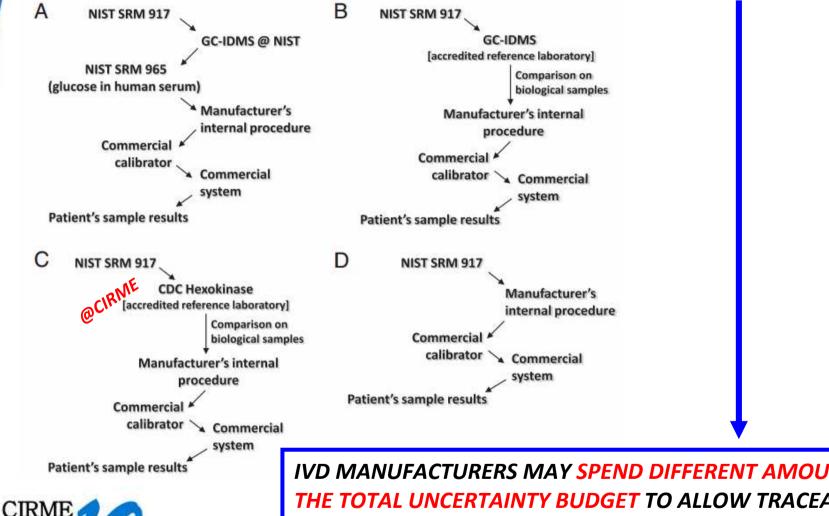
10th International Scientific Meeting. November 17-18, 2016

Need to define criteria for manufacturers that can be achieved for their calibrators leaving enough uncertainty budget for the laboratories to produce clinically acceptable results.

→ The allowable limit for the combined uncertainty of manufacturer's commercial calibrators @ 50% of the goals

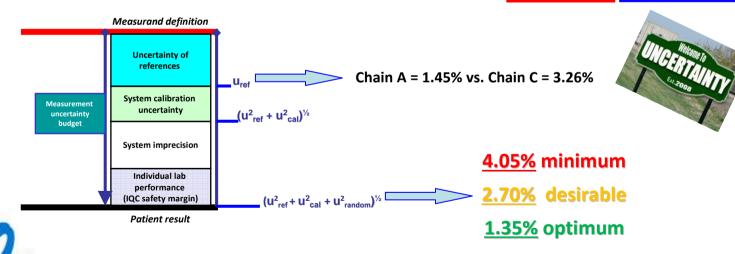
Opinion Paper

Clin Chem Lab Med 2013; 51:973


Renze Bais*, Dave Armbruster, Rob T. P. Jansen, George Klee, Mauro Panteghini, Joseph Passarelli and Ken A. Sikaris on behalf of the IFCC Working Group on Allowable Error for Traceable Results (WG-AETR)

Defining acceptable limits for the metrological traceability of specific measurands

THE TRACEABILITY CHAINS AVAILABLE TO IVD MANUFACTURERS FOR GLUCOSE


IVD MANUFACTURERS MAY SPEND DIFFERENT AMOUNTS OF THE TOTAL UNCERTAINTY BUDGET TO ALLOW TRACEABILITY OF THEIR ANALYTICAL SISTEM TO HIGHER ORDER REFERENCES

Braga F, et al. Clin Chim Acta 2014;432:55-61

Years

Are the analytical system commercially available for glucose determination able to achieve the desirable limit for combined uncertainty in a clinical setting (fit for purpose)?

Company	Platform	Principle of commercial method	Calibrator	Declared standard uncertainty ^a			Higher-order reference employed		Type of traceability chain used ^b	Combined standard uncertainty associated with the used chain ^c
					Method	Material				
Abbott	Architect	ND	Multiconstituent calibrator	2.70%	IDMS	NIST SRM 965	A	1.22-1.45% ^d		
Beckman	AU	Hexokinase	System calibrator	ND	ND	NIST SRM 965	A	1.22-1.45% ^d		
	Synchron	Hexokinase	Synchron multicalibrator	ND	ND	NIST SRM 917a	D	1.60-3.00% ^e		
Roche	Cobas c	Hexokinase	C.f.a.s.	0.84%	IDMS	ND	В	1.70%		
	Integra	Hexokinase	C.f.a.s.	0.62%	IDMS	ND	В	1.70%		
	Modular	Hexokinase	C.f.a.s.	0.84%	IDMS	ND	В	1.70%		
		GOD	C.f.a.s.	0.84%	IDMS	ND	В	1.70%		
Siemens	Advia	Hexokinase	Chemistry calibrator	1.30%	Hexokinase	NIST SRM 917a	C	1.88-3.26% ^f		
		GOD	Chemistry calibrator	0.80%	Hexokinase	NIST SRM 917a	c	1.88-3.26% ^f		

Braga F, Panteghini M. Clin Chim Acta 2014;432:55-61

CIRME

Years

POST-MARKET SURVEILLANCE

Requirements for the applicability of EQAS results in the evaluation of the performance of participating laboratories in terms of traceability of their measurements

Feature

Aim

EQAS materials value-assigned with reference procedures by an accredited reference Laboratory

