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Three-mode entanglement by interlinked
nonlinear interactions in optical x (2) media
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Istituto Nazionale per la Fisica della Materia, Unità di Como, Como, Italy, and Dipartimento di Fisica e
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We address the generation of fully inseparable three-mode entangled states of radiation by interlinked non-
linear interactions in x (2) media. We show how three-mode entanglement can be used to realize symmetric
and asymmetric telecloning machines, which achieve optimal fidelity for coherent states. An experimental
implementation involving a single nonlinear crystal in which the two interactions take place simultaneously is
suggested. Preliminary experimental results showing the feasibility and the effectiveness of the interaction
scheme with a seeded crystal are also presented. © 2004 Optical Society of America
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1. INTRODUCTION
The successful demonstration of continuous-variable (CV)
quantum teleportation1–3 and dense coding4 opened new
perspectives to quantum information technology based on
Gaussian states of light. Besides having been recognized
as the essential resource for teleportation1 and dense
coding,5,6 the entanglement between two modes of light
has been proved to be a valuable resource also for
cryptography,7,8 improvement of optical resolution,9

spectroscopy,10 interferometry,11 state engineering,12 and
tomography of states and operations.13,14

These achievements stimulated a novel interest in the
generation and application of multipartite
entanglement,15–18 which has already received attention
in the domain of discrete variables. Multipartite CV en-
tanglement has been proposed to realize cloning at dis-
tance (telecloning)19,20 and to improve discrimination of
quantum operations.21 The separability properties of CV
tripartite Gaussian states have been analyzed in Ref. 22,
in which they have been classified into five classes accord-
ing to positivity of the three partial transposes that can
be constructed. Moreover, it has been pointed out that
genuine applications of three-mode entanglement require
fully inseparable tripartite entangled states,23 i.e., states
that are inseparable with respect to any grouping of the
modes.

Experimental schemes to generate multimode en-
tangled states have been already suggested and demon-
strated. The first example, although no specific analysis
was made on the entanglement properties (besides verifi-
cation of teleportation), is provided by the original tele-
portation experiments of Ref. 1, in which one party of a
0740-3224/2004/061241-09$15.00 ©
twin beam (TWB) was mixed with a coherent state. A
similar scheme, in which one party of a TWB is mixed
with the vacuum16 has been demonstrated and applied to
controlled dense coding. More recently a fully insepa-
rable three-mode entangled state has been generated and
verified17 by mixing three independent squeezed vacuum
states in a network of beam splitters. In addition, a four-
mode entangled state to realize entanglement swapping
with pulsed beams has been generated.24

All the above schemes are based on parametric sources,
either of single-mode squeezing or of two-mode entangle-
ment, i.e., the TWB, with multipartite entanglement re-
sulting from further interactions in linear optical ele-
ments (e.g., beam splitters). In this paper we focus on a
scheme involving a single nonlinear crystal, in which the
three-mode entangled state is produced by two type-I,
noncollinearly phase-matched interlinked bilinear inter-
actions that simultaneously couple the three modes.25 A
similar interaction scheme, though realized in type-II col-
linear phase-matching conditions, is described in Ref. 26.
Compared with this paper, our choice of noncollinear
phase matching provides remarkable flexibility to our ex-
perimental setup, whereas the choice of type-I interaction
prevents the generation of additional parties. Moreover,
we avoid the losses brought about by the mode matching
in multiple beam splitters in that we achieve the three-
partite entanglement as soon as we find the configuration
that fulfills the phase-matching condition for both inter-
actions.

The paper is structured as follows. In Section 2 we de-
scribe the generation of three-mode entanglement in a
single nonlinear crystal in which two interlinked bilinear
2004 Optical Society of America
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interactions take place simultaneously. We obtain the
explicit form in the Fock basis of the outgoing three-mode
entangled state and also address the characterization of
entanglement. In Sections 3 and 4 we show how the
three-mode entangled state obtained in our scheme, for
the initial vacuum state or by seeding the crystal, can be
used to build symmetric and asymmetric telecloning ma-
chines that achieve optimal fidelity for coherent states.
In Section 5 we show how three-mode entanglement may
be used for conditional generation of two-mode entangle-
ment, in particular of the TWB state. The scheme is, of
course, less efficient than direct generation of the TWB in
a parametric amplifier, but it may be of interest in appli-
cations in which entanglement on demand is required.
In Section 6 we discuss the experimental implementation
of our generation scheme. We show the feasibility of ex-
periments in the case of interaction with a seeded crystal
and report preliminary experimental results. Section 7
closes the paper with some concluding remarks.

