CIRME

Università degli Studi di Milano

Centre for Metrological Traceability in Laboratory Medicine (CIRME)

Director: Prof. Mauro Panteghini site: http://users.unimi.it/cirme

PREANALYTICAL AND ANALYTICAL ASPECTS AFFECTING CLINICAL RELIABILITY OF PLASMA GLUCOSE RESULTS

Sara Pasqualetti

sara.pasqualetti@asst-fbf-sacco.it

Traceability in laboratory medicine: A matter of patient safety

TOTAL VARIABILITY OF LABORATORY TEST RESULTS

Pre-analitical sources of variation in glucose testing

$$V_{TOT} = (V_P^2 + V_A^2 + V_I^2)^{1/2}$$

CRITICAL ISSUE:

TO PREVENT *in-vitro* GLYCOLYSIS

GLUCOSE @ physiological concentrations in sample stored at room temperature IS LOST through an average rate of 5-7% per hour

Clin Chem 1989;35:315-7

GOLD STANDARD FOR SAMPLE COLLECTION

> NATIONAL ACADEMY OF CLINICAL BIOCHEMISTRY (NACB) GUIDELINES FOR LABORATORY ANALYSIS IN DIABETES

> WORD HEALTH ORGANIZATION

1- SEPARATE plasma from blood cells IMMEDIATELY after sample collection

OR

2- PLACE the sample tube immediately in an ICE-WATER SLURRY and SEPARATE plasma from the cells WITHIN 30 MIN

OR

3 - USE OF AN EFFECTIVE GLUCOSE STABILIZER

✓ Tubes with only *enolase inhibitors, such as FLUORIDE, should not be relied on* to prevent glycolysis

✓ Tube containing a *rapidly effective glycolysis inhibitor, such as CITRATE* BUFFER, should be used

Effectiveness and **Reliability** of citric/citrate to prevent in-vitro glycolysis

Table 1. E	ffect of collection tube type	and additives on stability of	glucose.	
	NACB Reference	Mean delta,	mmol/L ^a	
Sample type, postdraw storage	Comparator, postdraw storage	Delta (%)	95% Cl	<i>Р</i> (n) ^ь
Citric acid plasma, 2 h at 37 °C	Heparin plasma, 30 min at 0 °C	$6.393 - 6.414 = -0.021 \ (0.3)$	-0.07-0.02	0.33 (30)
Citric acid plasma, 24 h at 37 °C	Heparin plasma, 30 min at 0 °C	6.393 - 6.316 = 0.07 (1.2)	-0.002-0.06	0.05 (30)
Fluoride plasma, 2 h at 37 °C	Heparin plasma, 30 min at 0 °C	6.393 - 6.099 = 0.294 (4.6)	0.23-0.35	<0.001 (30)
Fluoride plasma, 24 h at 37 °C	Heparin plasma, 30 min at 0 °C	6.393 - 5.943 = 0.450 (7.0)	0.37-0.53	<0.001 (30)
Plasma, 30 min, ambient	Serum, 30 min, ambient	5.589 - 5.638 = -0.049 (0.9)	0.021-0.077	<0.001 (90)
Barrier serum, 24 h at 37 °C	Barrier serum, 30 min, ambient	5.826 - 5.819 = 0.007 (0.1)	-0.011-0.025	0.45 (66)

Gambino R et al, Clin Chem 2009;55:1019-21

di Milano

citric/citrate buffer vs fluoride	AUTHORS	GLUCOSE mmol/L	MEAN DIFFERENCE
VENOSAFE <u>GRANULAR</u>	Del Pino IG et al <i>Clin Chem Lab Med</i> 2013;51:1943-9	Mean 6.43 vs 5.98	+ 7.0%
	Szőke D et al <i>Clin Chem Lab Med</i> 2014;52:e87-9	Range 4.5 to 11.1 vs 4.1 to 10.7	+6.7%
	Van den Berg SA et al <i>Sci Rep</i> 5 2015 n. 8875	Mean 5.8 vs 5.5	+5.5%
	Bonetti G et al <i>Biochemia Medica</i> 2016;26:68-76	Median (range) 5.60 (5.47- 5.73) vs 5.21 (5.05 - 5.32)	+6.8%
	Carta M et al Ann Clin Biochem 2016;53:715-6	Median (95% CI) 4.4 (5.1-5.7) vs 5.1 (4.8-5.3)	+5.9%
FC-MIX <u>DRY</u>	Dimeski et al <i>Clin Chem Lab Med</i> 2016	Mean 5.35 vs. 5.05	+5.9%
GLUCOMEDICS <u>LIQUID</u>	Dimeski et al Ann Clin Biochem 2014;52:270-5	Mean 5.7 vs. 5.3	+7.5%
	Juricic G et al <i>Clin Chem Lab Med</i> 2016;54:363-71	Mean (±SD) 6.2 (±1.1) vs 5.6 (±1.0)	+10.7%
CIRME	Juricic G et al <i>Clin Chem Lab Med</i> 2016;54:411-8	Mean (±SD) 6.0 (±0.8) vs 5.5 (±0.8)	+8.5%
Università degli Studi di Milano	Carta M et al Ann Clin Biochem 2016;53:715-6	Median (95% CI) 5.6 (5.5-5.9) vs 5.1 (4.8-5.3)	+8.9%

