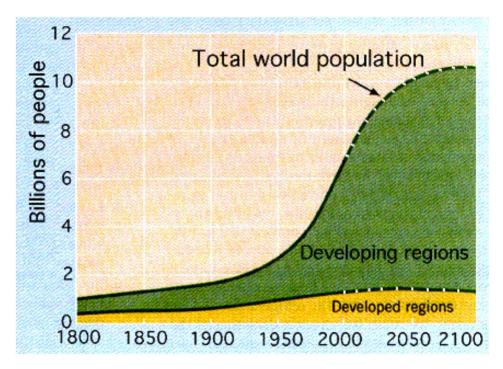


Integrated Algae bio refinery: nutrient and carbon

recycling from waste


SU Min, PhD Student Supervisor: Prof. Fabrizio Adani GRUPPO RICICLA DISAA - Università degli Studi di Milano

Sustainable Algae Biorefinery for Agriculture aNd Aquaculture

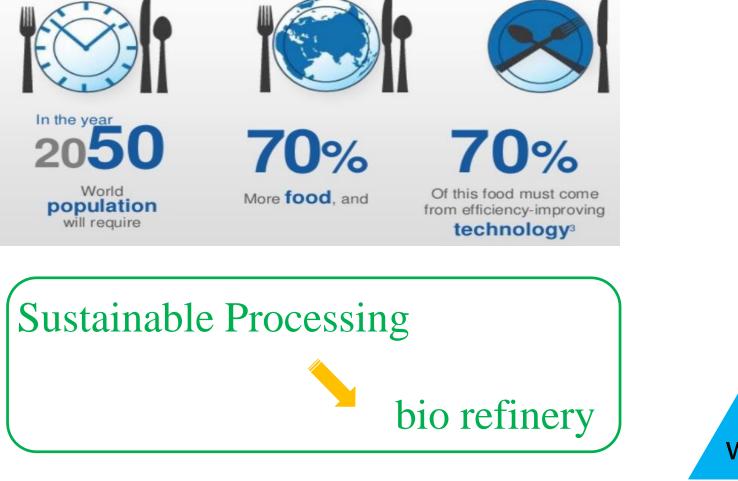
- 1. Background
- 2. Project Concept Review
- 3. Research activities
- 4. Conclusion of current stage & Outlook of the project

World Population

FAO: Agricultural consumption: 60% higher (in 40 years)