Proved commutability of EQAS materials

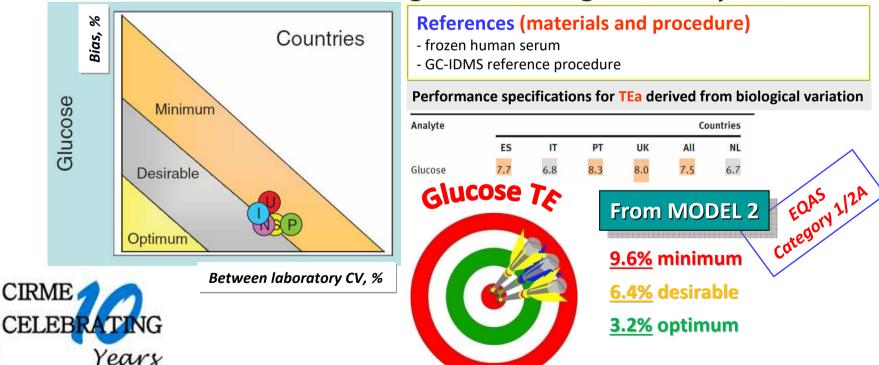
i.e. Glucose i.e. Glucose (CDC reference) procedure)

To check traceability of commercial system to reference systems

To allow transferability of participating laboratory performance to the measurement of patient samples

Definition and use of the clinically
allowable measurement error
(EQAS category 1/2A or 1/2B)

To verify the suitability of laboratory measurements in clinical setting


Panteghini M. Clin Chem Lab Med 2010;48:7
Infusino I et al., Clin Chem Lab Med 2010;48:301
Braga F, Panteghini M. Clin Chem Lab Med 2013;51:1719
Braga F, Panteghini M. Clin Chim Acta 2014;432:55
Infusino I et al., Clin Chem Lab Med 2016 doi: 10.1515/cclm-2016-0661

Trueness-Based EQAS – Example 1

DE GRUYTER Clin Chem Lab Med 2016; aop

Cas Weykamp*, Sandra Secchiero, Mario Plebani, Marc Thelen, Christa Cobbaert, Annette Thomas, Nuthar Jassam, Julian H. Barth, Carmen Perich, Carmen Ricós and Ana Paula Faria

Analytical performance of 17 general chemistry analytes across countries and across manufacturers in the INPUtS project of EQA organizers in Italy, the Netherlands, Portugal, United Kingdom and Spain

Trueness-Based EQAS - Example 2

Trueness Assessment for serum glucose measurement in different **Commercial Systems** through the preparation of

Commutable Reference Materials

ChangYu et al., Ann Lab Med 2012;32:243-9

References (materials and procedure)

- Pooled sera
- US Centers for Disease Control (CDC) reference procedure

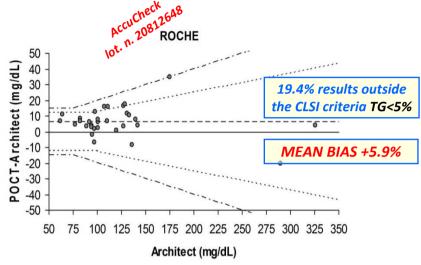
Table 1. Relative bias for glucose measurement using 6 commercial systems

Custom anda	Manufacturer Method	Mathad	Stated traceability for the	Analyzartypa		Relative bias (%)			
System code	Manufacturer	Wethou	reference method	Analyzer type	RM1	RM2	RM3	RM4	RM5
GOD01	Beckman	GOD-oxygen electrode	HK	DxC800 (N = 2), DxC20 (N = 1)	2.88	-0.17	1.39	1.38	2.82
GOD02	Roche	GOD-POD	ID-MS	Modular P800 (N=3)	3.19	1.66	3.96*	3.43*	4.58*
GOD03	Ortho	GOD-dry chemistry	HK	Vitros 250 (N = 3)	1.92	-0.17	2.68	1.38	3.14
HK01	Beckman	HK-G6PD	HK	DxC800 (N=2), DxC20 (N=1)	-1.92	-3.48*	-2.78	-2.77	-0.85
HK02	Roche	HK-G6PD	ID-MS	Modular P800 (N=3)	-3.83*	-1.82	-0.11	-1.6	-0.11
HK03	Dade Behring	HK-G6PD	ID-MS	RXL-MAX (N=3)	-1.28	-1.82	-1.28	-0.73	-0.27

Most **BUT NOT ALL** of the measurement systems met the minimum quality specifications for bias.

From MODEL 2 EQAS 1/21

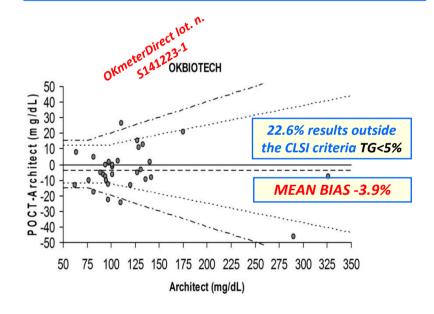
3.0% minimum


2.0% desirable

1.0% optimum

Verification of the accuracy of three glucose point-of-care testing (poct) devices for their use in a hospital setting

<u>Elena Aloisio</u>, Erika Frusciante, Alberto Dolci, Mauro Panteghini Research Centre for Metrological Traceability in Laboratory Medicine (CIRME), University of Milan, Italy



Nover Pro 15:125
Nova Biomedical

16.1% results outside the CLSI criteria TG<5%

The control of the control of

- Comparison with a standardized automated system (Abbott, ref. n. 3L82, mean bias 0.2% vs CDC ref. procedure performed @CIRME)
- CLSI acceptability criteria (POCT12-A3)

Aloisio E et al. Bioch Clin 2016 in press.

...DESPITE MANY EFFORTS

BY THE

PROFESSION...

...QUANTIFICATION OF A SIMPLE MOLECULE LIKE GLUCOSE
IS NOT SIMPLE...

...BUT WE ARE WELL ON THE WAY!

Thank you for Your kind attention !!