The difference between LIQUID vs. GRANULAR citric/citrate buffer

AUTHORS	GLUCOSE mmol/I	MEAN DIFFERENCE
Bakliza A et al <i>Clin Chem Lab Med</i> 2015;53:eA226-P46	Mean (±SD) 5.8 (0.8) vs. 5.6 (0.7)	+3.2%
Pasqualetti S et al <i>Clin Chem Lab Med</i> 2016;54:e281-3	Rap TUBES ATE TUBES ATE TUBES II	+3.8%
Carr NOT AL C. NOT AL C. ARE CREAT	off (95% CI) 5.6 (5.5-5.9) vs. 5.4 (5.1-5.7)	+3.7%
CG et al <i>Clin Biochem</i> 2016;49:1402-5	Mean (±SD) 6.0 (1.0) vs. 5.8 (0.9)	+3.4%

The difference between LIQUID vs. GRANULAR citric/citrate buffer: why?

INCORRECT DILUTION CORRETION FACTOR

Carta M et al Ann Clin Biochem 2016;53:715-6

GRANULAR	LIQUID LIQUID (Diluition Factor, 1.16) (Diluition Factor,		
MEDIAN	MEDIAN		
5.4 mmol/L	5.6 mmol/L	5.4 mmol/L	

*experimental DF suggested by Dimeski et al Ann Clin Biochem 2014;52:270-5

2 IMPRECISE VACUUM ACTION Perfect correction factor may become incorrect when tubes are not exacty filled as intendedwe speculated some problems in tubes manufacturing

well trained phlebotomists,

tubes underfilled considered indicative

of human error

Pasqualetti S et al., Clin Chem Lab Med 2015;53:S104-T067

CLINICAL CLASSIFICATION OF SUBJECTS UNDERGONE **GESTATIONAL DIABETES MELLITUS** (GDM) TEST AFTER THE IMPLEMENTATION OF ADA RECOMMENDATION ON PREANALYTICAL FOR GLUCOSE

Table 1. Comparison of mean glucose concentrations between research and usual conditions for each test. ^a							
Glucose	Research conditions	Usual conditions	Рь				
Fasting			<0.0001				
mg/dL	90.0 (12.6)	81.0 (12.6)					
mmol/L	5.0 (0.7)	4.5 (0.7)					
1-h			< 0.0001				
mg/dL	140.4 (43.2)	133.2 (41.4)					
mmol/L	7.8 (2.4)	7.4 (2.3)					
2-h			<0.0001				
mg/dL	102.6 (32.4)	99.0 (32.4)					
mmol/L	5.7 (1.8)	5.5 (1.8)					
^a Data are mean (SD) ^b Paired Student <i>t</i> te	^a Data are mean (SD). ^b Paired Student <i>t</i> test.						

IADPSG, International Association of the Diabetes and Pregnancy Study Groups, diagnostic criteria*

*According to the HAPO study performed under well controlled preanalytical conditions for glucose testing

HAPO Study Cooperative Research Group. Clin Trials 2006;3:397-407

IADPSG GDM criteria:

- implementation of ADA/NACB & WHO protocols
- or tube types that yields compatible results
- To rightfull classificate subjects as diabetics
 To receive the needed treatments that will deprived from in presence of preanalytical invalid conditions.

Università degli Studi di Milano Daly N et al, Clin Chem 2016;62:387-91 Daly N et al, Am J Obstet Gynecol 2015;213:84:e1-5

The introduction of citrate in clinical practice: which caveat?

