Total error in the uncertainty era: which role?

Wytze P. Oosterhuis, MD, PhD

$11^{\text {th }}$ International Scientific Meeting MEASUREMENT UNCERTAINTY IN MEDICAL LABORATORIES: FRIEND OR FOE?

Stockholm/Milan criteria 2014

Consensus Statement

Sverre Sandberg*, Callum G. Fraser, Andrea Rita Horvath, Rob Jansen, Graham Jones, Wytze Oosterhuis, Per Hyltoft Petersen, Heinz Schimmel, Ken Sikaris and Mauro Panteghini

Defining analytical performance specifications:
Consensus Statement from the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine

Model 1. Clinical outcomes

Model 2. Biological variation

Model 3. State-of-the-art

Task \& Finish Group Total Error

Terms of Reference:

Proposal:
-how to use the total error concept
-how to possible combine performance specifications for bias and imprecision.

Deliverable:
A manuscript dealing with this topic.

Task \& Finish Group Total Error

Supervisors:
Sverre Sandberg
Mario Plebani
Mauro Panteghini

Members:

Wytze Oosterhuis (NL) Chair
Dave Armbruster (US)
Hassan Bayat (IR)
Patrick Bossuyt (NL)
Abdurrahman Coskun (TR)
Peter Deman (NL)
Ana-Paula Faria (PT)
Kathleen Freeman (UK)
Anders Kallner (SW)
Dave Koch (US)
Finlay MacKenzie (UK)
Gabriel Migliarino (AR)
Matthias Orth (DE)
Hanna Ritzen (SW)
Marit Sverresdotter Sylte (NO)
Johan Surtihadi (US)
Elvar Theodorsson (SW)
Sten Westgard (US)
Clin Chem Lab Med 2017; aop https://doi.org/10.1515/cclm-2017-0341
Received April 19, 2017; accepted July 4, 2017

Criteria for Judging Precision and Accuracy in Method Development and Evaluation

James O. Westgard, R. Neill Carey, and Svante Wold ${ }^{1}$

$$
\mathrm{TE}=\text { bias }+\mathrm{z} \times \mathrm{SD}_{\mathrm{a}}
$$

Fig. 1. Definitions of precision and accuracy in terms of random, systematic, and total analytic errors

Quality goals in external quality assessment are best based on biology

C. G. FRASER \& P. HYLTOFT PETERSEN

$$
\mathrm{TE}_{\mathrm{a}}=1.65\left(0.5 \mathrm{CV}_{\mathrm{l}}\right)+0.25\left(\mathrm{CV}_{\mathrm{l}}^{2}+\mathrm{CV}_{\mathrm{G}}^{2}\right)^{1 / 2}
$$

Scan J Clin Lab Invest 1993; 53 suppl. 212: 8-9.

Example CK: TE_{a}

Linear model:

$$
\mathrm{TE}_{\mathrm{a}}=1.65\left(1 / 2 \mathrm{CV}_{1}\right)+0.25\left(\mathrm{CV}_{1}^{2}+\mathrm{CV}_{\mathrm{G}}^{2}\right)^{1 / 2}=\text { constant }
$$

$\mathrm{TE}_{\mathrm{a}} \geq \mathrm{zCV}_{\mathrm{a}}+$ bias
bias $\leq-z \mathrm{ZV}_{\mathrm{a}}+\mathrm{TE}_{\mathrm{a}}$

$$
y=a x+b
$$

$$
\begin{aligned}
\text { Sigma } & =\left(\mathrm{TE}_{\mathrm{a}}-\text { bias }\right) / \mathrm{CV}_{\mathrm{a}} \\
& =\mathrm{z}
\end{aligned}
$$

Method Performance Report (Sigma Score) (Oct 2016)
Albumin $(9 / L)$
BECKMAN AU5800 (2012110492-83953) I BECKMAN COULTER (OLY) I DVE SINDING - BCC

		Period	Mean	so	*ucy	Peers	N	\%\% Bias	Signas			
	Your tab Teat Syetem Peer	$\begin{aligned} & \text { Ot } 2016 \\ & \mathrm{Ot} 3016 \end{aligned}$	$\begin{aligned} & 48.86 \\ & 49.43 \end{aligned}$	$\begin{aligned} & 0.58 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 1.07 \\ & 4.00 \end{aligned}$	12	$\begin{aligned} & 28 \\ & 700 \end{aligned}$	1.15	8.24			
Total Allowable Error										Sigma	mits	$\stackrel{ }{ }$
10.00 *										-	6	1.67
	9									-	5	200
											4	2.50
										\square	3	3.35
	$\begin{aligned} & \text { ते } \\ & 0 \end{aligned}$									-	2	5.00

zuyderland

Desirable routine analytical goals for quantities assayed in serum

Stöckl et al. Eur J Clin Chem 1995; 33: 157
"A stricking feature is the fact that all of the individuel approaches described recommend numbers for analytical standard deviation near or equal to 0.5 times the biological standard deviation"

