

Implementing Traceability in EQAS

Jonathan Middle, PhD

UK NEQAS Organiser 1987 – 2009 Member IFCC C-TLM

www.jgmqc.co.uk drjgmiddle@gmail.com

CIRME Meeting, Milan

Clin Chem Lab Med 2010;48(1):7-10 © 2010 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2010.020

Editorial Mauro Panteghini

Application of traceability concepts to analytical quality control may reconcile total error with uncertainty of measurement

Feature	Aim
EQA material values assigned with reference procedures by an accredited reference (calibration) laboratory Proved commutability of EQA material(s)	To check the measurement uncertainty of participating laboratories against the reference measurement systems To allow transferability of participating laboratory performance to patient samples
Definition of the clinically allowable uncertainty of measurement	To verify the suitability of laboratory measurements in clinical setting
Profession (e.g., IFCC, JCTLM):	Define analytical objectives: reference measurement systems (traceability chain) and associated clinically acceptable uncertainty (fitness for purpose)
Diagnostic manufacturers:	Implement suitable analytical systems (platform, reagents, calibrators, controls) fulfilling the above established goals
End users (clinical laboratories):	Survey assay and laboratory performance through - IQC: testing system controls to confirm and verify manufacturer's declared performance of commercial systems (CE marked – virtually unbiased) - EQA (true value in commutable materials): defining uncertainty of laboratory measurements

 Table 1
 Mandatory requirements for the applicability of External Quality Assessment (EQA) results to evaluation of the performance of individual laboratories.

Figure 2 Steps of the process and different responsibilities for implementing traceability of patient results and defining their uncertainty.

We operate in a complex and multi-faceted environment where there are many important 'triangular relationships'.

But we must always remember that it is the patient who is central!

Fundamentals - 1

• What do patients think?

"Surely, every instrument in every laboratory should get the same result for any given analyte in my sample, as they are measuring the same thing?

How can they possibly be different?

It is inconceivable that you highly paid professionals with all your fancy analysers and computers, could possibly allow this to happen!

How can doctors manage to diagnose and treat us with this chaotic and scandalous situation?

Why aren't you doing something about it?

30th November 2010

CIRME Meeting, Milan

Fundamentals - 2

• What do doctors and nurses think?

"Our lab is great – they get the results back to us really quickly and they tell us if they are normal or not.

If we need help with choosing which tests to do or understanding what the results mean, they are always there for us.

It is a big headache though, when the normal ranges have to change if they buy a new instrument, or the manufacturer changes the assay.

And it always causes us grief when a patient has come from another hospital and their previous results are really different."

Why are methods different? - 1

- Because we allow them to be!
- It is a free market and there is no over-arching organisation that can enforce global quality standards of accuracy and comparability
- It doesn't really matter anyway, as labs have their own reference ranges and doctors soon get used to them
- Lab results are only a small part of the overall clinical process, and doctors will ignore any results that don't fit the clinical picture

Is this an acceptable view?

UK NEQAS for Oestradiol – 2009 Annual Review

30th November 2010

CIRME Meeting, Milan

Why are methods different? - 2

- 'Master' Calibration?
- Analytical Specificity?
- `Adjustments' to `compensate' for poor analytical quality?
- Meeting customer expectations?
- Patent issues?
- 'Marketing' issues?

These issues beg the question:

"Why can't the diagnostic industry collaborate in terms of standardisation and metrological traceability but compete on design, speed and cost?"

So, if you had kidney disease, which method would you want your creatinine to be assayed by?

UK NEQAS for Clinical Chemistry Creatinine Bias to IDMS exercise (with thanks to Finlay MacKenzie)

30th November 2010

CIRME Meeting, Milan

You know this diagram by now!

The Traceability Chain

But it is very important to remember this :-

Traceability and Specificity

http://www.ifcc.org/ejifcc/vol13no3/130301002n.htm

An inevitable precondition for the establishing of traceable results to calibrators and control materials is the specificity of the measurement procedures applied. **Results of measurement cannot be traceable when the procedure applied partially detects components which are not consistent with the definition of the measurand.**

The complete traceability chain is valid only for those measurable quantities that can have a value expressed in SI units. When primary or secondary calibrators are not available, the traceability chain for many measurands in laboratory medicine ends at a lower level, e.g. at the manufacturer's standing measurement procedure.