Evidence 1 - data about the performance of different "citrate tubes" are confused **Evidence 2** - reliable tubes that promptly inhibit *in vitro* glycolysis may lead to a different clinical classification of subjects

Caveat 1 – selection of tubes containing citrate requires caution

CIRME

DI MILANO

Caveat 2 – which decision limits should be applied to plasma glucose?

 should these be redefined when tubes are used that promptly inhibit in vitro glycolysis

or

 should they be maintained, so that more subjects at increased risk for diabetes will be identified earlier?

Pasqualetti S, Panteghini M. Ann Clin Biochem 2017;54:302-3

Letter to the Editor

Sara Pasqualetti*, Dominika Szőke, Sarah Birindelli, Alberto Dolci and Mauro Panteghini

Optimal collection tubes for plasma glucose determination: confusion reigns supreme

FROM EU MARKET

(Terumo Venosafe[™] Glycaemia – citrate buffer/NaF/Na₂EDTA - GRANULAR FORM)

- ✓ Grainer Bio-one GLUCOMEDICS NaF/EDTA & citrate LIQUID FORM
- ✓ Sarstedt GlucoEXACT NaF/citrate LIQUID FORM
- ✓ Grainer Bio-one Vacuette[®] FC Mix tube citrate buffer/NaF/Na₂EDTA DRY FORM

..... A MESSY STATE OF AFFAIRS

علنك

Need for a well-designed clinical study comparing the suitable options using blood acidification offered by the market

..... IN THE MEANTIME

Staying (*returning*) to tubes containing sodium fluoride only as these have been used in the majority of studies generating the current glucose cut-points for diabetes diagnosis

Plasma Glucose and its Biological Variation

$$V_{TOT} = (V_P^2 + V_A^2 + V_I^2)^{1/2}$$

The concentrations of measurands in body fluids are physiologically variable as theyfluctuate around the individual homeostatic set point- of each individual Within-subject (CV_i)- random fluctuation of setting points
among individuals Between-subject (CV_g)

Application of Biological Variation Data

"Result interpretation"

INDEX OF

To select the right criteria for results interpretation (reference interval, longitudinal variation) REFERENCE CHANGE VALUE (RCV)

Clinically significative change in two consecutive results

BIOLOGICAL

VARIATION

SPECIMENS NEEDED TO ESTABILISH INDIVIDUAL'S HOMEOSTATIC SET POINT

ANALITYCAL PERFORMANCE SPECIFICATIONS

"Reliability of test results"

Problems with Biological Variation Data

- Published data are of varying quality and quite heterogeneous
- > Safe application requires prior critical appraisal
- Need for standards (i.e. a minimum set of attributes to enable the data to be effectively transmitted and applied)

Braga F, Panteghini M. Crit Rev Clin Lab Sci 2016;53:313-25

Glucose CV_i and CV_q in literature

PLASMA

_	_	_		_	_
С	С.	D		Ν	Л
Э	С.	Г	U		/1
-		•••	-		

First Author	Year of Publication	CV _i	CVg
Cummings	1988	4.9	6.1
Godsland	1985	4.6	
Davie	1993	13.1	3.2
Rohlfing	2002	5.7	5.8
Lacher	2005	8.3	12.5
Lacher	2010	7,5	11.7
Bailey	2013	11.4	9.1
Loh	2014	12.2	

First Author	Year of Publication	CV _i	CVg	Age	Sex
Harris	1970	5.6	7.8		
Young	1971	6.6	2.7		
Williams	1978	11.5, 6.1, 6.3, 6.6, 7.8, 7.8, 6.9	12.9, 5.6, 6.7,8.3, 6.8, 10, 8		
Costangs	1985	13.3; 7.9; 12			
Fraser	1989	4.7	5.4		
Ricos	1989	10.8			
Eckfeldt	1994	4.2	10.8		
Carlsen	2011	5.4	5.6		
Pineda-Tenor	2013	5.5	8.2	>80	2
Pineda-Tenor	2013	3.7	8.8	19-42	2
Pineda-Tenor	2013	6.8	7.3	>80	4
Pineda-Tenor	2013	4.5	7.5	19-42	4
Loch	2015	8.5; 10.4	16.2; 16.8		

Issues with (Glucose) BV data

- ✓ *Heterogeneity of protocols* for derive biological variation data
- ✓ CV_i and CVg values possibly dependent from *different biological* MATRICES
- ✓ CV_i and CVg values different for healthy and diseased individuals

Quantifying Biological Variation

How do you do the experiment?

