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RATIONALITY AS CONFORMITY

ABSTRACT. We argue in favour of identifying one aspect of rational choice
with the tendency to conform to the choice you expect another like-minded, but
non-communicating, agent to make and study this idea in the very basic case
where the choice is from a non-empty subset K of 2A and no further structure
or knowledge of A is assumed.

1. INTRODUCTION

The investigation described in this paper has its origins in Paris and
Vencovská (1990, 1997, 2001) (see also Paris (1999) for a general over-
view). In those papers it was shown that as far as probabilistic uncer-
tain reasoning is concerned there are a small set of so called ‘common
sense’ principles which, if adhered to, completely determine any fur-
ther assignment of beliefs, i.e. probabilities. Interesting as these results
may be this raises the question why we consider these principles to
be ‘common sense’ (or, more exactly, why we consider transgressing
them to be contra common sense).

It is a question we have spent some effort trying to resolve. The
principles looked to us like common sense, and indeed the general
consensus of colleagues was that, certainly, to flout them was to dis-
play a lack of common sense. Nevertheless we could find no more
basic element to which they could be reduced (for example showing
as in the Dutch Book argument that if you fail to obey them then
you are certain to lose that most basic of all substances, money).
From this apparent impasse one explanation did however suggest
itself. Namely, that these principles appeared common sensical to
us all exactly because their observance forced us to assign similar
probabilities. It is this idea, of common sense, or rationality, as con-
formity, that we shall investigate in this paper.

Certainly in the real world some one not acting in the way that
people expect would be described as having no common sense, for
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example filling-up the home fridge with fresh food the day before
leaving for a long holiday, or, in more serious situations, such as
declaring war on your ally when already fully stretched, of acting
illogically or irrationally. Despite the numerous meanings or even
intuitions that have been attached to these terms, see for example
the volume (Elio 2002), for the limited purposes of this work we
shall use them synonymously.

To motivate the sort of problem we are interested in suppose
that your wife is coming to your office to collect the car keys but
unexpectedly you have to go out before she arrives. Your problem
is where to leave the keys so that she can find them. In other words
your problem is choosing a point in the room where you think your
wife will also choose to look. Being a logical sort of person you ask
yourself “where would I expect someone to leave the keys?”. If there
was a vanity table by the door that might seem an obvious choice,
because people tend to leave ‘outdoor things’ at this point. On the
other hand if you had only just moved into the office and it only
contained packing cases scattered around the walls then you might
feel the centre of the carpet was the best option available to you, it
being the only place, as far as you could see, that stood out.

It would seem in this situation that there are two considerations
you could be drawing on. One is common knowledge, you assume
that your wife is also aware of the typical use that vanity tables
by entrances are put to. The other is what one might call common
reasoning, you assume that your wife will also reason that the cen-
tre of the room ‘stands out’, so given the common intent to locate
the same spot in the room, you place the keys right there. In the
first case, conformity would be characterized as a consequence of
learned and possibly arbitrary conventions. A formalization of this
is not, however, what we are pursuing here. Indeed part of what we
aim at understanding is how certain conventions might arise in the
first place: why certain choices look more rational than others given
that both agents intend to conform. So it is the second aspect of
common sense – common reasoning – that we wish to investigate in
this paper.

To do this we shall take what might be described as a math-
ematician’s approach to this problem. We shall strip away all the
inessentials, all the additional considerations which one normally
carries with one in problems such as the one described above,1 and
consider a highly idealized and abstract simplification of the prob-
lem. Our justification for this is that if one cannot resolve this
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problem satisfactorily how could one expect to be successful on the
infinitely more complicated real world examples?

2. THE PROBLEM

The problem we wish to consider is that of trying to choose one
from a number of options so that your choice conforms with that
of another like-minded, but otherwise inaccessible, agent (the payoff
for success, ditto failure, being the same in all cases).

What is arguably the simplest possible choice situation of this sort
is the one in which we have some finite non-empty set K of otherwise
entirely structureless options f . In other words options that whilst
different are otherwise entirely indistinguishable. Then the very defi-
nition of ‘indistinguishable’ seems to suggest that in this case there
is no better strategy available to us than to make a choice from K

entirely at random (i.e. according to the uniform distribution).
The inevitable next step then is to consider the case when we

do have some structure on the options, or as we may henceforth
call them, worlds, f ∈K. In this case, as logicians, the most obvious
minimal structure on these worlds is that there are some finite num-
ber of unary predicates which each of them may or may not sat-
isfy. To simplify matters for the present we shall further assume that
each world is uniquely determined by the predicates it does or does
not satisfy. In other words we are moving up from the language of
equality to a finite unary language. What this amounts to then is
that K is a non-empty subset of 2A, the set of maps f from the
finite non-empty set A into 2={0,1}.

To give a concrete example of what is involved here we might
have A= 4 and K the set of functions (worlds) {f1, f2, f3, f4, f5}
where

0 1 2 3
f1 0 0 0 1
f2 0 1 0 0
f3 0 1 1 0
f4 1 1 1 1
f5 0 0 1 0

and the problem, for an agent, is to pick one of these so as to
agree with the choice made by another like-minded, but other-
wise non-communicating and indeed, inaccessible, agent. However
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in presenting the problem like this we should be aware that as far
as the agents are concerned there is not supposed to be any struc-
ture on A or {0,1}, nor even on K beyond the fact that it is the
(unordered) set {f1, f2, f3, f4, f5}. For practical examples this can be
accomplished by informing the first agent that his or her counter-
part may receive the matrix

0 0 0 1
0 1 0 0
0 1 1 0
1 1 1 1
0 0 1 0

with the columns permuted and the rows permuted.
We understand a non-empty subset K of 2A as knowledge, indeed

knowledge that among the elements of K only one of them corre-
sponds to the world chosen by another like-minded agent facing the
same choice. In this way we implicitly introduce a qualitative mea-
sure of uncertainty: the bigger the size of K, the greater the agent’s
uncertainty about which choice of worlds qualifies as rational. This
corresponds to a very general and fundamental idea in the formal-
ization of reasoning under uncertainty (see e.g. Halpern 2003) and
plays a likewise important role here.

It is clear that in general there will be situations, as in the case
where we assumed no structure at all, when the agent is reduced to
making some purely random choices. We shall therefore assume that
the agent acts by first applying some considerations to reduce the
set of possible choices K(
= ∅) to a non-empty subset R(K) of K

and then picks at random from R(K). A function

R :℘+(2A) �−→℘+(2A),

where ℘+(2A) is the set of non-empty subsets of 2A (which for
brevity we sometimes denote as K), will be called a Reason if
R(K)⊆K for all K ∈℘+(2A).

Clearly, then, an optimal reason R, is one that always returns a
singleton R(K) for all K ∈℘+(2A), as this would amount to entail
conformity with probability 1. We shall see, however, that this situ-
ation represents the exception rather than the rule in the formaliza-
tion to follow.

One might question at this point whether a better model for
the agent’s actions might be to have him or her put a probability
distribution over K and then pick according to that distribution.
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In fact in such a case the agent would do at least as well by
instead selecting the most probable elements of K according to this
distribution and then randomly (i.e. according to the uniform distri-
bution) selecting from them – which puts us back into the original
situation.

In the next three sections we consider three different Reasons
which are suggested by the context of this, and related, problems.

3. THE REGULATIVE REASON

As mentioned already the work in this paper was in part moti-
vated by considering why the principles of probabilistic uncertain
reasoning introduced in Paris and Vencovská (1990, 1997, 2001)
warranted the description ‘common sense’. The underlying problem
in those papers was analogous to the one we are considering here,
how to sensibly choose one probability function out of a set of
probability functions. The solution we developed there was not to
directly specify a choice but instead to require that the choice pro-
cess should satisfy these principles and see where that landed us. In
fact it turned out well in the linear cases considered in Paris and
Vencovská (1990, 1997) since the imposed principles happily permit-
ted only one possible choice.

Given that fortunate outcome there it would seem natural to
attempt a similar procedure here, namely to specify certain ‘common
sense’ principles we would wish the agent’s Reasons to satisfy and
see what comes out. Clearly, the present problem is much less struc-
tured then the one in which knowledge and belief are represented
via subjective probability functions. Indeed the current setting is
arguably one of the simplest ones in which we can make sense of
rational choice concerning “knowledge” and “possibilities”. It there-
fore follows that if choice processes analogous to the ones that char-
acterize probabilistic common sense could be specified, those would
have an undoubtedly high level of generality.