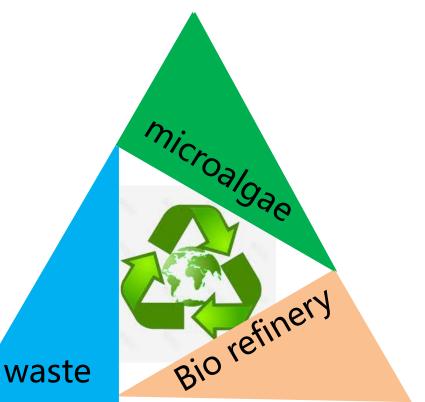
1. Background

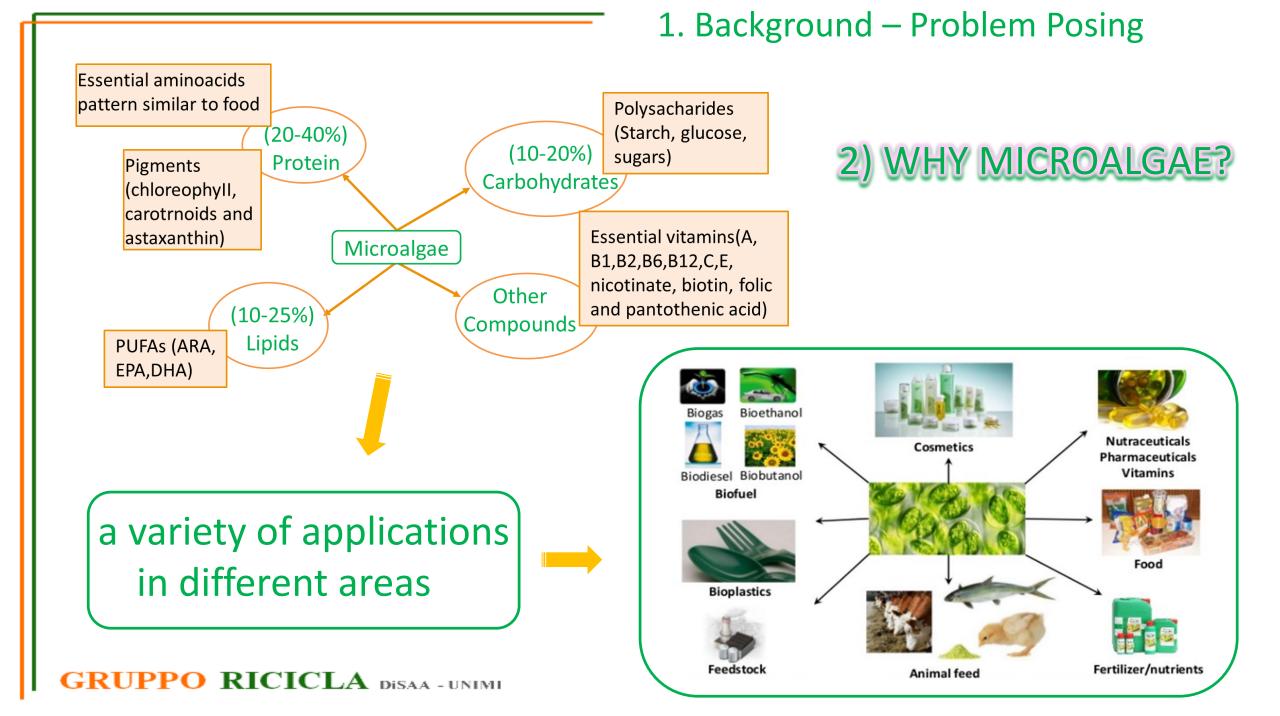
80% wastewater without treatment

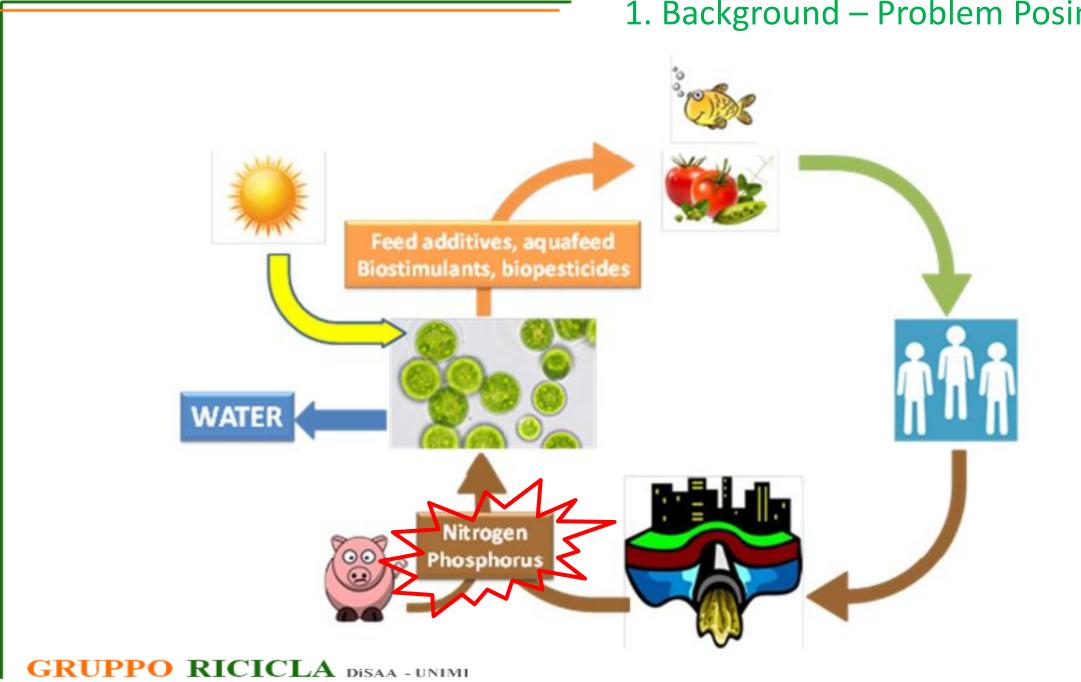

Energy consumption(个48%) in 2030

2.2 billion wasted/year

"We consume our planet's resources at a faster rate than their regeneration!"