✓ Subjects	How many?
✓ Collect specimens	Number? Frequency?
✓ Analyse specimens	Minimise analytical variation?
🗸 Analyse data	Outliers? Statistics?

Braga F, Panteghini M. Crit Rev Clin Lab Sci 2016;53:313-25

Biological variation from patients Should they be used?

Carlsen S et al, Clin Chem Lab Med 2011;49:1501-7

Assessing the number of specimens (**n**) required to estimate the individual's homeostatic setpoint of plasma glucose

$$n = 1.96^{2*}(CV_{A}^{2}+CV_{i}^{2})/D^{2}$$

CV_A, Analytical coefficient of variation

CV₁, Within-subject biological coefficient of variation

D, desired percentage of closeness (usually, 95%)

DI MILANO

DE GRUYTER Sverre Sand Oosterhuis, Definir Consei Confer Chemi	ν Σοι Δ	
11 Eff. Marine Microsoft 11 Ef. M. Strategic Conference 12 Effining analytical 15 years after the 15 years after the 15 years after the 16 Stockholm Conference 17 years after the 18 stockholm Conference 19 years after the 10 Stockholm Conference 15 years after the 16 Stockholm Conference 17 Stockholm Conference 18 Canta for the 19 Stockholm Conference 10 Stockholm Conference 11 Stockholm Conference 12 Years after the 13 Years after the 14 Years after the 15 Years after the 16 Stockholm Conference 17 Years after the 18 Canta for the for th	Main (f) An analysis 2.2.2.2.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	

berg*, Callum G. Fraser, Andrea Rita Horvath, Rob Jansen, Graham Jones, Wytze Per Hyltoft Petersen, Heinz Schimmel, Ken Sikaris and Mauro Panteghini

ence of the European Federation of Clinical ig analytical performance specifications: isus Statement from the 1st Strategic stry and Laboratory Medicine

odel 1: Based on the effect of analytical performance i clinical outcomes

- Done by direct outcome studies investigating the impact of analytical performance of the test on clinical outcomes;
- Done by indirect outcome studies investigating the cal classifications or decisions and thereby on the impact of analytical performance of the test on cliniprobability of patient outcomes, e.g., by simulation or decision analysis.

Model 2: Based on components of biological variation of the measurand. Model 3: Based on state of the art of the measurement (i.e., the highest level of analytical performance technically achievable).

UNIVERSITÀ DEGLI STUDI DI MILANO

Opinion Paper

Ferruccio Ceriotti*, Pilar Fernandez-Calle, George G. Klee, Gunnar Nordin, Sverre Sandberg, Thomas Streichert, Joan-Lluis Vives-Corrons and Mauro Panteghini, on behalf of the EFLM Task and Finish Group on Allocation of laboratory tests to different models for performance specifications (TFG-DM)

Criteria for assigning laboratory measurands to models for analytical performance specifications defined in the 1st EFLM Strategic Conference

Workflow for allocation of laboratory measurands to different models for performance specifications

⇒ outcome model **→** Plasma Glucose

- 2. The measurand has a high homeostatic control
 ⇒ biological variability model
- Neither central diagnostic role nor sufficient homeostatic control ⇒ state-of-the-art model

CIRME WINIYERSITÀ DEGLI STUDI DI MILANO Analytical performance specifications for plasma glucose based on data of biological variability of the analyte Model 2

• Minimum

CV_A <0.75 x CV₁ 4.05%

 $B < 0.375 \times (CV_l^2 + CV_g^2)^{0.5} 3.0\%$

 $TE < [1.65 \times 0.75 \times CV_{l} + 0.375 \times (CV_{l}^{2} + CV_{G}^{2})^{0.5}] 9.6\%$

• Desirable

 $CV_A < 0.50 \times CV_1$ 2.7% B < 0.250 × $(CV_1^2 + CV_g^2)^{0.5}$ 1.95% TE <[1.65 × 0.50 × $CV_1 + 0.250 \times (CV_1^2 + CV_g^2)^{0.5}]$ 6.4%

• Optimum

CV_A <0.25 x CV₁ 1.35%

 $B < 0.125 \times (CV_1^2 + CV_G^2)^{0.5}$ 1.0%

 $TE < [1.65 \times 0.25 \times CV_{l} + 0.125 \times (CV_{l}^{2} + CV_{G}^{2})^{0.5}] 3.2\%$

Defining analytical performance specifications using *indirect* outcome data (Model 1b)

- Impact of analytical performance of test on clinical classifications or decisions and thereby on probability of outcomes (simulation or decision analysis).
- To model the clinical outcomes of misclassification requires clinical evidence about the consequences for patients.
- Where clinical evidence about these consequences is not available, the model estimates will be based on *assumptions* drawn from what evidence there is about disease prognosis, treatment benefits, harms, etc.