Our next step then is to introduce ‘common sense principles’
or rules that, arguably, Reasons should satisfy if they are to pre-
vent agents from undertaking “unreasonable steps”.2 Hence, we
call the resulting Reason, Regulative. The key result of this sec-
tion is that their observance leads to a characterization of a set
R(K) of “naturally outstanding elements” of K, formulated in
Theorem 1.
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Renaming
Let K ∈K and let σ be a permutation of A. R satisfies Renaming if
whenever

Kσ ={f σ |f ∈K}
then R(Kσ)=R(K)σ .

In this definition Kσ is, as usual, the set {f σ |f ∈K}, and sim-
ilarly for R(K)σ etc. The justification for this seems evident given
the discussion in the previous section. Since the elements of A have
no further structure any permutation of these elements simply pro-
duces an exact replica of what we started with. More precisely if you
feel that the most popular choices of worlds from K are the set of
worlds R(K) then you should feel the same for these replicas, i.e.
that the most popular choices of worlds from Kσ should be R(K)σ .
Obstinacy
R satisfies Obstinacy if whenever K1,K2 ∈ K and R(K1) ∩K2 
= ∅
then R(K1∩K2)=R(K1)∩K2.

The justification for this principle is that if you feel the most
popular choices in K1 are R(K1) and some of these choices are in
K2 then such worlds will remain the most popular even when the
choice is restricted to K1∩K2.

This ‘justification’ in general is more than a little suspect. For
consider f ∈ R(K1) − K2. In that case one might imagine those
agents who chose f from K1 having to re-choose when K1 was
refined to K1∩K2. The assumption is that they went back to R(K1)

and randomly chose from there an element which was in K2. An
argument against this is that by intersecting K1 with K2 some oth-
erwise rather non-descript world from K1 becomes, within K1∩K2,

sufficiently distinguished to be a natural choice. Whilst this will
become clearer later when we have other Reasons to hand it can
nevertheless still be illustrated informally at this point.

Suppose that K is

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1
0 0 0 0
1 1 1 1

In this case the two most obvious choices would appear (to most
people at least) to be 0 0 0 0 and 1 1 1 1. However if we take
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instead the subset

1 1 0 0
0 0 0 0
1 1 1 1

of K then it would seem that now 1 1 0 0 has become the obvious
choice, not 0 0 0 0 or 1 1 1 1.

Despite this shortcoming in certain cases we still feel is of some
theoretical interest at least to persevere with this principle, and also
because of the conclusions it leads to. We note that in so as far as
nothing is known about the nature of the options, the property cap-
tured by Obstinacy is widely endorsed by the social choice commu-
nity (see, e.g. Kalai et al., 2002). Indeed there are also a number of
related principles in that discipline which may warrant consideration
vis-a-vis our present intention, though our initial investigations to
date along these lines have not yielded any worthwhile new insights.

In order to introduce our final principle we need a little notation.
For K ∈K we say that X⊆A is a support of K if whenever f, g∈2A

and f restricted to X (i.e. f �X) agrees with g restricted to X then
f ∈K if and only if g∈K.

The set A itself is trivially a support for every K ∈K. More sig-
nificantly it is straightforward to show that the intersection of two
supports of K is also a support, and hence that every K ∈K has a
unique smallest support. Notice that if K has support X then Kσ

has support σ−1X.
If K has support X then it is useful to think of this knowledge

as telling the agent ( just) how elements of K act on X. Namely, for
f to be in K it is necessary and sufficient that f �X=g for some

g∈{h �X|h∈K}.
Irrelevance
Suppose K1,K2 ∈K with supports X1,X2 respectively and for any
f1∈K1 and f2∈K2 there exists f3∈W such that f3 �X1=f1 �X1 and
f3 �X2=f2 �X2. Then

R(K1) �X1=R(K1∩K2) �X1(Irr)

where

R(K) �X={f �X|f ∈R(K)}.
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The condition on K1,K2 amounts to saying that as far as K1

is concerned K2 is irrelevant (and conversely) because given that we
know (only) that f satisfies the requirement for membership of K1

(i.e. that f �X1 is amongst some particular set of functions on X1)
the additional information that f ∈K2 tells us nothing we didn’t
already know about f �X1.

The principle then amounts to saying that in these circumstances
the choices from K1 and K2 should also reflect that irrelevance. That
is, if f1∈R(K1), then there is an f3∈R(K1∩K2) such that f3 �X1=
f1 � X1 and conversely given f3 ∈R(K1 ∩K2) there exists such a f1

(and similarly for K2).
The justification for this is along the following lines. In choosing a

most popular point from K1 we are effectively choosing from K1 �X1

and then choosing from all possible extensions (in W) of these maps
to domain A, and similarly for K2. The given conditions allow that in
choosing from K1∩K2 we can first freely choose from K1 �X1 then
from K2 � X2 and finally freely choose from all possible extensions
to domain A. Viewed in this way it seems then that any function in
R(K1) �X1 should also be represented in R(K1∩K2) �X1.3

DEFINITION. We shall say that a reason R is a Regulative Reason
if is satisfies Renaming, Obstinacy and Irrelevance.

3.1. The Regulative Reason Characterized

We start by noticing that there certainly is one Reason satisfying the
common sense properties defined above, namely the trivial Reason R

such that R(K)=K for all K ∈K, though of course in practice this
‘reason’ amounts to nothing at all.4

THEOREM 1. Let R be a Regulative Reason. Then either R is triv-
ial or R=R0 or R=R1 where for i=0,1 Ri is defined by

Ri(K)={f ∈K|∀g∈K, |f −1(i)| � |g−1(i)|}.
Conversely each of these three Reasons are Regulative, i.e. satisfy

Renaming, Obstinacy and Irrelevance.
We begin with the proof of the “if” part. As usual, �0 : A→ 2 is

defined by �0(x)=0 for all x∈A and similarly, �1 :A→2 is defined by
�1(x)=1 for all x ∈A.

The first step consists in showing that Regulative Reasons are
indeed threefold.
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LEMMA 2. Let R be Regulative. Then either R(2A)=2A or R(2A)=
{�0} or R(2A)={�1}.

Proof. We first show the following claim:
If f, g∈R(2A) (possibly f =g) are such that 0, 1 are in the ranges

of f, g respectively, then R(2A)=2A.

To this end let f, g ∈R(2A) and f (x)= 0 and g(y)= 1 for some
x, y ∈A. For σ a permutation on A transposing only x and y we
have that 2Aσ =2A. Hence, by Renaming, R(2A)σ =R(2Aσ). In par-
ticular:

f ∈R(2A)�⇒f σ ∈R(2A).(1)

Now let K={h∈2A|h(y)=0}. Since f σ ∈R(2A)∩K 
=∅ then:

R(2A)∩K =R(2A∩K)(by Obstinacy)

=R(K).

∴f σ ∈R(K).(2)

Put K1= 2A and K2 =K with support X1=A− {y} and X2 = {y},
respectively. As ∅={y}∩X1, we can, for any f1∈2A and f2∈K, con-
struct a function f3∈2A such that f3 �X1=f1 �X1 and f3 �X2=f2 �
X2. Thus

R(2A) �X1=R(2A∩K) �X1 (by Irrelevance)

=R(K) �X1.(3)

Therefore, g �X1∈R(K) �X1. Furthermore for

g′(z)=
{

g(z) if z 
=y

0 if z=y.
(4)

we have that g′ ∈R(K). Hence g′ ∈R(2A), by (2) above.
The claim now follows since we have shown that if we take any

function h∈R(2A) and change its value on one argument the result-
ing function is also in R(2A).

The proof of Lemma 2 now follows by noticing that if R(2A) 
=
2A then by the claim either 0 or 1 is not in the range of any f ∈
R(2A). Therefore, since R(2A) 
=∅ it must either be that R(2A)={�0}
or R(2A)={�1}.

Our next step is to prove the required result for trivial Reasons.
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LEMMA 3. If R(2A)=2A, then R(K)=K for any K ∈K.

Proof. Notice that if R(2A)=2A then for K ∈K,

K ∩R(2A)=K 
=∅
so by Obstinacy,

R(K)=K ∩R(2A)=K.

Hence, the final step in the proof of the “if” direction of
Theorem 1 deals with the more interesting case of non-trivial
Reasons.

