

MILANO, ITALY November 30th, 2017

AULA MAGNA · LITA SEGRATE Via Fratelli Cervi, 93 · Segrate, Milano

What information on measurement uncertainty should be communicated to clinicians, and how?

Mario Plebani

OUTLINE OF TALK

- Uncertainty in medicine and shared decision making
- *Measurement uncertainty* in laboratory medicine (MU)
- What information on MU should be communicated to clinicians?
- *How* should MU be communicated to clinicians ?

CERTAINTY IS AN ILLUSION

Medicine is a science of uncertainty and an art of probability.

William Osler

ONLY UNCERTAINTY IS A SURE THING

The reality is that doctors continually have to *make decisions* on the basis of *imperfect data* and limited knowledge, which leads to *diagnostic uncertainty*, coupled with the uncertainty that arises from unpredictable patient response to treatment and from health care outcomes that are far from binary.

Simpkin AL, Schwartzstein RM. N Engl J Med 2016

CERTAINTY IS AN ILLUSION

....and despite significant advances in diagnostic testing, physicians still face *uncertainty in interpretation*.

As the historic paradigm of estimating pretest probability, followed by laboratory tests to refine the likelihood of disease, frequently no longer applies, new approaches are needed to remind clinicians that *results* should be *considered in relation to* the *clinical* impression and *context*.

Whyte MB, Vincent RP. Emerg Med J. 2016

THE DIAGNOSTIC PROCESS

The diagnostic process is a *complex, patientcentered, collaborative activity* that involves *information gathering* and *clinical reasoning* with the goal of determining a patient's health problem.

> Improving diagnosis in health care. National Academies of Sciences, Engineering and Medicine, 2015

INFORMATION GATHERING

The goal of information gathering in the diagnostic process is to *reduce diagnostic uncertainty* enough to make *optimal decisions* for subsequent care (J Kassirer, 1989)

There are *four types* of *information gathering* activities in the diagnostic process: 1) taking a clinical history and interview, 2) performing a physical exam; 3) *obtaining diagnostic testing*; and 4) sending a patient for referrals or consultations.

CLINICAL REASONING

Clinical reasoning is «the cognitive process that is necessary to evaluate and manage a patient's medical problems».

Clinical reasoning occurs within clinicians' minds (facilitated or impeded by work system) and involves judgment under uncertainty, with a consideration of possible diagnoses that may explain symptoms and signs, the **harm** and **benefits of diagnostic testing**......

UNCERTAINTY IN LABORATORY MEDICINE

Uncertainty is a property of a measurement result which expresses *lack of knowledge* of the true value of the result and incorporates the factors known to influence it.

Uncertainty, therefore, is a *quantification of doubt* about the measurement result as is caused by the interplay of errors which create *dispersion around the estimated value* of the measurand: the smaller the dispersion, the smaller the uncertainty.

MEASUREMENT UNCERTAINTY and CLINICAL-LABORATORY COMMUNICATION

The admission of *uncertainty* forms the starting point for a *more open conversation* between laboratory professionals and clinicians (and patients too)

Clinica Chimica Acta 346 (2004) 25-35

www.elsevier.com/locate/clinchim

What information on quality specifications should be communicated to clinicians, and how?

Mario Plebani*

Department of Laboratory Medicine, University-Hospital of Padova and Center for Biomedical Research, Castelfranco Veneto (TV), Azienda Ospedaliera di Padova, Via Giustiniani, 2, Padua 35128, Italy

Received 18 December 2003; accepted 19 March 2004

information derived from quality specifications. By providing clinicians with information on quality characteristics and the Conclusions: A proposal has been made to improve the way laboratory results are communicated to clinicians, with practical degree of uncertainty, a more objective interpretation of laboratory data may be possible, and data may be more appropriately utilized for diagnosis and monitoring.