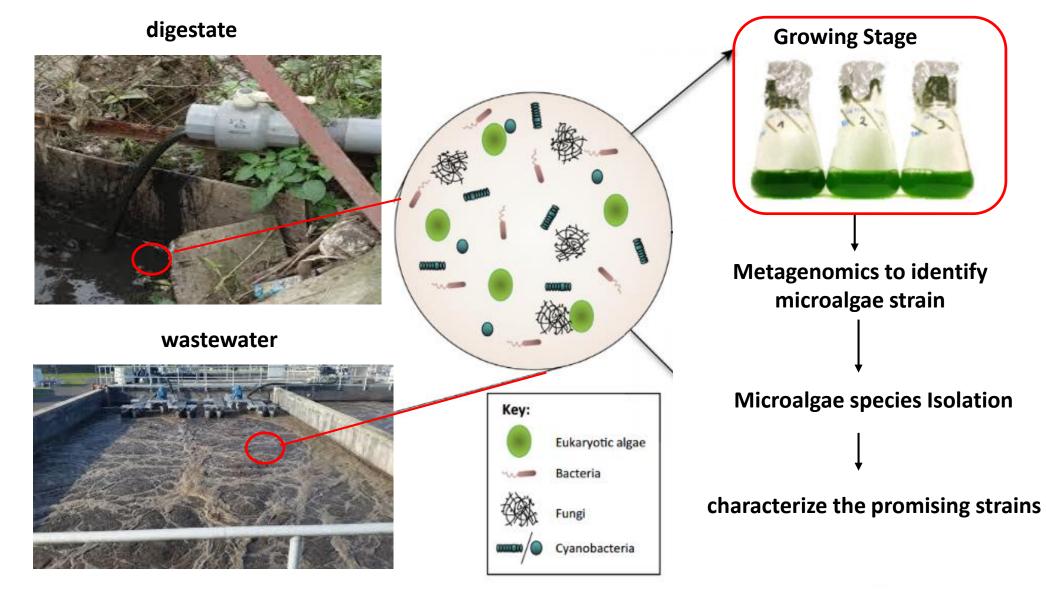

RICICLA disaa - unimi




1. Background – Problem Posing

) WHY BIOREFINERY?

Sustainable Strategies



1. Background – Problem Posing

². Concept review & Research activities

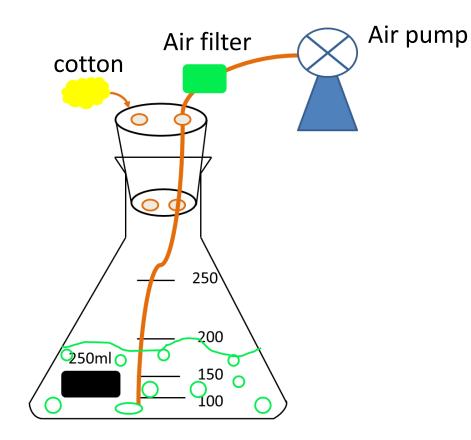
- To grow microalgae in different wastes from factories/fields in Lombardy Region, Milan, Italy.
- 2. To analyze the metagenomics of the culture.
- 3. To identify and isolate promising microalgae species.
- 4. To produce biostimulants & evaluate biostimulant activity.