It will be useful here to introduce a little notation. For the
remainder of this section, let π :dom(π)→{0,1}, where the domain
of π, dom(π), dom(π), is a subset of A. Similarly for π1, . . . , πk.

For such a π let

Xπ ={f ∈2A|f �dom(π)=π}.

LEMMA 4. If R(2A)={�1}, then

R(Xπ)={π ∨�1},
where

π ∨�1(x)=
{

π(x) if x ∈dom(π)

�1(x) otherwise.
(5)

Proof. Suppose that Z ∈ A− dom(π). To prove the result it is
enough to show that f (z)=1 for f ∈R(Xπ). Let K1=2A with sup-
port {z} and K2 =Xπ with support dom(π). Notice that the con-
ditions for the applications of Irrelevance are met since ∅ = {z} ∩
dom(π). Hence

R(2A) � {z}=R(Xπ) � {z}.
Therefore, for f ∈R(Xπ)

f (z)=
{

1 if z∈A−dom(π),

π(x) if z∈dom(π),
(6)

making f =π ∨�1.
This can be immediately generalized as follows.
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LEMMA 5. Suppose R(2A) = {�1} and let Z = {z1, z2, . . . , zn} ⊆ A

with 0 � r � n. Let τ r
1 , τ r

2 , . . . , τ r
q be all the maps from a subset of

size r of Z to {0}. Then

R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)={τ r
1 ∨�1, τ r

2 ∨�1, . . . , τ r
q ∨�1}.

Proof. We first recall that, by the definition of R,

R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)⊆ (Xτr
1
∪Xτr

2
∪· · ·∪Xτr

q

)
(7)

Now let π be a permutation of A such that Zπ =Z. Then(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)
π = (Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)
.

Hence, by Renaming:

f ∈R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)
⇐⇒f π ∈R

(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)
(8)

By Equation (7), R
(
Xτr

1
∪Xτr

2
∪ · · · ∪Xτr

q

)∩Xτr
j

= 0, for some 0 � j

� q. Thus, by Obstinacy,

R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)∩Xτr
j

=R
(
(Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q
)∩Xτr

j

)
=R(Xτr

j
) (for some 0 � j � q).(9)

Recalling, from Lemma 4, that R
(
Xτr

j

)={τ r
j ∨ �1} we have that τ r

j ∨
�1 ∈ R

(
Xτr

1
∪ Xτr

2
∪ · · · ∪ Xτr

q

)
for some 0 � j � q. By equation (8),

however, this can be generalized to any 0� j �q. Hence

R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)⊇{τ r
1 ∨�1, τ r

2 ∨�1, . . . , τ r
q ∨�1}.(10)

To see that the converse is also true, suppose h∈R(Xτr
1
∪Xτr

2
∪· · ·∪

Xτr
q

)
. Then since

R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)⊆Xτr
1
∪Xτr

2
∪· · ·∪Xτr

q
,

h∈Xτr
j
, for some j . But as we have just observed,

R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)∩Xτr
j
=R
(
Xτr

j

)
,

so h={τ r
j ∨�1} as required.
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LEMMA 6. Suppose Z={z1, z2, . . . , zn}⊆A and let τ r
1 , τ r

2 , . . . , τ r
p be

some maps from a subset of Z of size r to {0}. Then

R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

p

)={τ r
1 ∨�1, τ r

2 ∨�1, . . . , τ r
p∨�1}.

Proof. Let τ r
1 , τ r

1 , . . . , τ r
q be as in Lemma 5. Then by Obstinacy

R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)=R
(
Xτr

1
∪Xτr

2
∪· · ·∪Xτr

q

)
∩(Xτr

1
∪Xτr

2
∪· · ·∪Xτr

p

)
={τ r

1 ∨�1, τ r
2 ∨�1, . . . , τ r

p∨�1}.

We now have all the devices necessary to move on to the crucial
step.

LEMMA 7. Let τ
r1
1 , τ

r2
2 , . . . , τ

rp

p be maps each from some subset of
Z of cardinality r1, . . . , rp to {0} respectively. If R(2A)={�1}, then for
r=min {ri |i=1, . . . , p}

R
(
Xτ

r1
1
∪Xτ

r2
2
∪· · ·∪Xτ

rp
p

)={τ rj

j ∨�1|rj = r
}

.

Proof. Let δr
1, δ

r
2, . . . , δ

r
q be all the maps from a subset of size r of

Z to {0}. Then

{τ rj

j ∨�1|rj = r}⊆{δr
i ∨�1|i=1, . . . , q}.(11)

Now, since each Xτ
ri
i
⊆Xδr

k
, for some k, by Lemma 6 above and (11)

R
(
X

τ
r1
1
∪X

τ
r2
2
∪· · ·∪X

τ
rp
p

)=R
(
Xδr

1
∪Xδr

2
∪· · ·∪Xδr

q

)
∩(X

τ
r1
1
∪X

τ
r2
2
∪· · ·∪X

τ
rp
p

)
={τ rj

j ∨�1|rj = r}.

COROLLARY 8. For X∈K, if R(2A)={�1} then

R(X)={f ∈X|∣∣f −1{0}∣∣= r
}
,

where r is minimal such that |f −1{0}|= r for some f ∈X.

Proof. The result follows as an immediate consequence of Obsti-
nacy and Lemma 7.
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Notice that by duality, Corollary 8 holds for �1 being replaced by �0.
This completes the proof of the “if” direction of Theorem 1. We

now move on to show its converse, namely that if a Reason R(·) is
defined in any of the above three ways, then Renaming, Irrelevance
and Obstinacy are satisfied. This clearly characterizes completely
Regulative Reasons for the special case in which worlds are maps
from a finite set A.

Again, we start with the trivial Reasons, and then we move on
to the case of the non-trivial ones.

LEMMA 9. Suppose R(X) = X, for all X ∈ K. Then Renaming,
Obstinacy and Irrelevance are satisfied.

Proof. (Renaming) Suppose K ∈K with support X⊆A and π is
a permutation of A. Then

R(K)π =Kπ =R(Kπ)

as required.
(Obstinacy) For K1,K2 ∈ K, with supports X1,X2 ⊆ A respec-

tively,

R(K1)∩K2=K1∩K2=R(K1∩K2)

as required.
(Irrelevance) Suppose K1,K2 ∈K (with supports X1,X2 respec-

tively) are such that for any f1∈K1, f2∈K2, there exists f3∈W such
that f3 � X1 = f1 � X1 and f3 � X2 = f2 � X2. We have to show that
R(K1) �X1=R(K1∩K2) �X1. Let g∈2X1 . If g∈R(K1∩K2) �X1 then
obviously g∈R(K1) �X1. As to the other direction, suppose g=f1 �
X1 with f1 ∈K1. Then we are given that for f2 ∈K2 there is f3 ∈W

such that f3 �X1=f1 �X1=g and f3 �X2=f2 �X2. Thus, f3∈K1∩K2

and g=f3 �X1∈R(K1∩K2) �X1, as required.

LEMMA 10. R1(K) satisfies Renaming, Obstinacy and Irrelevance.

Proof. (Renaming) Let σ be a permutation of A. Then

f ∈R1(K)σ⇐⇒f =gσ, for some g∈R1(K)

⇐⇒f =gσ, for some g∈{h∈K|∣∣h−1{1}∣∣= r}(12)

where r=max{|h−1{1}| |h∈K}. But since |h−1{1}|=|(hσ)−1{1}|, then

h∈K and |h−1{1}|= r⇐⇒hσ ∈Kσ and |(hσ)−1{1}|= r.
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and r=max{|(hσ)−1{1}||hσ ∈Kσ }. Hence

f ∈R1(X)⇐⇒f σ ∈R1(Xσ),

as required.
(Obstinacy) Let K1,K2∈K and let R1(K1)∩K2 
=∅ and set

r ′ =max{|g−1{1}||g∈K1∩K2}
We claim that r ′ = r, where r is defined as above. To see that the

result follows from this claim notice that if r ′ = r, then

R(K1∩K2)=
{
f ∈K1∩K2|

∣∣f −1{1}∣∣= r
}

={f ∈K1|
∣∣f −1{1}∣∣= r

}∩K2

=R1(K1)∩K2.

We show the claim by contradiction. Since K1 ∩K2⊆K1, the case
r ′>r is clearly not possible. To see that r ′<r is not possible either,
and hence that r ′ = r, let h∈R1(K1)∩K2. Then r ′ would be the larg-
est n for which there exists h′ ∈K1∩K2 such that |h′−1{1}|=n. But
since h∈R1(K1), r would be such an n, giving r ′ � r as required.