PADOVA'S LABORATORY REPORTS

AZIE DIPAT	REGIONE DE NDA OSPEDALIERA - UNIVE RTIMENTO STRUTTURALE M U.O.C. Medicina di (SGQ ISO 90 Direttore: Prof. Ma	REGIONE DEL VENETO SPEDALIERA - UNIVERSITA' - AULSS6 EUGANEA ITO STRUTTURALE MEDICINA DI LABORATORIO U.O.C. Medicina di Laboratorio (SGQ ISO 9001:2008) Direttore: Prof. Mario Plebani						
P-POTASSIO errore totale ≤5%	3,7	mmol/L	3,4	-	4,5	3,6	10/10/17	
P-BILIRUBINA TOTALE errore totale ≤18,5%	16,9	umol/L	1,7	-	17,0			
P-BILIRUBINA CONIUGATA P-BILIRUBINA NON CONIUG	* 11,9 SATA 5,0	umol/L umol/L	0,0 3,4	-	5,1 13,7			

MARCATORI DI MALATTIA

S-CEA Variazione (%) vs precedente	* 51,3 -26,8	ug/L %	0,0 - (significati	5,0 vo > 40,6%)	70,1	05/09/17
S-CA 19-9	29,6	RCV	0,0 -	37,0	64,4	05/09/17

REGIONE DEL VENETO AZIENDA OSPEDALIERA - UNIVERSITA' - AULSS6 EUGANEA DIPARTIMENTO STRUTTURALE MEDICINA DI LABORATORIO U.O.C. Medicina di Laboratorio (SGQ ISO 9001:2008) Direttore: Prof. Mario Plebani

Costituente

Risultato Unita' Int. di Riferimento Ris. Prec.

COSTITUENTI BIOCHIMICI

P-GLUCOSIO	* 5,8 104 alterata	mmol/L mg/dL	3,7 5.7	-	5,6	5,1	10/10/17	
	aravidar	a aigiano.	37	_	5 1			
P-LIREA	5.80	mmol/l	2 50	2	7 50			
P-CREATININA	81	umol/L	45	-	84	75	10/10/17	
	0.89	ma/dL						
errore totale ≤7,0%								
								- \
CREATININA	merulare stimata)	1.0	45		04	70	0000047	
P-OREA HININA	0.80	umot/L	40	-	84	19	26/09/17	
errore totale <7.0%	0,89	ing/aL						
eGER (CKD-EPI)	68	ml/m//1 73ma			90			
	00	111/11/11/01/14		-	50			
Non appropriato per donne in gravidanza, sog	getti defedati,							
obesi, di razza non caucasica o con patologie	multiple.							
D 00010								
P-SODIO	142	mmol/L	136	-	145	140	10/10/17	
P-POTASSIO	<u>142</u> 3,7	mmol/L mmol/L	136 3,4	-	145 4,5	140 3,6	10/10/17 10/10/17	
P-POTASSIO errore totale <5%	<u>142</u> 3,7	mmol/L mmol/L	136 3,4	•	145 4,5	140 3,6	10/10/17 10/10/17	
P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE	<u>142</u> 3,7 16,9	mmol/L mmol/L umol/L	136 3,4 1,7	-	145 4,5 17,0	140 3,6	10/10/17 10/10/17	⊺
P-SODIO P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE errore totale ≤18,5%	142 3,7 16,9	mmol/L mmol/L umol/L	136 3,4 1,7	-	145 4,5 17,0	140 3,6	10/10/17 10/10/17]1
P-SODIO P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE errore totale ≤18,5% P-BILIRUBINA CONIUGATA	142 3,7 16,9 * 11,9	mmol/L mmol/L umol/L umol/L	136 3,4 1,7 0,0		145 4,5 17,0 5,1	140 3,6	10/10/17 10/10/17	
P-SODIO P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE errore totale ≤18,5% P-BILIRUBINA CONIUGATA P-BILIRUBINA NON CONIUGATA	142 3,7 16,9 * 11,9 5,0	mmol/L mmol/L umol/L umol/L umol/L	136 3,4 1,7 0,0 3,4	-	145 4,5 17,0 5,1 13,7	140 3,6	10/10/17 10/10/17	
P-SODIO P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE errore totale ≤18,5% P-BILIRUBINA CONIUGATA P-BILIRUBINA NON CONIUGATA P-PROTEINE TOTALI	142 3,7 16,9 * 11,9 5,0 * 62	mmol/L mmol/L umol/L umol/L umol/L g/L	136 3,4 1,7 0,0 3,4 64	-	145 4,5 17,0 5,1 13,7 83	140 3,6	10/10/17 10/10/17	
P-SODIO P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE errore totale ≤18,5% P-BILIRUBINA CONIUGATA P-BILIRUBINA NON CONIUGATA P-PROTEINE TOTALI P-ALBUMINA	142 3,7 16,9 * 11,9 5,0 * 62 * 35	mmol/L mmol/L umol/L umol/L umol/L g/L g/L	136 3,4 1,7 0,0 3,4 64 38	-	145 4,5 17,0 5,1 13,7 83 44	140 3,6	10/10/17 10/10/17	
P-SODIO P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE errore totale ≤18,5% P-BILIRUBINA CONIUGATA P-BILIRUBINA NON CONIUGATA P-PROTEINE TOTALI P-ALBUMINA P-CALCIO	142 3,7 16,9 * 11,9 5,0 * 62 * 35 2,34	mmol/L mmol/L umol/L umol/L g/L g/L g/L mmol/L	136 3,4 1,7 0,0 3,4 64 38 2,10	-	145 4,5 17,0 5,1 13,7 83 44 2,55	140 3,6 2,52	10/10/17 10/10/17 26/09/17	
P-SODIO P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE errore totale ≤18,5% P-BILIRUBINA CONIUGATA P-BILIRUBINA NON CONIUGATA P-PROTEINE TOTALI P-ALBUMINA P-CALCIO errore totale ≤3,0%	142 3,7 16,9 * 11,9 5,0 * 62 * 35 2,34	mmol/L mmol/L umol/L umol/L g/L g/L g/L mmol/L	136 3,4 1,7 0,0 3,4 64 38 2,10	-	145 4,5 17,0 5,1 13,7 83 44 2,55	140 3,6 2,52	10/10/17 10/10/17 26/09/17	
P-SODIO P-POTASSIO errore totale ≤5% P-BILIRUBINA TOTALE errore totale ≤18,5% P-BILIRUBINA CONIUGATA P-BILIRUBINA NON CONIUGATA P-PROTEINE TOTALI P-ALBUMINA P-CALCIO errore totale ≤3,0% P-MAGNESIO	142 3,7 16,9 * 11,9 5,0 * 62 * 35 2,34 * 0,64	mmol/L mmol/L umol/L umol/L g/L g/L g/L mmol/L	136 3,4 1,7 0,0 3,4 64 38 2,10 0,70	- - - - - -	145 4,5 17,0 5,1 13,7 83 44 2,55 1,05	140 3,6 2,52	10/10/17 10/10/17 26/09/17	