Imprecision $<0.5 \mathrm{CV}_{\mathrm{b}} \longrightarrow$ analytical variation $<12 \%$ total variation

$$
\mathrm{TE}_{\mathrm{a}}=1.65\left(0.5 \mathrm{CV}_{\mathrm{I}}\right)=0.25\left(\mathrm{CV}^{2}+\mathrm{CV}_{\mathrm{G}}{ }^{2}\right)^{1 / 2}
$$

Scand J Clin Lab Invest 1988; 48: 757-764
Analytical goals for the acceptance of common
reference intervals for laboratories throughout
a geographical area
E. M. S. GOWANS,* \dagger P. HYLTOFT PETERSEN, \dagger O. BLAABJERG \dagger
\& M. HØRDER \dagger
*Department of Biochemical Medicine, Ninewells Hospital and Medical School, Dundee, Scotland,
and \dagger Department of Clinical Chemistry, Odense University Hospital, Odense C, Denmark

zuyderland

The estimate for bias:

Gowans et al. Scan J Clin Lab Invest 1988; 48: 757

Problems:

Conventional model is flawed:

$$
\mathrm{TE}_{\mathrm{A}}=0.25 \mathrm{CV}_{\mathrm{B}}+1.65\left(0.5 \mathrm{CV}_{1}\right)
$$

Summing of mutual exclusive terms.

Gross Overestimation of Total Allowable Error Based on Biological Variation
To the Editor:

Clinical Chemistry 57:9 (2011)

Other problem: mixing of models for monitoring and diagnosis:

Diagnosis

Maximum imprecision CV_{A}
Maximum bias

Monitoring
Maximum imprecision CV_{A}
Maximum bias
$<0.5\left(\mathrm{CV}_{1}^{2}+\mathrm{CV}_{\mathrm{G}}{ }^{2}\right)^{1 / 2}$
$<0.25\left(\mathrm{CV}_{1}{ }^{2}+\mathrm{CV}_{G}{ }^{2}\right)^{1 / 2}$
$<0.5 \mathrm{CV}_{1}$
$<0.25\left(\mathrm{CV}_{1}^{2}+\mathrm{CV}_{\mathrm{G}}{ }^{2}\right)^{1 / 2}$?
zuyderland

Models for permissible bias and impecision, CK

JCGM 100:2008

Evaluation of measurement data - Guide to the expression of uncertainty in measurement

Évaluation des données de mesure Guide pour l'expression de lincertitude de mesure

Measurement uncertainty

GUM Guideline to the expression of uncertainty in measurement:

- "true value"does not exist/cannot be known or considered irrelevant
- Take all sources of uncertainty into account
- Correction of bias, include uncertainty of correction

ISO 15189:2012:

"The laboratory shall determine measurement uncertainty for each measurement procedure in the examination phases used to report measured quantity values on patients' samples.

The laboratory shall define the performance requirements for the measurement uncertainty of each measurement procedure and regularly review estimates of measurement uncertainty."

Uncertainty model

Bottom-up: complex mathematical model

Figure 3: Cause and effect diagram identifying possible sources of uncertainty associated with the determination of creatinine in serum.

Uncertainty model

Top-down: based on quality control results

Figure 6: Low level creatinine quality control chart. Same as Figure 5B.

The time frame will have an important effect on the estimation of bias.

Total error and uncertainty: Friends
or foes?
E. Rozet R.D. . Manini, E. Ziemons, w. Dewé, S. Rudaz, B. Boulanger, h. Hubert

zuyderland

Measurement uncertainty

Total error

[^0]
Problems:

- TE model flawed
- How to combine random and systematic errors?
- Include uncertainty of bias?
- How to calculate allowable TE and MU?
- How to define quality limits?