(Irrelevance) Suppose K1,K2 ∈K (with supports X1,X2, respec-
tively) and for any f1∈K1, f2∈K2, there exists f3∈W such that f3 �
X1=f1 �X1 and f3 �X2=f2 �X2. We have to show that

R1(K1) �X1=R1(K1∩K2) �X1.

So assume that g∈R1(K1) �X1. Then ∃f1∈R1(K1) such that f1 �
X1=g. We now claim that

∀x 
∈X1 f1(x)=1.(13)

Suppose otherwise and define

f ′(x)=
{

f1(x) if x ∈X1

1 otherwise.

Then f ′ ∈K1 but |f ′−1{1}|> |f −1{1}|, which is impossible if f1 ∈
R1(K1). Hence X1⊇{x|f1(x)= 0} (and similarly, X2⊇{x|f2(x)= 0},
for f2 ∈R1(K2)). Thus ∃f ∈K1 ∩K2 such that f � X1= f1 � X1 and
f � X2= f2 � X2. Moreover, since X1 ∪X2 is a support for K1 ∩K2,

can also assume that

f (x)=1, for all x 
∈X1∪X2.(14)
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Claim now that there is no h∈K1∩K2 such that

|h−1{1}|> |f −1{1}|.(15)

Suppose on the contrary that such an h existed. By (14) we may
assume h(x)=1 for all x 
∈X1∪X2. Notice first that

x ∈X1∩X2⇒f (x)=h(x).(16)

To see this, notice that f ∈K1, h∈K2. So ∃g′ such that g′ �X1=f �
X1 and g′ �X2=h�X2. Hence f (x)=g′(x)=h(x), as required. Now,

|h−1{1}|=
αh︷ ︸︸ ︷

|{y ∈X1−X2|h(y)=1}|+|{y ∈X2−X1|h(y)=1}|
+|{y ∈X2∩X1|h(y)=1}|.

and

|f −1{1}|=
αf︷ ︸︸ ︷

|{y ∈X1−X2|f (y)=1}|+|{y ∈X2−X1|f (y)=1}|
+|{y ∈X2∩X1|f (y)=1}|.

Without loss of generality then, if |h−1{1}|> |f −1{1}| then αh >αf .

But this leads to the required contradiction. To see that define

h′(z)=
{

h(z) if z∈X1

1 otherwise.

Then h′ ∈ K1 but |h′−1{1}| = |h−1{1} ∩ X1| > |f −1
1 {1}|, and this is

clearly inconsistent with f1 ∈R(K1). So f ∈R(K1 ∩K2) and hence
g∈R(K1∩K2) �X1, as required for this direction of the proof.

As to the other direction for Irrelevance, assume that g∈R(K1∩
K2) �X1 but g 
∈R(K1) �X1. Define

g′(x)=
{

g(x) if x ∈X1

1 otherwise.

Then, g′ ∈K1 as it agrees on X1 with g∈K1. Indeed g′ 
∈R(K1) �X1

too, since g′ �X1=g �X1. Hence ∃f ∈R(K1) such that

|{y ∈X1|f (y)=1}|> |{y ∈X1|g(y)=1}|.(17)

Now pick h∈R(K1∩K2) such that h�X1=g and define f ′ such that
f ′ �X1=f �X1 and f ′ �X2=h �X2. As above we can assume that

f ′(x)=1 for all x 
∈X1∪X2(18)
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Then f ′ ∈K1∩K2 and |f ′−1{1}∩X1|> |h−1{1}∩X1| (by (17) and the
facts f ′ � X1 = f � X1 and h � X1 = g). Thus, since |f ′−1{1} ∩X2| =
|h−1{1}∩X2| and f ′ �X1∩X2=h �X1∩X2, we have that

|f ′−1{1}∩ (X1∪X2)|> |h−1 � {1}∩ (X1∪X2)|.
But this is inconsistent with the maximality of |h−1{1}|, concluding
the proof of the converse of Theorem 1.

A pleasing aspect of Theorem 1 is that it seems to us to point
to precisely the answer(s) that people commonly do come up with
when presented with this choice problem. For example in the case

0 0 0 1
0 1 0 0
0 1 1 0
1 1 1 1
0 0 1 0

it is our experience that the fourth row, 1 1 1 1, is the favoured
choice. In other words the (unique) choice according to R1. Of
course that is not the only Regulative Reason, R0 gives {0001,0100,

0010} whilst the trivial reason gives us back the whole set. Clearly
though those two Reasons could be seen as inferior to R1 here
because they ultimately require a random choice from a larger set,
thus increasing the probability of non-agreement. (This idea will
be explored further in the next chapter when we come to Reasons
based on Ambiguity.) This seems to point to a further elaboration
of our picture whereby the agent might for a particular K experi-
ment with several Reasons and ultimately settle for a choice which
depends on K itself.5 We shall return to this point later.

Of course one might argue in this example that in making the
choice of 1 1 1 1 one was not consciously aware of any obligation
to satisfy Renaming, Obstinacy and Irrelevance. Be that as it may it
is nevertheless interesting we feel that observance of these principles
turns out to be both so restrictive and to rather frequently leads to
‘the people’s choice’. Notice too that if one does adopt a Regulative
Reason then one automatically also observes Obstinacy. This could
then be offered as a defense of Obstinacy against the earlier crit-
icism, that it is no more unreasonable than adopting a Regulative
Reason. Whether or not there are alternative sets of ‘justified’ prin-
ciples which yield interesting families of reasons such as the one we
have considered here remains a matter for further investigation.
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4. THE MINIMUM AMBIGUITY REASON

4.1. An Informal Procedure

In the previous section we saw how an agent might arrive at a
particular canonical Reason by adopting and adhering to certain
principles, principles which (after some consideration) one might
suppose any other like-minded agent might similarly come to. An
alternative approach, which we shall investigate in this section, is
to introduce a notion of ‘distinguishability’, or ‘indistinguishability’,
between elements of K and chose as R(K) those most distinguished,
equivalently least ambiguous, elements. Instead of being based on
principles this R(K) will in the first instance be specified by a pro-
cedure, or algorithm, for constructing it.

The idea behind the construction of R(K) is based on trying to
fulfill two requirements. The first requirement is that if f and g are,
as elements of K, indistinguishable, then R(K) should not contain
one of them, f say, without also containing the other, g. In other
words an agent should not give positive probability to picking one
of them but zero probability to picking the other. The argument
for this is that if they are ‘indistinguishable’ on the basis of K then
another agent could just as well be making a choice of R(K) which
included g but not f . Since agents are trying to make the same ulti-
mate choice of element of K this surely looks like an undesirable sit-
uation (and indeed, as will later become clear, taking that route may
be worse, and will never be better, than avoiding it).

According to this first requirement then R(K) should be closed
under the ‘undistinguishability relation’.

The second requirement is that the agent’s choice of R(K) should
be as small as possible (in order to maximize the probability of ran-
domly picking the same element as another agent) subject to the
additional restriction that this way of thinking should not equally
permit another like-minded agent (so also, globally, satisfying the
first requirement) to make a different choice, since in that case any
advantage of picking from the small set is lost.

The first consequence of this is that initially the agent should be
looking to choose from those minimal subsets of K closed under
indistinguishability, ‘minimal’ here in the sense that they do not
have any proper non-empty subset closed under indistinguishability.
Clearly if this set has a unique smallest element then the elements
of this set are the least ambiguous, most outstanding, in K and this

[95]



266 HYKEL HOSNI AND JEFF PARIS

would be a natural choice for R(K). However, if there are two or
more potential choices X1,X2, . . . ,Xk at this stage with the same
number of elements then the agent could do no worse than combine
them into a single potential choice X1∪X2∪· · ·∪Xk since the choice
of any one of them would be open to the obvious criticism that
another ‘like-minded agent’ could make a different (in this case dis-
joint) choice, which would not improve the chances of a match (and
may make them considerably worse if the first agent subsequently
rejected X1∪X2∪ · · · ∪Xk in favour of a better choice). Faced with
this revelation our agent would realize that the ‘smallest’ way open
to reconcile these alternatives is to now permit X1∪X2∪· · ·∪Xk as
a potential choice whilst dropping X1,X2, . . . ,Xk.6

The agent now looks again for a smallest element from the cur-
rent set of potential choices and carries on arguing and introspect-
ing in this way until eventually at some stage a unique choice
presents itself.