PREDIABETICS CLINICAL PATHWAYS IFG defines a set of individuals at increased risk to develop diabetes Early intervention lowering plasma glucose over time for: delaying the onset of diabetes preserving β-cell function [hepatic (and muscle) insulin resistance plus defective insulin secretion environment] and the likelihood that vascular hyperglycaemia-related complications will be delayed or prevented

CLINICAL OUTCOME

IFG subjects misclassified as normoglycemic (FALSE NEGATIVE) represent the most impacting results

Measuring FPG with a TEa of -6.38% would imply that 12.6% of individuals will miss the interventions necessary to stop the progression to DM and the worsening of vascular hyperglycemia-related outcomes (clinical and economical evaluation to show the acceptability of this misclassification rate is needed)

Analitical aspects of glucose testing

$$V_{TOT} = (V_P^2 + V_A^2 + V_I^2)^{1/2}$$

Laboratory customers (i.e., doctors and patients) expect lab results to be equivalent and interpreted in a reliable and consistent manner

Panteghini M. Clin Chem Lab Med 2012;50:1237-41

TRACEABILITY ESTABLISHMENT

ISO 17511:2003. In vitro diagnostic medical devices - Measurement of quantities in biological samples – Metrological traceability of values assigned to calibrators and control materials.

di Milano

MEASUREMENT UNCERTAINTY AND BIAS CORRECTION

ALLOWABLE UNCERTAINTY BUDGET

Three main components of uncertainty:

- 1. Uncertainty of references reference materials, reference procedures;
- 2. Uncertainty of commercial system calibrators manufacturer 's calibrator values [transfer process];
- 3. Uncertainty of random sources system imprecision, individual lab performance.

Need to define criteria for manufacturers that can be achieved for their calibrators leaving enough uncertainty budget for the laboratories to produce clinically acceptable results.

→ The allowable limit for the combined uncertainty of manufacturer's commercial calibrators @ 50% of the goals

Opinion Paper

Clin Chem Lab Med 2013; 51:973-9

Renze Bais*, Dave Armbruster, Rob T. P. Jansen, George Klee, Mauro Panteghini, Joseph Passarelli and Ken A. Sikaris on behalf of the IFCC Working Group on Allowable Error for Traceable Results (WG-AETR)

Defining acceptable limits for the metrological traceability of specific measurands

THE TRACEABILITY CHAINS AVAILABLE TO IVD MANUFACTURERS FOR GLUCOSE

Braga F et al. Clin Chim Acta 2014;432:55-61

Are the analytical system commercially available for glucose determination able to achieve the desirable limit for combined uncertainty in a clinical setting (fit for purpose)?

Company	mpany Platform Principle of Calibrato commercial method		Calibrator	Declared standard uncertainty ^a	Higher-orde employed	r reference	Type of traceability chain used ^b	Combined standard uncertainty associated with the used chain ^c
					Method	Material		(Expanded)
Abbott	Architect	ND	Multiconstituent calibrator	2.70%	IDMS	NIST SRM 965	A	1.22-1.45% ^d
Beckman	AU	Hexokinase	System calibrator	ND	ND	NIST SRM 965	A	1.22-1.45% ^d
	Synchron	Hexokinase	Synchron multicalibrator	ND	ND	NIST SRM 917a	D	1.60-3.00% ^e
Roche	Cobas c	Hexokinase	C.f.a.s.	0.84%	IDMS	ND	В	1.70%
	Integra	Hexokinase	C.f.a.s.	0.62%	IDMS	ND	В	1.70%
	Modular	Hexokinase	C.f.a.s.	0.84%	IDMS	ND	В	1.70%
		GOD	C.f.a.s.	0.84%	IDMS	ND	В	1.70%
Siemens	Advia	Hexokinase	Chemistry calibrator	1.30%	Hexokinase	NIST SRM 917a	С	1.88-3.26% ^f
		GOD	Chemistry calibrator	0.80%	Hexokinase	NIST SRM 917a	с	1.88-3.26% ^f