3. Microalgae cultivation Experiment

3.1 Raw Materials

3.2 Experiment Design

3.3 Results and Discussion


3.4 Conclusion

3.1 Materials

Table 3.1	Raw materials in this research
-----------	--------------------------------

Number	Sample Name	Stage	Origin	Plant Name	Location
S1	Cow slurry	Input	Cattle stables	Romani	Mantua
S2	Liquid digestate	Output	Biogas plant	BLU Energy	Suzzara
S3	Solid digestate	Output	Biogas plant	BLU Energy	Suzzara
S4	Cow slurry	Input	Cattle stables	Zilocchi	Pegognaga
S5	Liquid digestate	Output	Biogas plant	Agrienergia	Pegognaga
S6	Solid digestate	Output	Biogas plant	Agrienergia	Pegognaga
S7	Cow slurry	Input	Cattle stables	Cervignano	Lodi
S8	Digestate	Output	Biogas plant	Ghiande	Pegognaga
S9	Wastewater	Output	Urban WW plants	cap holding	peschiera borromeo
S10	digestate	Output	AD plant	Lucra	Lodi
S11	OFMSW (liquid)	Input	AD plant	Lucra	Lodi
S12	OFMSW	Input	AD plant	Lucra	Lodi
S13	Sludge	Input	AD plant	Acqua&Sole	Vellezzo Bellini (PV)
S14	Digestate	Output	AD plant	Acqua&Sole	Vellezzo Bellini (PV)
S15	Digestate	Output	Cattle stables	Cervignano	Lodi
S16	Cattle manure	Input	Cattle stables	Cervignano	Lodi

*OFMSW: Organic Fraction of Municipal Solid Waste

- Algae cultivation Experiment conditions
- Continuous filtered air
- Continuous illumination (25uEm⁻²s⁻¹)
- ➢ 26° incubator

		Experiment 1 (3 stages)				
Sample Number	Raw Materials	Stage 1	Stage 2	Stage 3		
		original diluted	nitrate (20mg/l)	BG-11		
S1	Cow Slurry			*		
S2	Liquid Digestate of 1					
S3	Solid Digestate of 1			*		
▲ S4	Cow Slurry					
S5	Liquid Digestate of 4			*		
S6	Solid Digestate of 4			*		
S7	Cow Slurry					
S8	Digestate			*		
▲ S9	Wastewater					
S10	Digestate of 12		*			
S11	Liquid fraction of 12		*			
S12	OFMSW					
▲ \$13	Ingestate Sludge					
S14	Digestate of 13					
S15	Input of 8					
▲ S16	Cattle Manure					

Results:

In experiment 1, 11 samples grew microalgae.

*Colored cells means microalgae grew

sample		Exp	Experiment 2		
	Raw Materials	original diluted	nitrate (20mg/l)	BG-11	BG-11
S1	Cow Slurry				
S2	Liquid Digestate of 1				
S3	Solid Digestate of 1				
▲ S4	Cow Slurry				
S5	Liquid Digestate of 4				
S6	Solid Digestate of 4				
S7	Cow Slurry				
S8	Digestate				
▲ S9	Wastewater				
S10	Digestate of 12				
S11	Liquid fraction of 12				
S12	OFMSW				
▲ S13	Ingestate Sludge				
S14	Digestate of 13				
S15	Input of 8				
S16	Cattle Manure				

WHY?

The cultivation period

Methodology for growing microalgae from waste need to be set up!

3.2.1 Cultivation period

3.2.2 Nutrient solution selection

3.2.3 Key Parameter (Culture Optical Density) Unify

3.2.2. Nutrient solution selection

Table 3.1 Nutrient Receipts for culturing microalgae

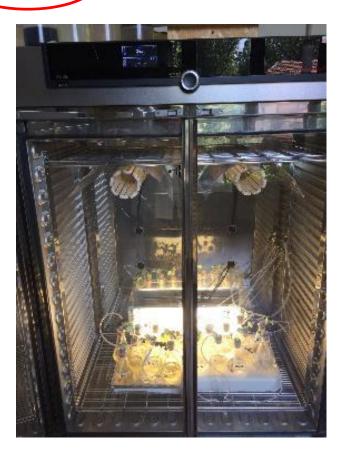
Solution Name	suitable for	Receipt characterater	рН	reference
Allen's Blue- Green Algae (<mark>BG-11</mark>)	widely used for freshwater green algae and cyanobacteria	nitrate and phosphate levels are exceptionally high	7.4	Allen 1968, Allen and Stanier 1968, Rippka et al.1979
Bold's Basal (BBM)	widely used for many kinds of freshwater algae	unsuitable for algae with vitamin requirements	6.6	Bold 1949, Bischoff and Bold 1963
CA Medium, modified	widely used for culturing oligotrophic desmids	contains both KNO ₃ and NH ₄ NO ₃ as nitrogen sources	7.2	Ichimura and Watanabe 1974, Watanabe et al. 2000