In what follows we shall give a formalization of this procedure.

4.2. Permutations and Ambiguity

The first step in the construction of the Minimum Ambiguity
Reason consists in providing the agent with a notion of equivalence
or indistinguishability among worlds in a given K⊆2A.

In fact with the minimal structure we have available here the
notion we want is almost immediate: Elements g,h of K are indis-
tinguishable (with respect to K) if there is a permutation σ of A
such that

K=Kσ(={f σ |f ∈K})

and gσ =h.

We shall say that a permutation σ of A is a permutation of K if
K=Kσ.

The idea here is that within the context of our choice problem a
permutation σ of K maps f ∈K to an f σ in Kσ which has essen-
tially the standing within Kσ(=K) as f had within K. In other
words as far as K is concerned f and f σ are indistinguishable. The
following Lemma is immediate.

LEMMA 11. If σ and τ are permutations of K then so are στ and
σ−1.
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Having now disposed of what we mean by indistiguishability
between elements of K⊆2A, we now recursively define for f ∈K the
ambiguity class of f within K at level m by:

S0(K,f )={g∈K|∃ permutation σ of K such that f σ =g}

Sm+1(K,f )=
{
{g∈K

∣∣Sm(K,f )|= |Sm(K,g)|} if |Sm(K,f )| � m+1,

Sm(K,f ) otherwise.

For f, g∈K define the relation

g∼m f ⇔g∈Sm(K,f ).

LEMMA 12. ∼m is an equivalence relation.

Proof. By induction on m. For the case m= 0 this is clear since if
f, g,h∈K and f σ =g, gτ =h with σ, τ permutations of K then gσ−1=
f,f στ =h and by Lemma 11 σ−1, σ τ are also permutations of K.

Assume true for m. If |Sm(K,f )|>m+ 1 then, by the definition
of Sm+1(K,f ), the result follows immediately from the inductive
hypothesis. Otherwise, the reflexivity of ∼m is again immediate. For
symmetry assume that g∈Sm+1(K,f ). Then g∈{h∈K||Sm(K,h)|=
|Sm(K,f )|}, so |Sm(K,g)| = |Sm(K,f )| and f ∈ {h∈K||Sm(K,h)| =
|Sm(K,g)|}. An analogous argument shows that ∼m+1 is also
transitive.

Thus, as f ranges over K,∼m induces a partition on K and the
sets Sm(K,f ) are its equivalence classes. Moreover, this m-th parti-
tion is a refinement of the m+1st partition. In other words, the sets
Sm(K,f ) are increasing and so eventually constant fixed at some set
which we shall call S(K,f ).

The ambiguity of f within K is then defined by:

A(K,f )=def |S(K,f )|.
Finally, we can define the Minimum Ambiguity Reason RA(K) by
letting:

RA(K)={f ∈K|∀g∈K,A(K,f ) � A(K,g)}.(19)

As a rather self evident consequence of the definition of RA we have
the following result.

PROPOSITION 13. RA(K)=S(K,f ), for any f ∈RA(K)
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Proof. Let f ∈ RA(K). To show that S(K,f )⊆ RA(K) suppose
S(K,f ) = Sm(K,f ) and g ∈ Sm(K,f ). Then Sm(K,g) = Sm(K,f )

so Sm(K,g) must equal S(K,g) (since m could be taken arbi-
trarily large) and |S(K,g)| = |S(K,f )|, so g ∈ RA(K). Conversely
let g ∈RA(K) and fix some large m. If g 
∈S(K,f ), then S(K,f )∩
S(K,g)=∅ and since both f and g are in RA(K), then |S(K,f )|=
|S(K,g)|. But this leads to the required contradiction since for m

large enough, |Sm(K,f )| � m+ 1 so Sm(K,f ) and Sm(K,g) would
both be proper subsets of Sm+1(K,f ). Thus g would eventually be
in Sm(K,f ), contradicting the hypothesis.

EXAMPLE. Let K ∈K and suppose that as f ranges over K the 0-
ambiguity classes of f in K are given by the following partition of K

{a1, a2}, {b1, b2}, {c1, c2},
{d1, d2, d3}, {e1, e2, e3},
{f1, f2, . . . , f6}, {g1, g2, . . . , g6},
{h1, h2, . . . , h12},
{i1, i2, . . . , i24}.

For m= 1 the classes remain fixed. For m= 2 the first three classes
get combined and the S2(K,f ) look like

{a1, a2, b1, b2, c1, c2},
{d1, d2, d3}, {e1, e2, e3},
{f1, f2, . . . , f6}, {g1, g2, . . . , g6},
{h1, h2, . . . , h12},
{i1, i2, . . . , i24}.

Similarly for m=3 where the two classes of size 3 are combined
so that the S3(K,f ) become

{a1, a2, b1, b2, c1, c2},
{d1, d2, d3, e1, e2, e3},
{f1, f2, . . . , f6}, {g1, g2, . . . , g6},
{h1, h2, . . . , h12},
{i1, i2, . . . , i24}.
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The ambiguity classes do not change until step 6 when the four
classes with six elements are combined making S6(K,f ) look like

{a1, a2, b1, b2, c1, c2, d1, d2, d3, e1, e2, e3, f1, f2, . . . , f6, g1, g2, . . . , g6},
{h1, h2, . . . , h12},
{i1, i2, . . . , i24}.

Finally, we combine the two classes with 24 elements and obtain
S24(K,f ) with just two classes

{a1, a2, b1, b2, c1, c2, d1, d2, d3, e1, e2, e3, f1, f2, . . . ,

f6, g1, g2, . . . , g6, i1, i2, . . . , i24},
{h1, h2, . . . , h12}.

Clearly the ambiguity classes stabilize at this 24-th step and
hence the Minimum Ambiguity Reason for this K gives the 12-set
{h1, h2, . . . , h12}.

Notice that, in the definition of the ambiguity classes of K, the
splitting of the inductive step into two cases is indeed necessary
to ensure that some sets closed under permutations of K are not
dismissed unnecessarily early. This same example shows that if we
allowed the inductive step in the definition to be replaced by the
(somehow more intuitive) equation

Sm+1(K,f )={g∈K||Sm(K,f )|= |Sm(K,g)|}(20)

we would fail to pick the “obvious” smallest such subset of K. To
see this suppose again that K is as above but this time the alter-
native procedure based on (20) was used to construct RA. Then we
would have all the classes of the same size all merged in one step so
that the 1-ambiguity classes S1(K,f ) would look like:

{a1, a2, b1, b2, c1, c2},
{d1, d2, d3, e1, e2, e3},
{f1, f2, . . . , f6, g1, g2, . . . , g6},
{h1, h2, . . . , h12},
{i1, i2, . . . , i24}.

Then S2(K,f ) would look like this:

{a1, a2, b1, b2, c1, c2, d1, d2, d3, e1, e2, e3},
{f1, f2, . . . , f6, g1, g2, . . . , g6, h1, h2, . . . , h12},
{i1, i2, . . . , i24},
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so that the procedure stabilizes at m=3 with S(K,f ) of the form:

{a1, a2, b1, b2, c1, c2, d1, d2, d3, e1, e2, e3},
{f1, f2, . . . , f6, g1, g2, . . . , g6, h1, h2, . . . , h12, i1, i2, . . . , i24},

Hence, the construction that follows the alternative definition of
ambiguity classes, which imposes no restriction on appropriate stage
for the combination of the classes, leads again to a 12-set. However,
this alternative procedure appears to miss out what naturally seems
to be a more distinguished subset of K.

4.3. Justifying the Minimum Ambiguity Reason

We now want to show that the Minimum Ambiguity Reason defined
in (19) is an adequate formalization of the informal description
given in Section 4.1. Recall that we put forward two informal desid-
erata for the resulting selection from K, firstly that it should be
closed under indistinguishability and secondly that it should be the
unique smallest possible such subset not eliminated by there being
a like-minded agent who by similar reasoning could arrive at a
different answer.

As far as the former is concerned notice that by Lemma 13
RA(K) is closed under all the ∼m, not just ∼0. Thus this require-
ment of closure under indistinguishability is met, assuming of course
that one accepts this interpretation of ‘indistinguishability’. Indeed
RA satisfies Renaming as we now show.

THEOREM 14. RA satisfies Renaming.

