A Story of Smileys *True Value Assignment to EQAS materials A feasible task?*

Cas Weykamp Queen Beatrix Hospital, Winterswijk, The Netherlands Milan, CIRME International Meeting, 30 November 2010

0 0

0 0

EQAS How to escape **Vicious Circle?** Laboratory Manufacturer

Referee

Reference Lab True Value Aboratory Assignment

EQAS

Essentials EQAS

* Design EQA

* Commutable Specimens

* True Value Assignment

Design EQA

What we do not want..... EQA with ad hoc available specimens On the Market

.....But Make a design for an EQA Manufacture specimens in Our ISO 13485 certified production unit

Commutable Specimens

General Chemistry

- Frozen Human Sera
- Spiked Recombinant Human Enzymes
- Spiked Minerals
- Shipment Dry Ice
- Commutabilty "Spy" Sample

Immunochemistry

- Lyophilised human serum
- Made commutable with CLP no. 5

HbA1c

- Lyophilised human lysate red cells
- Made commutable with CLP No. 3

(matrix effect 1 method of 3 mmol/mol - 0.3%)

True Value Assignment

Concept * Traceability Chain

Tools

- * Measured with JCTLM endorsed Reference Measurement Procedure by Reference laboratory
- * Calibrated with JCTLM endorsed Certified Reference Material

Analyte

Ca – Cl – K – Na – Glucose Total Protein – Li – Mg

Bilirubin

Creatinine

HbA1c

Cholesterol – HDL

ALAT – ASAT – GGT – LDH CK – Amylase

IgG - IgM - IgA - Transf - HaptoAAT - AAT - C3c - C4 **Reference Lab/ Material**

Prof Reinauer, Dr. Kaiser Düsseldorf, Germany

Prof. Schumann, Hannover, Germany

Prof. Siekmann, Dr. Kessler Bonn, Germany

Dr. Weykamp, Winterswijk, The Netherlands

Prof. Lindemans Rotterdam, The Netherlands

Dr. Franck The Hague, The Netherlands

CRM 470a; IRMM

A nice Concept.....

.....But does it work in Daily Practice?

Time for Examples

ALAT: True Value 61 U/L

Manufacture	er n	Mean	Interlab CV
Abbott	18	59	3%
Beckman	41	60	3%
Roche	128	59	2%
Siemens	21	60	3%
Overall	208	59	3%

Successfull Nation wide Standardisation To IFCC Reference Measurement Procedure

GGT 2009: True Value 78 U/L

Manufacturer	n	Mean	Interlab CV
Abbott	18	77	3%
Beckman	45	68 🔶	12%
Roche	117	78	3%
Siemens	22	77	3%
Overall	202	75	3%

Observation: Problem Beckman users Action SKML: Letter to Labs and Beckman Result: Corrective Action Beckman/Labs

GGT 2010: True Value 85 U/L

Manufacture	r n	Mean	Interlab CV
Abbott	17	84	3%
Beckman	42	84 🔶	4%
Roche	128	85	3%
Siemens	21	86	3%
Overall	208	85	3%

Corrective Action Successfull Nationwide Standardisation to IFCC Reference Measurement Procedure restored

LD: True Value 393 U/L

Method Grou	p n	Mean	Interlab CV
IFCC	109	384	2%
Lactate	42	371	9%
Pyruvate	52	714	9%

Overall not relevant

Nationwide Confusion SKML: Advise to standardise to IFCC RMP Dispute: Quality versus Change Ref.Range

Creatinine: True Value 94 µmol/L

Method Group	n c	Mean	Interlab CV
Jaffe	70	104	6%
Jaffe Comp.	42	101	8%
Enzymatic	107	94	3%

Overall not relevant

Enzymatic: Excellent SKML: Advise Enzymatic Methods Dispute: Quality versus Costs

Creatinine e-GFR: True Value 53				
Method Group	Mean	% Labs e-GFR >10%		
Jaffe	50	21%		
Jaffe Comp.	50	18%		
Enzymatic	53	9%		
Overall no	t relevant			

e-GFR wrong due to Creatinine Method..... but also due to wrong MDRD equation Action EQA: paper collaboration clinicians

Substantial Uncertainty in True Value Over 5 years: Significant Deviation ISM But is this clinically relevant? Present Status: under investigation

Immuno Chemistry

2003: Lyophilised Sample

Calibrated: CRM 470

In EQA 2006 en 2009

Do labs measure True Value?

Method	n	Reco	overy	Interlab CV
		2006	2009	2006 2009
	50		101	
AAI	50	101	104	8% /%
Albumine	49	101	104	5% 6%
C3c	43	97	101	5% 6%
C4	43	104	101	5% 8%
Cerulopl.	23	100	101	9% 13%
Hapto	79	101	104	5% 5%
Prealb	12	101	103	6% 4%
Transferr	84	100	100	4% 5%
lgG	92	98	98	4% 6%
lgA	89	103	101	7% 6%
IgM	89	104	103	6% 7%
Overall		101	102	6% 7%

Recovery Proteins 2006 and 2009: Mean All Labs

Conclusion

Overall: Long-term Excellent Traceability

But: Per Manufacturer?

11 Proteins – per Manufacturer

Conclusion

In general: OK

But: Some Manufacturers may Investigate Traceability some proteins

HbA1c

* Long term Efforts IFCC WG and NGSP

* 2010: All Manufacturers Traceable IFCC RMP

* Effect on Quality?

HbA1c: Trend Quality in 15 years			
Year	Deviation Target*	Intralab CV	Interlab CV
1993		5.2%	22.0%
1999	+3 (+0.3%)	4.9%	11.2%
2002	-1 (-0.1%)	3.4%	8.5%
2005	-2 (-0.2%)	2.9%	6.9%
2010	0 (0.0%)	1.9%	3.5% * Mmol/mol <u>(%NGSP)</u>

EQA with True Value shows....

Method Method Method Manuf. Manuf. Manuf. Ζ Lab A Lab G Lab M Lab B Lab H Lab N Lab C Lab I Lab O Lab D Lab J Lab P Lab E Lab K Lab Q Lab F Lab L Lab R

....Poor performing Individual labs

EQA with True Value shows

Method Method Method Manuf. Manuf. Manuf. Ζ Lab A Lab G Lab M Lab B Lab H Lab N Lab I Lab C Lab O Lab D Lab J Lab P Lab E Lab K Lab Q Lab F Lab L Lab R

....Poor performing Methods/Manufacturers

EQA with True Value shows

Method Method Method Manuf. Manuf. Manuf. Ζ Lab A Lab G Lab M Lab B Lab N Lab H Lab C Lab I Lab O Lab D Lab J Lab P Lab E Lab K Lab Q Lab F Lab L Lab R

....Poor Performing Profession

Many Examples showing that EQA programmes with commutable samples and traceable target values are effective....

....but what are the limitations of this concept?

Limitations (1)

- 1.No RMP or CRM for many analytes
- 2. Costs EQA organisers (samples/targeting)
- 3. Burden Reference Labs (accreditation)
- 4. How to handle Uncertainty?

Limitations (2)

5. Criteria Performance (state of the art, biological variation, clinical decision)

6. Reluctance to change (clinicians/costs)

7. Qualitative Tests?

8. Lack of knowledge (Traceability?)

Summary

An EQA Programme, using commutable samples and traceable targets (true value assignment):

* Can irrefutably identify

poor performing individual labs,
poor performing methods/manufacturers
overall poor performance of the profession

* Is an excellent tool to monitor Standardisation

* In the long term: improves Quality

and harmonistaion efforts