• 3 nutrient solutions among total 27 were chosen (R. Anderson, 2017)

3.2.3. Key parameter Unify

Table 3.2 Optical Dens	ty value of different dilution rates (C) (DC
------------------------	---	-------

Sample				Di	lution R	ate			
number	Original	10.0%	5.0%	2.0%	1.0%	0.8%	0.4%	0.2%	0.1%
S1	OR	OR	OR	2.24	1.17	0.40	0.19	0.09	0.05
S2	OR	OR	1.54	0.64	0.33	0.07	0.03	0.01	0.01
S3	Solid	OR	OR	2.03	1.15	0.32	0.12	0.07	0.03
S4	OR	1.9	0.96	0.39	0.2	0.05	0.02	0.01	0.01
S5	OR	OR	OR	2.41	1.32	0.43	0.22	0.11	0.06
S6	Solid	OR	OR	2	1.09	0.29	0.08	0.06	0.03
S7	OR	OR	OR	1.19	0.64	0.28	0.13	0.11	0.05
S8	OR	OR	OR	2	1.04	0.54	0.25	0.12	0.06
S 9	OR	2.14	1.13	0.4	0.2	0.10	0.05	0.04	0.01
S10	OR	OR	1.39	0.5	0.29	0.08	0.10	0.02	0.01
S11	OR	OR	1.72	0.59	0.38	0.09	0.04	0.03	0.01
S12	OR	OR	OR	1.97	0.93	0.46	0.22	0.11	0.08
S13	OR	OR	OR	OR	1.47	0.88	0.42	0.22	0.11
S14	OR	OR	OR	OR	1.38	0.73	0.35	0.17	0.09
S15	OR	OR	OR	1.53	0.88	0.37	0.18	0.08	0.06
S16	OR	OR	OR	OR	1.68	0.67	0.32	0.17	0.08
OR: Over F	Ranged								


1) 0.1%-0.8% of dilution rate is suggested (OD ranges from 0.01 to 0.88)

2) In principle, the lowerOD of microalgaecultivation, the better

Sample numbers for lab incubator:

5 samples 3 solutions + 3 blanks = 18 flasks

• In total for one cycle, 16 samples need 6 months

		Experiment 3	Experiment 4	
sample	details	Unified OD=0.1	Unified OD=0.3	
		BG-11	BG-11	
S1	Cow Slurry			
S2	Liquid Digestate of 1			
S3	Solid Digestate of 1			
S4	Cow Slurry			
S5	Liquid Digestate of 4			
S6	Solid Digestate of 4			
S7	Cow Slurry			
S8	Digestate			
S9	Wastewater			
S10	Digestate of 12			
S11	Liquid fraction of 12			
S12	OFMSW			
S13	Ingestate Sludge			
S14	Digestate of 13			
S15	Input of 8			
S16	Cattle Manure			

Results:

In experiment 4 (OD 0.3), 11 samples grew microalgae.