Proof. As usual let σ be a permutation of A. We need to prove that

RA(K)σ =RA(Kσ).

We first show by induction on m that for all f ∈K,Sm(K,f )σ =
Sm(Kσ,f σ). To show the base case m=0 for all f ∈K, let

S0(K,f )={g1, . . . , gq}.
Choose a permutation τ of K such that f τ = gi. Then σ−1τσ is
a permutation of Kσ and (f σ)σ−1τσ = giσ. Hence, S0(K,f )σ ⊆
S0(Kσ,f σ). Similarly, S0(Kσ,f σ)σ−1⊆S0(K,f ), so equality must
hold here.
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Assume now the result for the Sm-th ambiguity class, so we want
to prove that

Sm+1(K,f )σ =Sm+1(Kσ,f σ).

We distinguish between two cases, corresponding to the ones
appearing in the construction of the ambiguity classes. Recall that
Sm+1(K,f )= Sm(K,f ) if m+ 1 > |Sm(K,f )|. So, in this case, the
result follows immediately by the inductive hypothesis. Otherwise,
since σ (on 2A) is 1-1, it is enough to see that

Sm+1(K,f )σ ={g∈K||Sm(K,f )|= |Sm(K,g)|}σ
={gσ ∈Kσ ||Sm(Kσ,f σ)|= |Sm(Kσ,f σ)|} (i.h.)
=Sm+1(Kσ,f σ).

Since, by Lemma 13, RA(K) is the smallest S(K,f ), this concludes
the proof of the Lemma.

Before further considering how far our formal construction of
RA(K) matches the informal description in Section 3.1, it will be
useful to have the next result to hand.

THEOREM 15. A non-empty K ′ ⊆K is closed under permutations
of K into itself if and only if there exists a Reason R satisfying
Renaming such that R(K)=K ′.

Proof. The direction from right to left follows immediately from
the Renaming principle. For the other direction define, for K1 ⊆
2A,K1 
=∅,

R(K1)=
{

K ′σ if K1=Kσ for some permutation σ of A;
K1 otherwise.

(21)

Note that in the first case R(K1) is defined unambiguously, that is to say,
whenever we have two permutations σ1, σ2 of A such that K1=Kσ1=
Kσ2, then K ′σ1=K ′σ2. This follows since in this case, σ2σ

−1
1 is a per-

mutation of A and Kσ2σ
−1
1 =K so K ′σ2σ

−1
1 =K ′, i.e. K ′σ1=K ′σ2.

We now want to show that if σ is a permutation of A and K1σ =
K2 then R(K2)=R(K1)σ. If K1 is covered by the first case of (21),
then so is K2, for if τ is a permutation of A such that K1 =Kτ,

then K2=Kτσ and R(K1σ)=R(K2)=K ′τσ =R(K1)σ. If K1 is cov-
ered by the second case of (21), so is K2 since if K2=Kτ for some
permutation τ of A, then K1=Kτσ−1 so R(K1) would be defined
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by the first case. It follows then that here we must have R(K1σ)=
R(K2)=K2=K1σ =R(K1)σ as required.

The importance of this result is that in the construction of
RA(K) the choices Sm(K,f ) which were eliminated (by coalescing)
because of there currently being available an alternative choice of a
Sm(K,g) of the same size are indeed equivalently being eliminated
on the grounds that there is a likeminded agent, even one satisfying
Renaming, who could pick Sm(K,g) in place of Sm(K,f ). In other
words it is not as if some of these choices are barred because no
agent could make them whilst still satisfying Renaming. Once a level
m is reached at which there is a unique smallest Sm(K,f ) this will
be the choice for the informal procedure. It is also easy to see that
this set will remain the unique smallest set amongst all the subse-
quent Sn(K,g), and hence will qualify as RA(K). In this sense then
our formal procedure fulfills the intentions of the informal descrip-
tion of Section 3.1.

4.4. Comparing Regulative and Minimum Ambiguity Reasons

In this and the previous section we have put forward arguments for
both the Regulative and Minimum Ambiguity Reasons being consid-
ered as ‘rational’ within the understanding of that term in this paper.
Interestingly in practice neither seems to come out self evidently bet-
ter in all cases. For example, in the case considered earlier of

0 0 1 1
0 1 1 0
1 1 0 0
1 1 1 1

R1 gives the singleton {1111} whilst RA gives the somewhat unexcep-
tional {0011,1100} and R0 the rather useless {0011,0110,1100}. On
the other hand if we take the subset

0 0 1 1
0 1 1 0
1 1 0 0

of this set RA gives {0110} whilst both R1 and R0 give the whole set.
Concerning the defining principles of the Regulative Reasons,

whilst as we have seen RA does satisfy Renaming the above exam-
ple shows that it fails to satisfy Obstinacy. Indeed with a little more
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work we can show that it does not even satisfy Idempotence, that
is R(R(K))=R(K), a consequence of Obstinacy. Finally RA does
not satisfy Irrelevance either. For an example to show this let K1

consist of

1 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 1 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

and let K2 consist of

∗ ∗ ∗ ∗ 1 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 1 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 1 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 1 1 0 0
∗ ∗ ∗ ∗ 0 0 0 1 0 1 0
∗ ∗ ∗ ∗ 0 0 0 1 0 0 1
∗ ∗ ∗ ∗ 0 0 0 0 1 1 0
∗ ∗ ∗ ∗ 0 0 0 0 1 0 1
∗ ∗ ∗ ∗ 0 0 0 0 0 1 1

where ∗ indicates a free choice of 0 or 1. Then K1,K2 satisfy the
requirements of Irrelevance and RA(K1),RA(K2) are respectively

1 1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

whereas RA(K1∩K2) is

1 0 0 1 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0 0
1 1 1 1 0 0 1 0 0 0 0
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5. THE SMALLEST UNIQUELY DEFINABLE REASON

In this section we present another Reason which, at first sight, looks
a serious challenger to the Regulative and Minimum Ambiguity
Reasons so far introduced.

Consider again an agent who is given a non-empty subset K of
2A from which to attempt to make a choice which is common to
another like-minded agent. A natural approach here might be for
the agent to consider all non-empty subsets of K that could be
described, or to use a more formal term, defined, within the struc-
ture available to the agent. If some individual element was definable
(meaning definable in this structure without parameters) then this
would surely be a natural choice, unless of course there were other
such elements. Similarly choosing a small definable set and then
choosing randomly from within it would seem a good strategy, pro-
vided there were no other definable sets of the same size. Reasoning
along these lines then suggests that our agent could reach the con-
clusion that s/he should choose the smallest definable set for which
there was no other definable set of the same size.

Of course all this depends on what we take to be the structure
available to the agent. In what follows we shall consider the case
when the agent can recognize 0 and 1, elements of A, {0,1} and K,
composition and equality.7 Precisely, let M be the structure

〈{0,1}∪A∪K, {0,1},A,K,=,Comp,0,1〉

where = is equality for {0,1} ∪ A ∪K (we assume of course that
A, {0,1},2A are all disjoint) and Comp is a binary function which
on f ∈K,a ∈A gives f (a) (and, say, the first coordinate on argu-
ments not of this form). As usual we shall write f (a)= i in place
of Comp(f, a)= i etc.

We define the Uniquely Smallest Definable Reason, RU, by set-
ting RU(K) to be that smallest ∅ 

=K ′ ⊆K first order definable in
M for which there is no other definable subset of the same size.

The results that follow are directed towards understanding the
structure of RU(K) and its relationship to RA(K).

LEMMA 16. Every permutation σ0 of K determines an automor-
phism jσ0 of M given by the identity on {0,1} and

a∈A �→σ−1
0 (a),(22)
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and

f ∈K−→f σ0.(23)

Conversely every automorphism j0 of M determines a permuta-
tion σj0 of K given by

σj0(a)= j−1
0 (a)(24)

for a∈A.

Furthermore for f ∈K,f σj0=j0(f ) and the corresponding auto-
morphism determined by jσj0 is j0 again.

Proof. For σ0 a permutation of K it is clear that jσ0 defined by
(22) and (23) gives a 1-1 onto mapping from A and K into them-
selves. All that remains to show this first part is to notice that by
direct substitution,

jσ0(Comp(f, a))=Comp(f, a)=f (a)=f σ0(σ
−1
0 (a))

=Comp(jσ0(f ), jσ0(a)).