REGIONE DEL VENETO AZIENDA OSPEDALIERA - UNIVERSITA' - AULSS6 EUGANEA DIPARTIMENTO STRUTTURALE MEDICINA DI LABORATORIO U.O.C. Medicina di Laboratorio (SGQ ISO 9001:2008) Direttore: Prof. Mario Plebani

RCV

P-ALT P-gGT errore totale <u>≤</u> 6%	15 * 87	U/L U/L	7 3	-	35 45	13	10/10/17
P-ALP	115	U/L	53	-	141		
P-LAD	* 129	U/L	135	-	214		

MARCATORI DI MALATTIA

S-CEA Variazione (%) vs precedente	* 51,3 -26,8	ug/L %	0,0 - 5,0 (significativo > 40,6%)	70,1	05/09/17
S-CA 19-9	29,6	kU/L	0,0 - 37,0	64,4	05/09/17

MU AND ERRORS IN MEASUREMENTS

Modified from Menditto et al. Accred Qual Assur 2007; 12:45.

COMBINED UNCERTAINTY AND PRE-ANALYTICAL ERRORS

$$u_{c} = (u_{s}^{2} + u_{B}^{2} + u_{p}^{2})^{1/2}$$

$$u_{s} = imprecision$$

$$u_{B} = bias$$

$$u_{p} = pre - analytical errors$$

"If *pre-analytical errors* may be neglected by assuring quality of samples/specimens, the equation may be reduced to .."

$$u_c = (u_s^2 + u_B^2)^{1/2}$$

Haeckel et al. CCLM 2015; 53:1161.

COMBINED UNCERTAINTY AND PRE-ANALYTICAL ERRORS

"However, it seems quite difficult to incorporate the pre- and post-analytical uncertainty into an MU calculation. The alternative way is to identify and continuously reduce the risk of errors in the extraanalytical phases through a risk management process that, according to ISO 15189, takes into consideration all steps of the cycle, namely the steps that are more vulnerable to error and risk of errors"

Tate J and Plebani M. CCLM 2016; 54:1277

Uncertainty and Patients safety

"However, some laboratorians believe that searching for *pre-analytical quality*, e.g. by rejecting haemolysed samples, should delay/damage patients care. If so, pre-analytical uncertainty should be considered and notified to clinicians.