		Experime	nt 1 (3 sta	ges)	Experiment 2	Experiment 3	Experiment 4
sample	details	(g TS/200ml)			(g TS/200ml)	OD=0.1 (g TS/200ml)	OD=0.3 (g TS/200ml)
		original diluted	nitrate 20mg/l	BG-11	only BG-11	BG-11; BBM; CA	BG-11; BBM; CA
S1	Cow Slurry	0.25	0.25	0.25	0.25	0.03	0.1
S2	Liquid Digestate of 1	0.05	0.05	0.05	0.05	0.05	0.15
S 3	Solid Digestate of 1	0.19	0.19	0.19	0.19	0.14	0.37
S4	Cow Slurry	0.05	0.05	0.05	0.05	0.05	0.15
S5	Liquid Digestate of 4	0.13	0.13	0.13	0.13	0.02	0.05
<u>\$6</u>	Solid Digestate of 4	0.21	0.21	0.21	0.21	0.17	0.45
S7	Cow Slurry	0.21	0.21	0.21	0.21	0.03	0.12
S8	Digestate	0.18	0.18	0.18	0.18	0.02	0.06
S9	Wastewater	0.10	0.10	0.10	0.10	0.03	0.09
S10	Digestate of 12	0.06	0.06	0.06	0.06	0.03	0.11
S11	Liquid fraction of 12	0.05	0.05	0.05	0.05	0.03	0.10
S12	OFMSW	0.28	0.28	0.28	0.28	0.03	0.09
S13	Ingestate Sludge	0.38	0.38	0.38	0.38	0.02	0.07
S14	Digestate of 13	0.31	0.31 0.31		0.31	0.02	0.07
S15	Input of 8	0.11	0.11	0.11	0.11	0.02	0.05
S16	Cattle Manure	0.45	0.45	0.45	0.45	0.04	0.12

3.3 Results and Discussion

- 1) Methodology had set up for growing microalgae from waste:
- ✓ BG-11 nutrient solution
- ✓ Optical density at 0.3
- ✓ At least 6 months for 16 samples cultivatuon

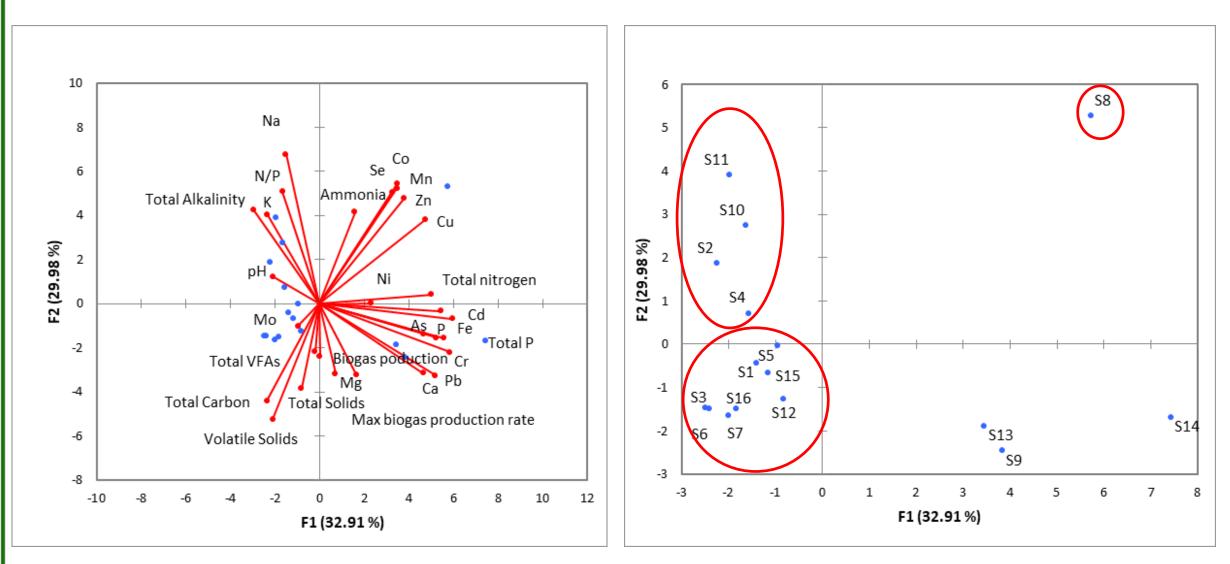
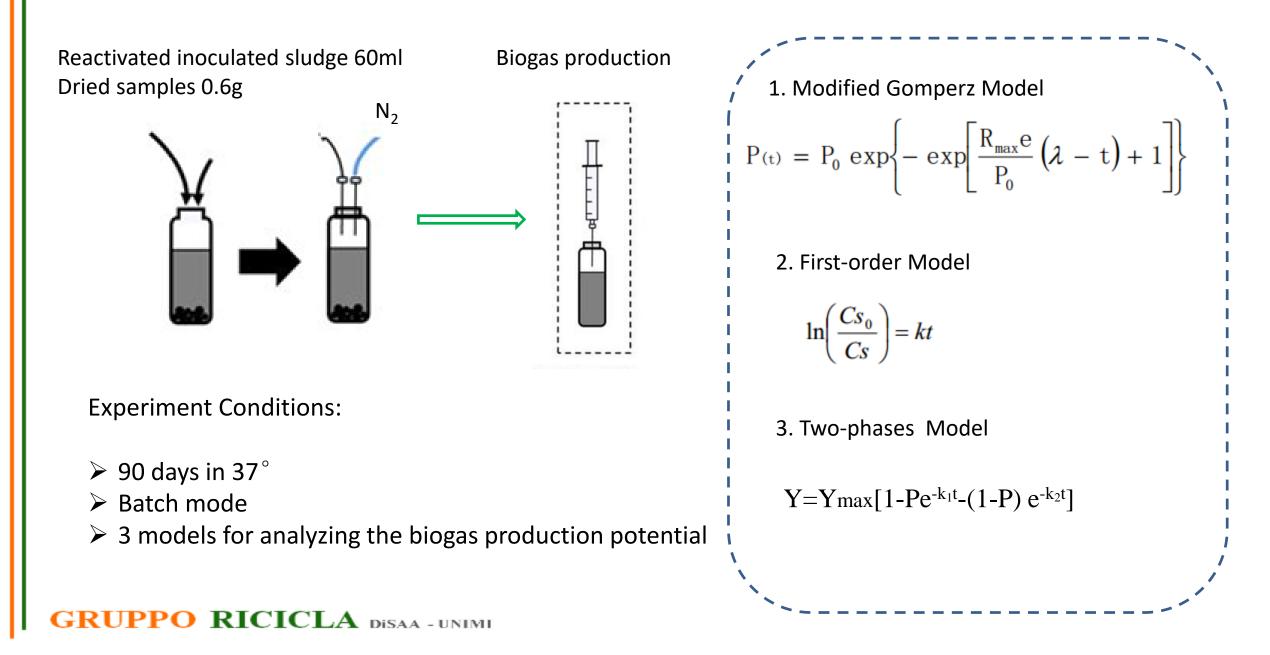
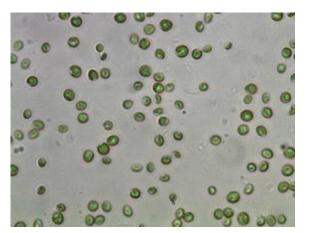