Professor Lothar Siekmann, Bonn

DHEAS interference in Testosterone assays

Sample identifiers	319A	319B	319C				ſ
DHEAS added (µmol/L)	0.00	10.07	20.14				ĺ
Assayed DHEAS (µmol/L)	4.5	13.8	24.8				
r	n Median (in [2-way	testosterone ter-quartile ran paired t-test p	(nmol/L) ge) value]	slope	intcpt	r²	
All laboratories 230) 1.60 (1.40-1.80)	2.00 (1.67-2.50)	2.20 (1.70-3.60)	0.0298	1.63	0.9643	ļ
Major methods							ŀ
Roche E170 Modular 46	5 1.50 (1.40-1.70)	2.60 (2.46-2.80) [p<0.0001]	3.80 (3.60-4.10) [p<0.0001]	0.1142	1.48	0.9994	
Abbott Architect 18	3 1.85 (1.77-1.90)	2.96 (2.78-3.12) [p<0.0001]	3.99 (3.80-4.11) [p<0.0001]	0.1063	1.86	0.9994	
Roche Elecsys 22	2 1.40 (1.30-1.50)	2.45 (2.24-2.59) [p<0.0001]	3.50 (3.30-3.69) [p<0.0001]	0.1043	1.40	1.0000	ĺ
Beckman Access / Dxl 18	3 1.65 (1.49-1.70	2.35 (2.15-2.50) [p<0.0001]	2.99 (2.77-3.10) [p<0.0001]	0.0665	1.66	0.9991	
DPC Immulite 2000 / 2500 18	3 1.65 (1.45-1.89)	1.66 (1.50-1.99) [NS]	1.80 (1.50-1.98) [NS]	0.0077	1.62	0.8218	
Bayer Advia Centaur 80) 1.71 (1.60-1.91)	1.79 (1.53-1.95) [NS]	1.80 (1.60-2.03) [p=0.013]	0.0047	1.72	0.8620	

Traceability and Specificity - 2

It follows that a method that is not specific for the measurand cannot be properly calibrated.

A nonspecific assay has to have its calculation algorithm 'adjusted' so as to give 'expected values'.

Such adjustments are revealed by recovery exercises (see later)

Traceability and EQA

Assertion - #1

Only properly designed independent, objective and educational EQA has the ability continuously to monitor the state of the art of clinical laboratory analysis in a way that enables improvements to be made in trueness and comparability

Assertion - #2

The diagnostic industry will not address problems of lack of trueness and comparability identified by EQA, unless companies have complete confidence in the materials used and the reliability of target values.

Assertion - #3

But ... The professional bodies associated with laboratory medicine <u>must</u> provide strong leadership in generating analytical and clinical quality specifications with which industry are required to comply.

Good EQA Design

- Clinically important analyte concentrations
- Materials as close as possible to the patient matrix
- Minimal processing (freeze-thaw, spiking)
- Like-with-like pooling (gender, age, analyte concentration)
- Sufficient number of samples per distribution
- Sufficient number of distributions per annum / cycle
- Easy to understand statistical analysis and reporting
- Strong lines of communication (participants & industry)
- Accreditation to ISO 17043 or equivalent

EQA Materials

EQA Materials – the best compromise?

- Single donations collected by the National Blood Service
- Each donation analysed for key analytes
- Donations pooled like-with-like (gender, age, analyte concentration etc)
- Minimal freeze-thawing
- 'Spiking' with pure analyte when necessary (under conditions of minimal matrix disturbance by the carrier solvent)
- Sufficient volume to ensure repeat distribution over time
- Careful long term storage in properly maintained freezers

EQA Target Values

- Consensus means derived from participants' data
 - All-laboratory Trimmed Mean (ALTM) results from all all participants
 - Grouped Laboratory Trimmed Mean (GLTM) results from a rational grouping of methods based, for example, on a single measurement principle
 - Method Laboratory Trimmed Mean (MLTM) results from a single method
- Externally derived
 - Weighed in value (eg for drugs)
 - Value from a method or group of methods known to be unbiased to the Reference Method
 - Assigned Reference Method value from a member of a reference laboratory network

EQA Target Values

- ALTM / GLTMs
 - Reflect the state of the art
 - Provide an overall means of assessing variability amongst methods
 - Reveal changes in individual methods
 - Encourage improvements in comparability
- MLTMs
 - Do not encourage improvements in comparability
 - Allow method-specific changes to go un-noticed
- Externally derived target values
 - Must be validated by other means to be accepted
 - Must be traceable to a reference measurement system if they are used to determine trueness