2. GENERATION OF THREE-MODE
ENTANGLEMENT
The interaction Hamiltonian we are going to consider is
given by

H int 5 g1a1
†a3

† 1 g2a2
†a3 1 H.c. (1)

H int describes two interlinked bilinear interactions taking
place among three modes of the radiation field. It can be
realized in x (2) media by a suitable configuration that will
be discussed in Section 6. The effective coupling con-
stants g j , j 5 1, 2, of the two parametric processes are
proportional to the nonlinear susceptibilities and the
pump intensities. The Hamiltonian in Eq. (1) has been
first studied in Ref. 27, though not for the generation of
entanglement. The Hamiltonian admits the following
constant of motion:

D~t ! [ N1~t ! 2 N2~t ! 2 N3~t ! [ D~0 !, (2)

where Nj(t) 5 ^aj
†(t)a(t)& represents the average num-

ber of photons in the jth mode. If we take the vacuum
u0& [ u0&1 ^ u0&2 ^ u0&3 as the initial state, we have D
5 0, i.e., N1(t) 5 N2(t) 1 N3(t);t. The expressions for
Nj(t) can be obtained by the Heisenberg evolution of the
field operators, which read as follows:

a1
†~t ! 5 f1a1

†~0 ! 1 f2a2~0 ! 1 f3a3~0 !,

a2~t ! 5 g1a1
†~0 ! 1 g2a2~0 ! 1 g3a3~0 !,

a3~t ! 5 h1a1
†~0 ! 1 h2a2~0 ! 1 h3a3~0 !. (3)

The explicit expressions of the coefficients fj , gj , and hj ,
j 5 1, 2, 3, are obtained in Appendix A; we omit the time
dependence for brevity. By introducing V 5 (ug2u2

2 ug1u2)1/2, we have

N1 5 N2 1 N3 ,

N2 5
ug1u2ug2u2

V4
~cos Vt 2 1 !2,
N3 5
ug1u2

V2
sin2~Vt !. (4)

The evolved state reads as follows28:

uT0& 5 Utu0&

5
1

A1 1 N1
(
pq

S N2

1 1 N1
D p/2S N3

1 1 N1
D q/2

3 F ~ p 1 q !!

p!q! G1/2

u p 1 q, p, q&, (5)

where Ut 5 exp(2iHintt) is the evolution operator, and we
have already used the conservation law. The state in Eq.
(5) is Gaussian, as we can easily demonstrate by evaluat-
ing the characteristic function

x~l1 , l2 , l3! 5 Tr@ uT0&^T0uD1~l1! ^ D2~l2! ^ D3~l3!#

5 ^0uUt
†D1~l1! ^ D2~l2! ^ D3~l3!Utu0&

5 exp@2
1
2 ~ ul18u2 1 ul28u2 1 ul38u2!#, (6)

where l j are complex numbers, Dj(l j) 5 exp(lj aj
†

2 l̄jaj) is a displacement operator for the jth mode, and
the primed quantities are obtained by use of the Heisen-
berg evolution of the modes in Eqs. (3). In the formulas,

l18 5 f1l1 2 g1l2 2 h1l3,

l28 5 2f2l1 1 g2l2 1 h2l3 ,

l38 5 2f3l1 1 g3l2 1 h3l3 . (7)

Following Ref. 22, the characteristic function can be re-
written as

x~l1 , l2 , l3! 5 expS 2
1

4
xTCxD , (8)

where xT 5 (x1 , x2 , x3 , p1 , p2 , p3), (¯)T denotes
transposition, l j 5 221/2( pj 2 ixj), j 5 1, 2, 3, and C de-
notes the covariance matrix of the Gaussian state, whose
explicit expression can be easily reconstructed from Eqs.
(7). The covariance matrix determines the entanglement
properties of uT0&. In fact, since uT0& is Gaussian, the
positivity of the partial transpose is a necessary and suf-
ficient condition for separability,22 which, in turn, is de-
termined by the positivity of the matrices G j 5 L jCL j
2 iJ, where L1 5 diag(1, 1, 1, 21, 1, 1), L2
5 diag(1, 1, 1, 1, 21, 1), L3 5 diag(1, 1, 1, 1, 1, 21),
and J is the symplectic block matrix

J 5 F0 2 I

I 0 G ,
with I as the 3 3 3 identity matrix. Evaluation of the
eigenvalues of G j shows that they are nonpositive matri-
ces ; j . Correspondingly, the state in Eq. (5) is fully in-
separable, i.e., not separable for any grouping of the
modes. Notice that the success of a true tripartite quan-
tum protocol, as the telecloning scheme describes in the
following sections, is a sufficient criterion for the full in-
separability of the state uT0&.23
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3. TELECLONING OF COHERENT STATES
Here we show how the three-mode entangled state de-
scribed in Section 2 can be used to achieve telecloning19 of
coherent states,20 that is, to produce two clones at dis-
tance of a given input radiation mode prepared in a coher-
ent state. Depending on the values of the coupling con-
stants of the Hamiltonian (1), the two clones can either be
equal to each other or be different. In other words, the
scheme is suitable to realize both symmetric and asym-
metric cloning machines.29,30 This option can eventually
be useful to fit the purpose of the clones’ production in or-
der to distribute the quantum information contained in
the input state.31–34 Our scheme, which is analogous to
that of Ref. 20 in the absence of an amplification process
for the signal, is applied to the telecloning of coherent
states, whereas the state we use to support the teleporta-
tion is the three-mode entangled state of Eq. (5). For the
symmetric case we obtain an optimal cloning machine,
achieving the maximum value of fidelity allowed in a CV
cloning process (F 5 2/3).32–34 In the case of the asym-
metric cloning, a range of coupling parameters can be
found that allows the fidelity of one clone to be greater
than 2/3 while maintaining the fidelity of the other to be
greater than 1/2, i.e., the maximum value reachable in a
classical communication scheme.