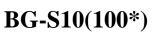
Figure 3.3. Principle Component Analysis of all characterization of raw materials

3.3 Results and Discussion

Concept review & Research activities

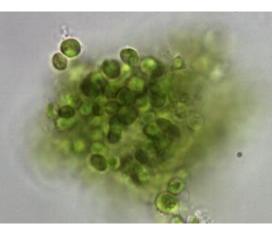
- To grow microalgae in different wastes from factories/fields in Lombardy Region, Milan, Italy.
- 2. To analyze the metagenomics of the culture.
- ✓ DNA was successfully isolated using the "Dneasy PowerSoil Kit" for further metagenomics analysis.
- 3. To identify and isolate promising microalgae species.
- 4. To produce biostimulants & evaluate biostimulant activity.


• First evaluation by flasks color change & microscope observation



BG-S4(100*)

BG-S8(100*)


BG-S9(100*)

BG-S11(100*)

BBM-S9(100*)

4. Conclusion and Outlook

1. Microalgae cultivation methodology (from waste) was investigated. At least 2 months & BG-11 & OD 0.3

2. Chemical and biological characterization were analyzed to distinguish the similarity and differences from each waste.

3. After metagenomics, all the characterization analysis results will present clearer according to different microalgae species.

Thank you for attention !

GRUPPO RICICLA

web site: http://users.unimi.it/ricicla/

When you make almost as much as oxygen as trees but nobody shows love to you