The Ideal EQA Target Value

Assigned value obtained for each material distributed, from an established reference method laboratory – registered with JCTLM, member of a network and participant in RELA

Pros

 Independent of routine methodological problems and participants' data

•No argument with validity

Cons

•Cost

Availability

•Manufacturers may elect to standardise on the EQA target

Regularly reporting Reference Method values alongside consensus values

Using the reference method to assign values to a small number of EQA materials, distributed in special exercises

(Servis	L	JKN	EQ,	AS for	⁻ Ste	eroid	Hormone	s	Laboratory : 1	0167		
and In	D)istribu	Page 6 of 53									
Birmingham Quality	A	Analyte : Cortisol (nmol/L)										
Spec.PoolPool description / Tr339AC353Normal serum [F]339BC354Normal serum [F]339CC355Normal serum [F]	eatments / A	Additions				□ A ■ D	ll methods PC Immulite 20	000	Your A score is Your B score is Your C score is The A limit is	117 -10.7 7.7	∠ \ ■ \ • ↔	
339D C420 Normal serum [M] 339E C421 Normal serum [F]									The B limit is +/- The C limit is	10.0 15.0		
Specimen : 339A	n Mea	an SD	CV(%)		80 -				Your result	112		
All methods	279 136	13	9.5	ries	60 -		Π-	129 4	Target (ALTM)	135.7		
Abbott Architect Bayer Advia:Centaur Beckman Access DPC Immulite 2000 Roche Elecsys E170 Modular	23 122 76 144 28 130 55 134 81 136 61 136	8 13 11 17 8 8 7	6.6 9.2 8.3 12.4 5.6 5.3	no. of laborato	40 - 20 - 0 -		4 		Your specimen: %bias transformed bias Accuracy Index Your method mean DPC Immulite 2000	-17.4 -177 177 134.0	¥	
						88	112 136 Cortisol (n	160 184 mol/L)	DFC minute 2000			
Specimen : 339B	n Mea	in SD	CV(%)		70 -				Your result	243		
All methods	278 303	48	15.8	nies	60 -	-	+		Target (ALTM)	303.3		
Abbott Architect Bayer Advia:Centaur Beckman Access DPC Immulite 2000 Boche Elecsys	23 268 76 310 28 251 54 267 81 348	19 26 27 29 16	7.0 8.4 10.7 10.9	no. of laborato	50 - 40 - 30 - 20 - 10 -	-		317.5	Your specimen: %bias transformed bias Accuracy Index	-19.9 -235 235	.9 🔻	
E170 Modular	61 348	15	4.3	_	0 -	120	210 300 Cortisol (n	390 480 mol/L)	Your method mean DPC Immulite 2000	267.1		
Specimen : 339C	n Mea	in SD	CV(%)		70 -				Your result	480		
All methods	279 586	92	15.8	ries	60 -				Target (ALTM)	585.6		
Abbott Architect Bayer Advia:Centaur Beckman Access DPC Immulite 2000	23 508 76 587 28 492 55 519	45 38 47 40	8.9 6.5 9.5 7.6	io. of laborato	50 - 40 - 30 - 20 -	-	÷	617.5	Your specimen: %bias transformed bias Accuracy Index	-18.0 -187 187	¥	
E170 Modular	61 683 61 684	26	3.8 3.6	с 	0 -	280	430 580 Cortisol (n	730 880 mol/L)	Your method mean DPC Immulite 2000	519.3		

30th November 2010

CIKIVIE IVIEETING, IVIIIAN

UK NEQAS for Clinical Chemistry Creatinine Bias to IDMS exercise (with thanks to Finlay MacKenzie)

30th November 2010

CIRME Meeting, Milan

Validating the Target Value

Perhaps the most effective way of examining the accuracy of a consensus target value is to perform regular recovery exercises, where a low endogenous analyte concentration pool is spiked with linearly related amounts of pure analyte, and all are distributed to participants at a single distribution.

Here are some examples which show ALTMs that are adequate and those that are not, and also reveal the wide variation seen in individual methods, some of which display concentration-related recovery.