But which *degree of uncertainty* should be "permitted" and how should it be "calculated"? This is clearly a patient safety issue".

MU AND FIT-FOR-PURPOSE OF TEST RESULTS

Test Purposes and Uncertainty: components to be included

Test purpose	Examples	Components to be included in measurement uncertainty		
Test result if used in comparison with a reference interval either established in the same laboratory or verified by the laboratory by appropriated procedures	e.g. hormones	Imprecision only Jones GR. CCLM 2016; 54:1303		
Test result is usually compared with a clinical decision point	e.g. glucose, ions	Imprecision, bias and bias uncertainty Jones GR. CCLM 2016; 54:1303		
Test results is primarily used for monitoring patients over time	e.g. tumour markers, immunosuppressive drugs.	Imprecision only Jones GR. CCLM 2016; 54:1303 Tate J and Plebani M. CCLM 2016; 54:1277		

MU AND FIT-FOR-PURPOSE OF TEST RESULTS

Test Purposes and Uncertainty: components to be included

Test purpose	Examples	Components to be included in measurement uncertainty
Test result is used in comparison with a reference interval either established in the same laboratory or verified by the laboratory by appropriated procedures	e.g. hormones	Imprecision only Jones GR. CCLM 2016; 54:1303
Test result is usually		Imprecision, bias and bias
compared with a clix decision point Test results is primarily used for monitoring patients over time	Three diffe	rent scenarios can exist

MU AND REFERENCE INTERVALS THE THREE POSSIBLE SCENARIOS

Scenario 1: Test results are approximately overlapped to the the Upper (or the Lower) Reference Interval Limit (URL or LRL)

The inclusion of MU into laboratory reports does not change the clinical decision making process

MU AND REFERENCE INTERVALS THE THREE POSSIBLE SCENARIOS

Scenario 2: Test results are within the Reference Interval Limit (1.5 times the standard deviation of the distribution reference values)

The inclusion of MU into laboratory reports changes the clinical decision making process when the test results plus MU encompass the URL (or LRL)

MU AND REFERENCE INTERVALS THE THREE POSSIBLE SCENARIOS

Scenario 3: Test results are outside the Upper Reference interval limit (2.5 times the standard deviation of the distribution reference values)

The inclusion of MU into laboratory reports changes the clinical decision making process when the test results minus MU encompass the URL (or LRL)

REFERENCE INTERVALS AND MU CLINICAL BIOCHEMISTRY (1)

Measurands	Biologica (from V	l variation Vestgard)		Individuality	Reference Intervals		
(units)	CV ₁ (%)	(%) CV _G (%) CV _A (%)		Index (II)*	LRL	URL	
ALT (U/L)	19.4	41.6	4.4	0.48	10	50	
Lactate (mmol/L)	27.2	16.7	2.4	1.64	0.5	2.2	
Sodium (mmol/L)	0.6	0.7	0.9	1.55	136	145	
Potassium (mmol/L)	4.6	5.6	0.7	0.83	3.4	4.5	
Urea (mmol/L)	12.1	18.7	2.3	0.66	2.5	7.5	
Cholesterol (mmol/L)	5.95	15.3	1.3	0.4	2	6.2	

* Calculated by the Harris' formula. CV_A : laboratory-specific imprecision, estimated by IQC materials.

REFERENCE INTERVALS AND MU CLINICAL BIOCHEMISTRY (2)

	Refei Intei	rence rvals		Target value	MU do interva	erived I for TV	Target value	MU derived interval for TV	
Measurands (units)	LRL	URL	SD*	(TV)* at 2.5 SD	Lower limit	Upper limit	(TV)* at 1.5 SD	Lower limit	Upper limit
ALT (U/L)	10	50	10.2	55.5	52.1	58.9	45.3	41.9	48.7
Lactate (mmol/L)	0.5	2.2	0.4	2.4	2.4	2.5	2	1.9	2.1
Sodium (mmol/L)	136	145	2.3	146.2	144	148.5	143.9	141.7	146.2
Potassium (mmol/L)	3.4	4.5	0.3	4.7	4.6	4.7	4.4	4.3	4.4
Urea (mmol/L)	2.5	7.5	1.3	8.2	7.9	8.4	6.9	6.7	7.2
Cholesterol (mmol/L)	2	6.2	1.1	6.8	6.6	6.9	5.7	5.6	5.8

* SD and TV is calculated by using the RI as suggested by Haeckel et al. CCLM 2015; 53:1161.