In the other direction let j0 be an automorphism of M and
define σj0 by (24). Then since j0 is an automorphism of M, σj0 is
a permutation of A and for f ∈K,a∈A,

f (a)= j0(f (a))= j0(Comp(f, a))=Comp(j0(f ), j0(a)),

equivalently,

f (a)= j0(f )(j0(a))= j0(f σ−1
j0

)(a).

Hence

j−1
0 (f )(a)=f σ−1

j0
(a)

so σ−1
j0 (and hence σjo by Lemma 11) is a permutation of K since

j−1
0 (f )∈K, as required.

The last part now follows immediately from the definitions (22),
(23), (24).

We say that K ′ ⊆K satisfies Renaming within K if for all per-
mutations σ of K,K ′ = K ′σ. Thus ‘standard Renaming’ is just
Renaming within 2A.
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THEOREM 17. A non-empty subset K ′ of K is definable (without
parameters) in M if and only if K ′ satisfies Renaming within K.

Proof. Suppose that K ′ is definable in M. Then clearly K ′ is fixed
under all automorphisms of M. In particular if σ is a permutation
of K then by Lemma 16 jσ is an automorphism of M so

K ′ = jσ (K ′)=K ′σ

Conversely suppose that K ′ satisfies Renaming within K. Then
since every automorphism of M is of the form jσ for some per-
mutation σ of K and jσ (K ′) = K ′σ = K ′ it follows that K ′ is
fixed under all automorphisms of M. Consider now the types
θ i

1(x), θ i
2(x), θ i

3(x), . . . of the elements fi of K in M. If there were
fi ∈K ′ and fj 
∈K ′ with the same type then by a back and forth
argument (see for example Marker 2002) we could construct an
automorphism of M sending fi to fj , contradicting the fact that
K ′ is fixed under automorphisms. It follows that for some n the for-
mulae θ i

1(x)∧ θ i
2(x)∧ · · · ∧ θ i

n(x) and θ
j

1 (x)∧ θ
j

2 (x)∧ · · · ∧ θ
j
n (x) are

mutually contradictory when fi ∈K ′ and fj 
∈K ′. From this it clearly
follows that the formula∨

fi∈K ′

n∧
m=1

θ i
m(x)

defines K ′ in M for suitably large n.

COROLLARY 18. The sets Sm(K,f ) are definable in M

Proof. These sets are clearly closed under permutations of K so
the result follows from Theorem 17.

THEOREM 19. For all K ∈ K, |RA(K)| � |RU(K)|, with equality
just if RA(K)=RU(K).

Proof. We shall show that for all m. If f ∈RU(K) then Sm(K,f )⊆
RU(K). For m= 0 this is clear since RU(K), being definable must
be closed under permutations of K. Assume the result for m and
let f ∈ RU(K). If Sm+1(K,f ) were not a subset of RU(K) there
would be g ∈K such that |Sm(K,f )| = |Sm(K,g)| but g 
∈ RU(K).

Indeed Sm(K,g) would have to be entirely disjoint from RU(K) by
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the inductive hypothesis. By Corollary 18 Sm(K,f ) and Sm(K,g)

are both definable, and hence so is

RU(K)∪Sm(K,g)−Sm(K,f ).

But this set is different from RU(K) yet has the same size, contra-
diction.

Having established this fact we notice that for f ∈RU(K) we must
have S(K,f )⊆RU(K) so since RA(K) is the smallest of the S(K,g)

the result follows.
In a way Theorem 19 is rather surprising in that one might ini-

tially have imagined that RU(K), by its very definition, was about
as specific a set as one could hope to describe. That RA(K) can be
strictly smaller than RU(K) can be seen from the case when the ∼0

equivalence classes look like

{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2, d3, d4}.
In this case RA gives {d1, d2, d3, d4} whereas RU just gives the union
of all these sets.

We now briefly consider the relationship between the Regulative
Reasons and RU. Since the set

Ri(K)={f ∈K|∀g∈K, |f −1(i)| � |g−1(i)|}.
is definable in M Ri(K) is a candidate for RU(K). So if |Ri(K)|
< |RU(K)| it must be the case that there is another definable sub-
set of M with the same size as Ri(K). If |Ri(K)|= |RU(K)| then in
fact Ri(K)=RU(K). From this point of view then RU (and by The-
orem 19 also RA) might be seen to be always at least as satisfactory
as the Ri . On the other hand the Ri are in a practical sense compu-
tationally undemanding. [The computational complexity of the rela-
tion f ∼0 g between elements of K is currently unresolved, which
strongly suggests that even if a polynominal time algorithm does
exist it is far from transparent.]

We finally remark that, using the same examples as for RA,RU

also fails Obstinacy and Irrelevance.

6. AN ANALOGY WITH GAME THEORY

The situation we’ve been focussing on in this paper can be put quite
naturally into game theoretic form. Although a full discussion of
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this, and the related reinterpretation of the results of the previous
section in game theoretic terms are beyond the scope of this ini-
tial investigation on rationality-as-conformity, we nonetheless sketch
here the main lines of this analysis.

The conformity game, as we might call it, is a two-person, non-
cooperative game of complete yet imperfect information whose nor-
mal form goes like this. Each agent is to choose one strategy out
of a set of possible choices, identical for both agents. Each strategy
corresponds to one element of K = {f1, . . . , fk}, say. Agents get a
(unique) positive payoff p if they play the same strategy, and noth-
ing otherwise, all this being common knowledge. But since agents
are to play simultaneously, they are clearly inaccessible to each
other. Since it is a game of multiple Nash-equilibria, the conformity
game is therefore a typical example of a (pure) coordination game,
and as such, it is generally considered to be unsolvable within the
framework of traditional game theory.

Recall that in Section 2 we hinted at two general ways of solving
the conformity game, corresponding to the following situations.
Either worlds in K have no structure other than being distinct ele-
ments of a set, or worlds in K do have some structure, and in par-
ticular there are properties that might hold (be true) in (of) some
worlds. In the former case we seem to be forced to accept that
agents have no better way of playing the conformity game other
than picking some world fi ∈K at random (i.e. according to the
uniform distribution). In the latter case, however, agents might use
the information about the structure of the worlds in K to focus
on some particularly distinguished possible world. On the assump-
tion of like-mindedness, i.e. common reasoning, if one of those, say
fj should stand out as having some distinguished properties, agents
will conclude that such properties are indeed intersubjectively acces-
sible and hence select fj . In the phraseology of coordination games
those distinguished properties essentially contribute towards identi-
fying a salient strategy, the corresponding equilibrium being called
a focal point.8

Though the analysis of the relation between rationality-as-
conformity on the one hand and the selection of multiple Nash
equilibria in (pure) coordination games on the other, goes beyond
the scope of this paper, we note here that the Reasons we have been
investigating in this paper qualify as natural candidates for a formal-
ization of choice processes leading to focal points.
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7. THE RATIONALITY OF CONFORMITY

The general results of this paper can be seen as formalizing the intu-
ition according to which it would be irrational for two commonsen-
sical agents to disagree systematically on their world view provided
that it can be assumed that they are like-minded and that they are
facing essentially the same choice problem. But why is this intuition
reasonable within a general understanding of “rationality”?

There are surely several philosophical accounts of rationality that
not only seem to be consistent with this intuition but seem to offer it
some support. Nozick’s theory of practical rationality (Nozick 1993)
is surely to be included among those. According to the latter it is a
sound principle of rationality that agents “sometimes accept something
because others in our society do” (Nozick 1993, p. 129). This clearly
finds it underpinnings in the intrinsic fallibility of human-level intelli-
gent agents, indeed in the fact that within a society of rational agents,
the systematic error of the majority is somehow less likely that the indi-
vidual’s. Moreover, as noted by Keynes, “Worldly wisdom teaches that
it is better for reputation to fail conventionally than to succeed uncon-
ventionally” (Keynes 1951 p.158).

The formalisation of rational choice behaviour we have pur-
sued here is subtended by the assumption that reasons are devices
agents apply to restrict their options, to go part, or sometimes
even all, of the way to choosing a course of action or making a
decision. Indeed, we have investigated choice behaviour as a two-
stage process. In the first such stage agents apply reasons to discard
those possible choices that are recognised as being unsuitable for
the agent’s purpose of conforming. If at the end of this process the
agent is left with more than one equally acceptable option, then the
actual choice is to be finalised by picking randomly (i.e. according
to the uniform distribution) from this set.