Recovery studies - 1

UK NEQAS for Oestradiol (separate Main & High-Level Schemes)

DIST	ANAL	SPEC	ADDED	ALTM	RECOV		AB	13	A	37	AM	12	BC)5	CO	10	DC	11	SF	-1
		ļ		n=303		n	5	4	3	}	10)	8	2	6	7	18	3	2.	1
		ļ					mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec
354	E2	354A	0	98.7			100		129		96		92		110		85		99	
354	E2	354B	167	229.9	78.6		241	84.2	263	80.4	174	46.6	239	88.0	249	83.3	167	49.6	233	80.3
354	E2	354C	334	376.8	83.3		383	84.6	425	88.6	259	48.8	409	94.9	394	85.1	288	61.0	379	83.9
354	E2	354D	668	701.2	90.2		674	85.9	744	92.2	452	53.3	772	101.8	760	97.4	564	71.7	690	88.6
354	E2	354E	1336	1392.2	96.8		1285	88.6	1390	94.4	845	56.1	1576	111.1	1544	107.4	1160	80.5	1319	91.3
					87.2			85.8		88.9		51.2		98.9		93.3		65.7		86.0
		l																		
DIST	ANAL	SPEC	ADDED	ALTM	RECOV		AB	13	A	37	AM	12	BC)5	CO	10	DC	11	SF	-1
				n=120		n	2	0	3	}	7		3	1	3.	3	15	5	1	0
							mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec
354	E2HI	354A	0	331.3			326		383		296		349		378		227		297	
354	E2HI	354B	3167	3412.6	97.3		3383	96.6	3459	97.1	2285	62.8	3717	106.3	3669	103.9	2812	81.6	3256	93.4
354	E2HI	354C	6334	6227.7	93.1		6349	95.1	6422	95.3	4266	62.7	6221	92.7	7034	105.1	5399	81.7	6075	91.2
354	E2HI	354D	12668	12500.4	96.1		12610	97.0	13600	104.3	8001	60.8	12573	96.5	13080	100.3	12062	93.4	12984	100.2
		ļ			95.5			96.2		98.9		62.1		98.5		103.1		85.6		94.9

Recovery studies - 2

UK NEQAS for Testosterone (separate Male & Female matrices)

DIST	ANAL	SPEC	ADDED	ALTM	RECOV		AB13		AM12		BO5		CO10		DC11		FA1		MS2		SF1	
				n=268		n	3	1	7	'	80 72			10		4		10		27		
		ļ]	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec
354	FTES	354A	0	0.9]	1.2		0.6		0.8		1.1		0.8		0.7		0.5		1.0	
354	FTES	354B	2.6	2.9	77.2		3.3	79.6	2.0	55.4	2.5	66.3	3.3	84.6	3.2	91.0	2.5	69.8	3.1	98.1	3.0	76.7
354	FTES	354C	5.2	5.0	77.7		5.7	84.9	3.8	60.7	4.5	72.2	5.1	76.8	5.2	83.9	4.7	77.9	5.7	99.1	5.1	77.5
		l			77.4			82.2		58.1		69.2		80.7		87.4		73.9		98.6		77.1
						ļ																
DIST	ANAL	SPEC	ADDED	ALTM	RECOV	ļ	AB	13	AM	12	BO	5	CO	10	DC	11	FA	1	MS	2	SF	-1
				n=268		n	3	6	7	7		1	7	8	23	}	3		7		2	8
		<u>.</u>					mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec	mean	rec
354	MTES	354A	0	8.9			9.7		7.1		8.9		8.6		8.7		8.5		9.4		9.2	
354	MTES	354B	12.1	20.7	97.9		21.5	97.5	18.3	92.6	20.6	96.6	21.2	104.9	18.3	79.8	20.1	96.0	21.0	95.9	21.1	98.3
354	MTES	354C	24.2	31.7	94.3		34.0	100.2	30.4	96.4	31.9	94.9	31.0	92.8	27.1	76.1	28.9	84.3	33.0	97.5	33.5	100.4
					96.1			98.9		94.5		95.8		98.8		78.0		90.1		96.7		99.4

Role of Industry

Industry has a crucial role in the implementation of traceability!