MU NOTIFIED IN MEDICAL REPORTS: PROBABILITY OF RE-TESTING CLINICAL BIOCHEMISTRY

Measurands	Reference Intervals					Probability of
(units)	LRL	URL	SD _A	SD	SD _A /SD	Retesting*
ALT (U/L)	10	50	1.7	10.2	0.17	2.51
Lactate (mmol/L)	0.5	2.2	0.04	0.4	0.09	1.32
Sodium (mmol/L)	136	145	1.13	2.3	0.49	8.61
Potassium (mmol/L)	3.4	4.5	0.03	0.3	0.11	1.32
Urea (mmol/L)	2.5	7.5	0.12	1.3	0.09	1.20
Cholesterol (mmol/L)	2	6.2	0.06	1.1	0.06	0.65

SD_A : laboratory-specific imprecision, estimated by IQC materials.

* Derived from Monte Carlo Simulation results, p>0.05 was considered significant.

REFERENCE INTERVALS AND MU COAGULATION AND HEMATOLOGY (1)

Measurands	Biologica (from V	al variation Vestgard)		Individuality	Reference Intervals		
(units)	CV ₁ (%)	CV _G (%)	CV _A (%)	Index (II) *	LRI	URI	
Haemoglobin (g/L)	2.85	6.8	0.82	0.44	140	175	
MCV (fL)	1.4	4.85	0.7	0.32	80	96	
S-Protein (%)	5.8	63.4	2.6	0.1	74	146	
C-Protein (%)	5.6	55.2	2.9	0.11	70	140	
D-Dimer (µg/L)	23.3	26.5	6.25	0.91	0	400	

* Calculated by the Harris' formula.

 $\ensuremath{\mathsf{CV}}_{\mathsf{A}}$: laboratory-specific imprecision estimated by IQC materials.

REFERENCE INTERVALS AND MU COAGULATION AND HEMATOLOGY (2)

	Refei Intei	rence rvals		TargetMU derivedTargetvalueinterval for TVvalue		Target value	MU derived interval for TV		
Measurands (units)	LRL	URL	SD*	(TV)* at 2.5 SD	Lower limit	Upper limit	(TV)* at 1.5 SD	Lower limit	Upper limit
Haemoglobin (g/L)	140	175	8.9	179.8	179.5	180.1	170.9	170.6	171.2
MCV (fL)	80	96	4.1	98.2	97.1	99.3	94.1	93	95.2
S-Protein (%)	74	146	18.4	155.9	144.9	166.9	137.6	126.6	148.6
C-Protein (%)	70	140	17.9	149.6	148.1	151.2	131.8	130.2	133.2
D-Dimer (μg/L)	0	400	102	455.1	421.5	488.7	353.1	319.5	386.7

* SD and TV are calculated by RI as suggested by Haeckel et al. CCLM 2015; 53:1161.

MU NOTIFIED IN MEDICAL REPORTS: PROBABILITY OF RE-TESTING COAGULATION AND HEMATOLOGY

Measurands	Reference Intervals					Probability of
(units)	LRL	URL	SD _A	SD _T	SD _A /SD _T	Retesting*
Haemoglobin (g/L)	140	175	0.14	8.9	0.02	0.18
MCV (fL)	80	96	0.55	4.1	0.13	1.89
S-Protein (%)	74	146	5.5	18.4	0.30	5.76
C-Protein (%)	70	140	0.77	17.9	0.04	0.51
D-Dimer (µg/L)	0	400	6.25	102	0.16	2.47

 SD_A : laboratory specific imprecision estimated by IQC materials.

* Derived from Monte Carlo Simulation results, p>0.05 was considered significant.