Thus, it turns out that the general intuitions we have been following
in the construction of the Regulative Reasons are remarkably close to
those considered by Carnap (in the context of probabilistic confirma-
tion theory) when developing his programme on Inductive Logic:

The person X wishes to assign rational credence values to unknown propositions
on the basis of the observations he has made. It is the purpose of inductive logic
to help him to do that in a rational way; or, more precisely, to give him some
general rules, each of which warns him against certain unreasonable steps. The
rules do not in general lead him to specific values; they leave some freedom of
choice within certain limits. What he chooses is not a credence value for a given
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proposition but rather certain features of a general policy for determining cre-
dence values. Hilpinen (1973)

Indeed, as noted in passing above, the principles that make up
the Regulative Reasons, are understood exactly as policies helping
agents to achieve their goal by forbidding them to undertake certain
unreasonable steps that could prevent them from conforming.

Hence, again in consonance with the Carnapian perspective, we
can go on and argue that our (idealised) modelling of Reasons does
(ideally) also provide a justified definition of “rational” within the
context, though what will be ultimately meant by this term is, like
the scent of a rose, more easily felt than described.

Notice that neither Carnap’s view nor the present account imply
that whenever agents apply Reasons they will necessarily conform
with probability 1. As we have seen the “rational choice” can simply
be underdetermined with respect to the logical tools, the common
reasoning, available to the agents, so that the possibility of disagree-
ment in the final choice of a unique element from K cannot simply
be ruled out in general (and indeed it would be rather exceptional
for R(K) to have size 1).

As a last point concerning the rationality of conformity, some
illuminating suggestions can be found in the discussion of
radical interpretation mainly championed by Davidson in a number
of works (see the collections Davidson 1984, 2001). The situ-
ation is one in which two agents are trying to establish suc-
cessful communication despite their lack of a common language
and without knowning anything about each other’s view of the
world.

According to Davidson, who inherits this intuition from Quine’s
analysis of radical translation (Quine 1960, ch. 2), it is sim-
ply not possible for an agent to intepret successfully a speaker
without assuming that she structures the world pretty much the
same way the interpreter does. In other words, radical interpre-
tation can only take place under an assumption which mutatis
mutandis is entirely analogous to what we have been referring to
here as like-mindedness: agents must assume that they share com-
mon reasoning. According to Davidson, this Principle of Charity,
which ultimately provides fundamental clues about the others’ cog-
nitive make-up, is a necessary condition that agents must satisfy in
order to solve a problem of radical interpretation, hence for estab-
lishing communication. But this amounts to activating the kind of
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structure that Davidson considers necessary in order for agents to
be considered rational (Davidson 2001).

Again in connection with the Carnapian view, we note that
according to the Principle of Charity agents should discard those
possible interpretations that would make, to their eyes, the inter-
pretee systematically wrong or (logically) inconsistent hence, yet
without going into any of the subtleties of this topic, systemati-
cally irrational. In the formalization of Reasons this, as we have
seen, amounts to discarding those possible worlds that are believed,
on the fundamental assumption of their like-mindedness to pre-
vent agents from converging or, in Davidson’s felicitous terminology,
triangulating on the same possible world.

It is also interesting to notice here that a more or less implicit
feature of (the radical) interpretation problems, which is shared by
our rationality-as-conformity, consists in the fact that agents must
share a common intention. Both the interpreter and the interpretee
must in fact aim at assigning similar meanings to similar linguistic
behaviours, that is, must aim at conforming.9

As one might expect any ideas about the nature of rationality are
likely to resonate with at least some of the multitude of viewpoints on
the subject. The idea of rationality-as-conformity as we have presented
it here is no exception and for this section we have just briefly noted
some links with established positions on this matter. A fuller discussion
may be found in the forthcoming (Hosni 2005).

8. TOO MANY REASONS?

In this paper we have focussed on characterizing the choice process
that would lead one isolated, common sensical, agent to conform to
the behaviour of another like-minded yet inaccessible agent facing
(essentially) the same choice problem. To this effect we have intro-
duced what amount to four working Reasons, R0,R1,RA,RU. These
arose through very different considerations. In the case of the Reg-
ulative Reasons through an adherence to rules, for RA through an
algorithm based on repeatedly trying to fulfill two desiderata, and
for RU through picking the smallest uniquely definable set within
the given structure of the problem. This plurality of approaches and
answers raises a vexing question.

How can we feel any confidence that there are not other approa-
ches which will lead to entirely different answers?
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As we have noted above, ideas and concepts from Game Theory
would seem to have very definite application in generating Reasons.
Furthermore similar hopes might be extended to other areas of
mathematics, for example Social Choice Theory, which we have
already alluded to in passing, Group Theory (the construction of
RA(K) could be seen as simply talking about permutation sub-
groups), Model Theory with its interests in definable subsets and
Kolmogorov Complexity, with its emphasis on minimum description
length. In short the answer to the question which headed this par-
agraph is that we can have little such confidence beyond the modi-
cum which comes from having failed to find any ourselves.

Moreover, even with the candidates we already do have we
have seen, from the examples given, that both the Regulative and
Minimum Ambiguity Reasons appear capable, on their day, of
monopolizing the right answer, the ‘common sense’ answer. Does
that mean that even in this very simple context (let alone in the
real world) there can be multiple common sense arguments? Or does
it mean that we should try them all and pick the ‘best answer’?
(though that might seem to land us right back with the sort of prob-
lems we set out to answer in the first place!)

One advantage however that we should mention that the Mini-
mum Ambiguity Reason and the Smallest Uniquely Definable Rea-
son would appear to have over the Regulative Reasons is that they
are easily generalizable. In place of permutations of K, equivalently
automorphisms of M, we take all automorphisms of the structure
given to the agents and then define the corresponding RA and RU

exactly analogously to the way we have here. To take a particular
example if at the very start we had said that agents might not only
receive the matrix with the rows and columns permuted but also
possibly with 0 and 1 transposed then the natural structure would
have been M with the constants 0 and 1 removed, i.e.

〈{0,1}∪A∪K, {0,1},A,K,=,Comp〉.
In this case an automorphism j corresponds to a permutation σ of
A and a 1-1 function δ : {0,1} �→{0,1} such that

j � {0,1}= δ, j �A=σ−1, j (f )= δf σ for f ∈K.

Again the corresponding RA and RU can be defined and give in gen-
eral practically worthwhile answers (i.e. non-trivial). However with
this change the requirement of Renaming cannot be strengthened to
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what is expected here, i.e.

δR(K)σ =R(δKσ)

without reducing the possible Regulative Reasons to the trivial one
alone – as can be seen by considering the initial step in the proof of
Theorem 1.
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Government.
1 You have doubtless already though whyever doesn’t he leave a message stuck
to the door, or call her mobile, or leave the keys with his secretary, . . . !
2 See Section 7 for more on this.
3 There seems to be an implicit assumption in this argument that for f ∈K1, f �
X1 and f �A−X1 are somehow independent of each other. In the current simple
case of w=2A this is true but it fails in the case, not considered here, in which
the worlds are probability functions.
4 It can be shown that if we had taken A to be infinite then this would have
been the only Regulative Reason.
5 Alternatively one might hedge one’s bets and adopt the “collected extremal
choice”, R∪(K)= R0(K) ∪ R1(K), in the sense of Aizermann and Malishevski
(1981) (see also Rott (2001), p. 163) and by the Aizerman-Malishevski Theorem
(Theorem 4 of Aizermann and Malishevski (1981)) R∪ is a Plott function, that
is to say a function that satisfies the so-called Path Independence property intro-
duced in (Plott 1973).
6 It is noted in Rott (2001) that this strategy mirrors the “sceptical” as opposed
to the “credulous” approach to non-monotonic inference.
7 One might subsequently argue that the agent could then also recognize auto-
morphisms of M so the set of these too should be added to our structure, and
the whole process repeated, and repeated . . . In fact this does not change the
definable subsets of K so it turns out there is no point in going down this path.
8 The loci classici for pure coordination games and the related notions of salience
and focal points are (Schelling 1960; Lewis 1969). Since then the literature on this
topic developed enormously, yet particularly relevant to the present proposal are
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the more recent (Mehta et al., 1994; Janssen 2001; Camerer 2003; Morris and
Shin 2003).
9 We touch upon some of these intriguing connection between radical interpre-
tation, rationality-as-conformity and coordination games in Hosni (2004).
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