- Openness and transparency with respect to the science of their assay systems
- Full engagement with established reference measurement systems through JCTLM, only using the highest order standards and employing reference laboratories that are collaborating in networks and participating in IFCC RELA
- Co-operation and funding assistance in programmes which prepare panels of single donation material with reference method assigned values, for the assessment of method trueness, and publishing their method's data in the IFU
- Full engagement with and participation in educational EQA programmes, so that changes in performance are immediately identified and acted upon

CERTIFICATE OF ANALYSIS

ERM®- DA451/IFCC

		HUMAN	SERUM		
Cortisol concentration in serum No.	Certified value ¹ nmol/L	Uncertainty ² nmol/L	Serum No.	Certified value ¹ nmol/L	Uncertainty ² nmoi/L
1	361	14	18	146	6
2	432	17	19	166	7
3	288	11	20	83	4
4	152	6	21	89	4
2	329	13	22	180	16
7	2/0	20	23	384	15
, ,	153	20	24	304	10
ă	287	11	25	215	6
10	230	9	27	497	19
11	334	13	28	299	12
12	261	10	29	265	11
13	430	17	30	114	5
14	626	24	31	764	29
15	246	10	32	623	24
16	211	8	33	264	10
17	366	14	34	390	15
from characterisation	ild for one year afte	r purchase.	rement (GUM), I v assessment wer	80, 1995. Uncertaint) e taken into considera	v contributions ansin filon.
Sales date:					
The minimum amou	nt of sample to be ι	used is 50 µL.			
Accepted as an ER/ .atest revision: July	M [®] , Geel, May 2004 2008	Riana	. C	2	
		aigne	Deed Do 110	addit Emera	_
			HIGT, LIT, HE	arunk Emons bronce Materiala	
			EC-DC IP	erence Materials	
			Refleseweg 2440 Geel,	a 111 Belgium	
				il folovino caces are no h	risonal part of the cariffe
				Eas	103

Role of JCTLM

JCTLM has a crucial, pivotal role in providing clear guidance to industry and EQA providers on reference methods and reference materials, helping to ensure that there is transparency and comparability in the activities of both parties

http://www.bipm.org/en/committees/jc/jctlm/

Database of higher-order reference materials, measurement methods/procedures and services

Bureau International des Poids et Mesures

JCTLM Database Laboratory medicine and *in vitro* diagnostics

> You are here : JCTLM-DB

Т+ т т.

JCTLM database: Laboratory medicine and in vitro diagnostics

JCTLM Database	Analyte keyword search for reference materials, measurement methods/procedures and services
 General information 1/2 List of reference materials no longer listed in the JCTLM Database 1/2 	Type an analyte name in part or full, e.g. cholesterol
<u>JCTLM Database Leaflet</u> Contact us	Refine search by analyte category Refine search by matrix category
⊾ Highlights	Please select your requirement : Migher-order reference materials
Last updates	 Reference measurement methods/procedures Reference measurement services
ک JCTLM	Reset × Search →
 Joint Committee for Traceability in Laboratory Medicine (JCTLM) JCTLM Working Group 1 JCTLM Working Group 2 	Download all entries for a specific analyte or matrix category as PDF
	Higher-order reference materials
—	 Reference measurement methods/procedures Reference measurement services
LFCC	Select an analyte category
International Federation of Clinical Chemistry and Laboratory Medicine	Download 🤟
lac	Select a matrix category Download

http://www.bipm.org/utils/en/pdf/Traceability_in_LabMed.pdf

This document is particularly recommended!

30th November 2010

Role of Reference Laboratories

Reference laboratories (those that develop and maintain candidate reference methods registered with JCTLM, engage in networks and participate in IFCC RELA), have a crucial role to play in providing services to industry and to EQA Schemes.

Traceability in EQA cannot be implemented without them.

I would like to pay tribute to Professor Thienpont and her team for all the help offered to my Schemes during 23 years! Thank you Linda!

IFCC RELA

http://www.dgkl-rfb.de:81/

Summary

- There are moral and professional imperatives that require laboratory medicine to meet the needs of its ultimate consumers; results of investigations must be accurate and comparable wherever and whenever they are produced
- Metrological Traceability is therefore a key concept that must be understood by all concerned, through education
- EQA provides continuous post market surveillance and is well placed to probe all aspects of analytical validity and to educate laboratories and other stakeholders
- Traceability can be implemented in EQA, but it may be costly and have major effects on Scheme logistics. It will obviously be constrained to those analytes where reference measurement systems exist
- It can only be implemented as part of a concerted effort by all stakeholders, engaging in a collaborative way, that transcends geographical, political and commercial boundaries

Partnerships

30th November 2010

Thank you for your attention!

Jonathan Middle, PhD

UK NEQAS Organiser 1987 – 2009 Member IFCC C-TLM

www.jgmqc.co.uk drjgmiddle@gmail.com

30th November 2010

CIRME Meeting, Milan