Terms of Reference TE Task\&Finish group:

Proposal:

- how to use the total error concept
- how to possible combine performance specifications for bias and imprecision.
Jan S. Krouwer*
Jan S. Krouwer*
The problem with total error models in
establishing performance specifications
and a simple remedy
Wytze P. Oosterhuis* and Sverre Sandberg

Quality control review: implementing a scientifically
based quality control system
James O Westgard and Sten A Westgard

[^1]Analytical performance specifications in clinical chemistry: the
-
© Journal of Laboratory and Precision Medicine
Submitted Sep 01, 2017. Accepted for publication Sep 04, 2017. doi: 10.21037/jlpm.2017.09.02
View this article at: http://dx.doi.org/10.21037/jlipm.2017.09.02

Performance specification: $\mathrm{CV}_{\mathrm{A}}<0,5 \mathrm{CV}_{1}$

- Performance specification as maximum variation
- For QC (sigma) we need a performance limit

Sigma $=1,65\left(0,5 \mathrm{CV}_{\mathrm{I}}\right) / \mathrm{CV}_{\mathrm{A}}$ $=1,65$

$$
\mathrm{pTE}=1.65(0.5 \mathrm{CVi})
$$

$0.5 \mathrm{CVi}=1.65 \mathrm{SD}$

Not logical:

1) Sigma metric: performance limit based on $z=1.65$ is arbitrary.
2) Sigma metric of 1.65 is low: $\mathrm{CV}_{\mathrm{a}}=0.5 \mathrm{CV}_{\mathrm{i}}$ cannot be maintained by QC.
3) Contrast with Six Sigma model: performance limit, but at the same time 5% outside limit is acceptible.

How to translate a maximum CV_{a} to a performance limit and sigma metric?

$$
\mathrm{pTE}=2.5(0.5 \mathrm{CVi})
$$

$0.5 \mathrm{CVi}=2.5$ sigma

- zuyderland

Quality control and measurement in industry

- zuyderland

Measurement Systems Analysis Reference Manual, Fourth edition, Chrysler Group LLC, Ford Motor Company, General Motors Corporation (Automotive Industry Action Group, AIAG), Detroit-Michigan, USA, June 2010.

"Gage R\&R"

$$
\sigma_{G R R}^{2}=\sigma_{\text {reproducibility }}^{2}+\sigma_{\text {repeatability }}^{2}
$$

Repeatability = imprecision

Reproducibility = batch-to-batch variation between-run variation between instrument bias

$$
\Delta_{\max }=\sqrt{k^{2} s_{s p}^{2}+\delta_{e p}^{2}},
$$

wobei
$k=3$, Erweiterungfaktor für die Berechnung der laboratoriumsinternen Fehlergrenze
$s_{e p}$, empirische Standardabweichung der zur Berechnung herangezogenen Kontrollprobenmessungen in der Ermittlungsperiode (ep)
$\delta_{\text {ept }}$ systematische Messabweichung der zur Berechnuing herangezogenen Kontrollprobenmessungen in der Ermittlungsperiode (ep)

RiliBäk

Richtlinie der Bundesärztekammer

zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen

"NDC: Number of Distinct Categories"

$$
\mathrm{NDC}=\sqrt{2}\left(\frac{\sigma_{\text {part }}}{\sigma_{\text {measurement }}}\right)
$$

NDC: Number of distinct categories ≥ 4

Variation of product
Variation of measurement

NDC: Number of distinct categories

Gage R\&R	Decision	NDC	Comments
Under 10%	Generally considered to be an acceptable measurement system	>14	Recommended, especially usefulwhen trying to sort or classify parts or when tightened process control is required.
10% to 30%	May be acceptable for some applications	$4-14$	Decision should be based upon, for example, importance of application measurement, cost of measurement device, cost of rework or repair. Should be approved by customer.
Over 30\%	Considered to be unacceptable	<4	Every effort should be made to improve the measurement system. This condition may be addressed by the use of an appropriate measurement strategy; for example, using the average result of several readings of the same part characteristic in order to reduce final measurement variation.

Clinical chemistry: $\mathrm{CV}_{\mathrm{A}} / \mathrm{CV}_{\mathrm{A}} \leq 0,5=50 \%$

zuyderland

Test	CVa *	CV intra-individual	CV $_{\text {groun }}$	pTE\#	Sigma (TE)	NDC
Creatinine	1.22%	5.95%	14.7%	8.9%	7.3	6.9
Sodium	1.11%	0.6%	0.7%	0.73%	0.66	0.76
Potassium	1.36%	4.6%	5.6%	5.6%	4.1	4.9
Glucose	0.70%	5.6%	7.5%	6.96%	9.9	11.3
Iron	1.77%	26.5%	23.2%	30.7%	17.3	21.2
Albumen	2.60%	3.2%	4.75%	4.07%	1.6	1.7
TSH	1.25%	19.3%	24.6%	38.2%	30.6	21.8

Conclusions:

-TE and MU models both have their place
-Consensus on an improved error model is needed
-We could be inspired by ideas outside clinical chemistry

End

[^0]: zuyderland

[^1]: ? 2 zuyderland