REFERENCE INTERVALS AND MU FLOW CYTOMETRY AND HEMATOLOGY (1)

	Reference	Intervals			
Measurands (units)	LRL	URL	SD _A	SD _T	SD _A /SD _T
CD3+ (%)	58	80	0.46	5.61	0.08
CD8+ (%)	16	33	0.53	4.33	0.12
CD4+ (%)	32	51	0.65	4.84	0.13
CD19+ (%)	7	21	0.37	3.57	0.10
CD16+/CD56+ (%)	7	26	0.38	4.8	0.08

REFERENCE INTERVALS AND MU FLOW CYTOMETRY AND HEMATOLOGY (2)

	Refei Intei	rence rvals		Target value	MU derived interval for TV		Target value	MU de interva	erived I for TV
Measurands (units)	LRL	URL	SD*	(TV)* at 2.5 SD	Lower limit	Upper limit	(TV)* at 1.5 SD	Lower limit	Upper limit
CD3+ (%)	58	80	0.46	83.0	82.1	84.0	77.4	76.5	78.3
CD8+ (%)	16	33	0.53	35.3	34.3	36.4	31.0	29.9	32.1
CD4+ (%)	32	51	0.65	53.6	52.3	54.9	48.8	47.5	50.1
CD19+ (%)	7	21	0.37	22.9	22.2	23.7	19.4	18.6	20.1
CD16+/CD56+ (%)	7	26	0.38	28.6	27.9	29.4	23.8	23.0	24.5

No significant differences were found by including MU to test results at TVs of 1.5 SD and 2.5 SD !!

MU AND FIT-FOR-PURPOSE OF TEST RESULTS

Test Purposes and Uncertainty: components to be included

Test purpose	Examples	Components to be included in measurement uncertainty	
Test result if used in comparison with a reference interval either established in the same laboratory or verified by the laboratory by appropriated procedures	e.g. hormones	Imprecision only Jones GR. CCLM 2016; 54:1303	
Test result is usually compared with a clinical decision point	e.g. glucose, ions	Imprecision, bias and bias uncertainty Jones GR. CCLM 2016; 54:1303	
Test results is primarily used for monitoring patients over time	e.g. tumour markers, immunosuppressive	Imprecision only Jones GR. CCLM 2016; 54:1303 Tate J and Plebani M. CCLM 2016; 54:1277	

DECISION LIMITS AND MEASUREMENT UNCERTAINTY

Measurands (units)	MU	Decision limit	Significant value based on MU	
Glucose (mmol/L)	0.4	7.0	7.4	
HbA1c (mmol/mol)	3.6	48.0	51.6	
tPSA (mg/L)	1.0	4.0	5.0	
Troponin (ng/L)	2.7	16.0	18.7	

MU AND FIT-FOR-PURPOSE OF TEST RESULTS

Test Purposes and Uncertainty: components to be included

Test purpose	Examples	Components to be included in measurement uncertainty	
Test result if used in comparison with a reference interval either established in the same laboratory or verified by the laboratory by appropriated procedures	e.g. hormones	Imprecision only Jones GR. CCLM 2016; 54:1303	
Test result is usually compared with a clinical decision point	e.g. glucose, ions	Imprecision, bias and bias uncertainty Jones GR. CCLM 2016; 54:1303	
Test results is primarily used for monitoring patients over time	e.g. tumour markers, immunosuppressive drugs.	Imprecision only Jones GR. CCLM 2016; 54:1303 Tate J and Plebani M. CCLM 2016; 54:1277	

REFERENCE CHANGE VALUE (RCV) AND MU

Measurands (units)	MU	Hypothetical result at the decision limit	Significant variation based on RCV [*]	Significant variation based on MU [#]
СЕА (µg/L)	1.4	5	6.8	6.9
CA 15-3 (kU/L)	3.2	37.5	45.0	42.0
CA 125 (kU/L)	9.2	48	84.9	61.0
CA 19-9 (kU/L)	5.2	37	55.7	44.3
AST (U/L)	11.0	45	60.7	60.4
Creatinine (μmol/L)	4.0	104	121.3	109.7

* Calculated by the Harris' formula for RCV

Calculated by the CLSI EP29 formula

CLINICAL MOLECULAR BIOLOGY THE BCR-ABL1 EXAMPLE

European LeukemiaNet Recommendations for the Management of Chronic Myeloid Leukemia (CML)

Response definitions for any TKI first line, and 2nd line in case of intolerance, all patients (CP, AP, and BC)

