I will present the following result obtained in a recent joint work with Yongnam Lee.
Theorem: Let K be the function field of a very general complex surface of degree $d>4$ in the projective 3dimensional space. Let L be a proper subfield of K that contains properly the base field C. Then L is isomorphic either to $C(x)$, if the transcendental degree of L is 1 , or to $C(x, y)$ if L has transcendental degree 2. Similar results hold for the very general product of two curves.