The uncertainty of (glucose) measurement my be dependent on the type of traceability chain selected for trueness transferring, making therefore difficult (e.g. chain C) to achieve the acceptable limits for measurement uncertainty on clinical sample

POST-MARKET SURVEILLANCE

Requirements for the applicability of EQAS results in the evaluation of the performance of participating laboratories in terms of traceability of their measurements

Feature	Aim
EQAS materials value-assigned with reference procedures by an accredited reference Laboratory	To check traceability of commercial system to reference systems
Proved commutability of EQAS materials	To allow transferability of participating laboratory performance to the measurement of patient samples
Definition and use of the clinically allowable measurement error	To verify the suitability of laboratory measurements in clinical setting

(EQAS category 1/2A or 1/2B)

Panteghini M. Clin Chem Lab Med 2010;48:7 Infusino I et al. Clin Chem Lab Med 2010;48:301 Braga F, Panteghini M. Clin Chem Lab Med 2013;51:1719 Braga F, Panteghini M. Clin Chim Acta 2014;432:55 Infusino I et al. Clin Chem Lab Med 2017;55:334-40

CIRME

Trueness-Based EQAS – Example 1

DE GRUYTER

Clin Chem Lab Med 2017; 55(2): 203-211

Cas Weykamp*, Sandra Secchiero, Mario Plebani, Marc Thelen, Christa Cobbaert, Annette Thomas, Nuthar Jassam, Julian H. Barth, Carmen Perich, Carmen Ricós and Ana Paula Faria

Analytical performance of 17 general chemistry analytes across countries and across manufacturers in the INPUtS project of EQA organizers in Italy, the Netherlands, Portugal, United Kingdom and Spain

Trueness-Based EQAS - Example 2

Trueness Assessment for serum glucose measurement in different *Commercial Systems* through the preparation of *Commutable Reference Materials Chang Yu et al. Ann Lab Med 2012;32:243-9*

References (materials and procedure)

- Pooled sera

- US Centers for Disease Control (CDC) reference procedure

 Table 1. Relative bias for glucose measurement using 6 commercial systems

System code	Manufacturer	Method	Stated traceability for the reference method	Analyzer type	Relative bias (%)				
					RM1	RM2	RM3	RM4	RM5
GOD01	Beckman	GOD-oxygen electrode	НК	DxC800 (N = 2), DxC20 (N = 1)	2.88	-0.17	1.39	1.38	2.82
GOD02	Roche	GOD-POD	ID-MS	Modular P800 (N $=$ 3)	3.19	1.66	3.96*	3.43*	4.58*
GOD03	Ortho	GOD-dry chemistry	НК	Vitros 250 (N = 3)	1.92	-0.17	2.68	1.38	3.14
HK01	Beckman	HK-G6PD	HK	DxC800 (N = 2), DxC20 (N = 1)	-1.92	-3.48*	-2.78	-2.77	-0.85
HK02	Roche	HK-G6PD	ID-MS	Modular P800 (N=3)	-3.83*	-1.82	-0.11	-1.6	-0.11
HK03	Dade Behring	HK-G6PD	ID-MS	RXL-MAX (N $=$ 3)	-1.28	-1.82	-1.28	-0.73	-0.27

Most *BUT NOT ALL* of the measurement systems met the minimum quality specifications for bias.

Verification of the accuracy of three glucose point-of-care testing (poct) devices for their use in a hospital setting

UNIVERSITA DEGLI STU DI MILANO

...DESPITE MANY EFFORTS BY THE PROFESSION...

...QUANTIFICATION OF A SIMPLE MOLECULE LIKE GLUCOSE IS NOT SIMPLE... CIRMEBUT WE ARE WELL ON THE WAY !

UNIVERSITÀ DEGLI STUDI DI MILANO CIRME - Centre for Metrological Traceability in Laboratory Medicine http://users.unimi.it/cirme

Thank you !!

Centro Interdipartimentale per la Riferibilità Metrologica in Medicina di Laboratorio (CIRME)

under the auspices of

11th International Scientific Meeting

MEASUREMENT UNCERTAINTY IN MEDICAL LABORATORIES: FRIEND OR FOE?

> MILANO, ITALY November 30th, 2017

AULA MAGNA - LITA SEGRATE Via Fratelli Cervi, 93 - Segrate, Milano