Time	Optimal response	Warning	Failure
Baseline		High risk Major route CCA/Ph+	
3 mos.	BCR-ABL ^{is} ≤10%* Ph+ ≤35% (PCyR)	BCR-ABL ^{is} >10%* Ph+ 36-95%	No CHR* Ph+ >95%
6 mos.	BCR-ABL ^{is} <1%* Ph+ 0% (CCyR)	BCR-ABL ^{IS} 1-10%* Ph+ 1-35%	BCR-ABL ¹⁵ >10%* Ph+ >35%
12 mos.	BCR-ABL ^{is} ≤0.1%* (MMR)	BCR-ABL ¹⁵ 0.1-1%*	BCR-ABL ¹⁵ >1%* Ph+ >0%
Then, and at any time	MMR or better	CCA/Ph- (-7, or 7q-)	Loss of CHR Loss of CCyR Loss of MMR, confirmed** Mutations CCA/Ph+
*and/or *	*in 2 consecutive tests, of which	one ≥1% IS: BCR-ABL o	on International Scale

CLINICAL MOLECULAR BIOLOGY THE BCR-ABL1 MU

Measurands (units)	MU	Hypothetical test result at 12 months	Significant variation based on MU [#]
BCR/ABL %	0.03	0.1%	0.07-0.13%

CLINICAL MOLECULAR BIOLOGY BCR-ABL1 RESULTS INTERPRETATION

CLINICAL MOLECULAR BIOLOGY THE JAK2 V617F EXAMPLE

bih guideline

Molecular diagnosis of the myeloproliferative neoplasms: UK guidelines for the detection of *JAK2* V617F and other relevant mutations

Anthony J. Bench,¹ Helen E. White,^{2,3} Letizia Foroni,⁴ Anna L. Godfrey,⁵ Gareth Gerrard,⁴ Susanna Akiki,⁶ Abida Awan,⁷ Ian Carter,⁸ Andrea Goday-Fernandez,¹ Stephen E. Langabeer,⁹ Tim Clench,¹⁰ Jordan Clark,¹¹ Paul A. Evans,¹² David Grimwade,¹³ Anna Schuh,¹⁴ Mary F. McMullin,¹⁵ Anthony R. Green,⁵ Claire N. Harrison¹⁶ and Nicholas C. P. Cross^{2,3}

¹Molecular Malignancy Laboratory and Haemato-Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, ²National Genetics Reference Laboratory, Salisbury NHS Foundation Trust, Salisbury, ³Faculty of Medicine, University of Southampton, Southampton, ⁴Imperial Molecular Pathology, Imperial College Academic Health Science Centre, London, ⁵Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, ⁶West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, ⁷Molecular Diagnostics Centre, Manchester Royal Infirmary, Manchester, ⁸Nottingham University Hospitals NHS Trust, Nottingham, UK, ⁹Cancer Molecular Diagnostics, St. James's Hospital, DublinIreland, ¹⁰Bristol Royal Infirmary, Bristol, ¹¹UK NEQAS for Leucocyte Immunophenotyping, Sheffield, ¹²HMDS, Leeds Institute of Oncology, St. James's University Hospital, Leeds, ¹³Department of Medical and Molecular Genetics, King's College London School of Medicine, London, ¹⁴Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford, ¹⁵Belfast City Hospital, Queen's University Belfast, Belfast, and ¹⁶Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London UK

CLINICAL MOLECULAR BIOLOGY THE JAK2 V617F MU

Measurands (units)	MU	Hypothetical test result	Significant value for MU (based on decision limit)
JAK 2 V617F* (cut-off 1%)	0.54	1%	0.46-1.54%
	5.9	10%	4.1-15.9%

*Bias estimated vs first WHO Reference Panel for Genomic Jak2 V617F, NIBSC code: 16/120

CLINICAL MOLECULAR BIOLOGY Jak2 V617F RESULTS INTERPRETATION

Measurement Uncertainty

Quality assurance/ monitoring (regular assessment of imprecison and bias)

A PIECE OF THE PUZZLE

Other fundamental information in a laboratory report:

a)Right measurement units

b)Right reference intervals

c)Right *decision limits* (threshold)

d)Right *interpretative comments*

e)Right *critical results notification*

MU and LABORATORY REPORTS

- Including *information* on the *reliability of results* in the laboratory report may lead to a more careful evaluation of their effective value in diagnosing and monitoring diseases.
- Although interest in *evidence-based medicine* has increased in recent years, evidence-based strategies have been inconsistently adopted in patient care.

Plebani M. Clin Chem Lab Med 2007

Criteria for Quality Testing

Right test, for the right patient
Right time for specimen collection
Right specimen and processing

• Right test result generated

- Analytical

Pre-analytical

 Right test result reported, acknowledged and interpreted

> "Wrongs" anywhere compromise test result **quality** and **patients' safety**!

Thank you for your attention!

mario.plebani@unipd.it