A schematic diagram of our scheme is depicted in Fig.
1. After the preparation of the state uT0&, a conditional
measurement is made on mode a1 , which corresponds to
the joint measurement of the sum and difference quadra-
tures on two modes: mode a1 and another reference
mode b, whose state is to be teleported and cloned. The
measurement can be described as the following
s-dependent probability operator-valued measure
(POVM) acting on mode a1 :

P~b! 5
1

p
D~b!s TD†~b!, (9)

Fig. 1. Schematic diagram of the telecloning scheme. After the
preparation of the state uT0& by bilinear interactions in a nonlin-
ear crystal (NLC), a conditional measurement is made on mode
a1 , which corresponds to the joint measurement of the sum and
difference quadratures on two modes: mode a1 and another ref-
erence mode b, which is excited in a coherent state s, to be tele-
ported and cloned (LO denotes the local oscillator). The result of
the measurement is classically sent to the parties who want to
prepare approximate clones, where suitable displacement opera-
tions (see text) are performed.
where D(b), b P C, is the displacement operator and s is
the preparation of b, i.e., the state to be teleported and
cloned.

The probability distribution of the outcomes is given by

P~b! 5 Tr123@ uT0&^T0uP~b! ^ I2 ^ I3#

5
1

p~1 1 N1!
(
pq

N2
pN3

q

~1 1 N1!p1q

~ p 1 q !!

p!q!

3 ^ p 1 quD~b!s TD†~b!u p 1 q&. (10)

The conditional state of modes a2 and a3 after the out-
come b is given by

%b 5
1

P~b!
Tr1@ uT0&^T0uP~b! ^ I2 ^ I3#

5
1

P~b!

1

p~1 1 N1!
(
pqkl

N2
~ p1k !/2N3

~q1l !/2

~1 1 N1!~ p1q1k1l !/2

3 F ~ p 1 q !!~k 1 l !!

p!q!k!l! G1/2

3 ^k 1 luD~b!s TD†~b!u p 1 q&u p, q&^k, lu.

(11)

After the measurement the conditional state may be
transformed by a further unitary operation, depending on
the outcome of the measurement. In our case, this is a
two-mode product displacement Ub 5 DT(b) ^ DT(b),
where the amplitude b is equal to the results of the mea-
surement. This is a local transformation that general-
izes to two modes the procedure already used in the origi-
nal CV 1 → 1 teleportation protocol. The overall state of
the two modes is obtained by averaging over the possible
outcomes

%23 5 E
C
d2bP~b!tb ,

where tb 5 Ub%bUb
†.

If b is excited in a coherent state s 5 uz&^zu, the prob-
ability of the outcomes is given by

Pz~b! 5
1

p~1 1 N1!
expS 2

ub 1 z̄u2

1 1 N1
D . (12)

Moreover, since the POVM is pure, the conditional state is
also pure. We have %b 5 u cb&& ^̂ cbu, with

u cb&& 5 ud2b&2 ^ ud3b&3 , (13)

i.e., the product of two independent coherent states. The
amplitudes are given by

d2b 5 ~z 1 b̄ !k2 , d3b 5 ~z 1 b̄ !k3 ,

where the quantities k j , j 5 2, 3, are given by

k j 5 S Nj

1 1 N1
D 1/2

. (14)

Correspondingly, we have tb 5 Ubu cb&& ^̂ cbuUb
†, with

Ubu cb&& 5 uzk2 1 b̄~k2 2 1 !& ^ uzk3 1 b̄~k3 2 1 !&.
(15)
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The partial traces %2 5 Tr3@%23# and %3 5 Tr2@%23# read
as follows:

% j 5 E
C
d2bPz~b!uzk j 1 b̄~k j 2 1 !&^zk j 1 b̄~k j 2 1 !u.

(16)

We see from the teleported states in Eq. (16) that it is
possible to engineer a symmetric cloning protocol if N2
5 N3 5 N; otherwise, we have an asymmetric cloning
machine. Consider first the symmetric case. According
to Eqs. (4), the condition N2 5 N3 5 N holds when

cos Vt 5
ug1u2

2ug2u2 2 ug1u2
, (17)

from which it follows that

N 5
4ug1u2ug2u2

~2ug2u2 2 ug1u2!2
. (18)

Since u^b8ub9&u2 5 exp(2ub8 2 b 9u2), the fidelity of the
clones is given by

F 5 ^zu% juz& 5 E
C

d2b

p~2N 1 1 !
expS 2

uz 1 b̄u2

2N 1 1
D

3 exp@2uz 1 b̄u2~k 2 1 !2#

5
1

2 1 3N 2 2@N~2N 1 1 !#1/2
. (19)

As we expect from a proper cloning machine, the fidelity
is independent of the amplitude of the initial signal, and,
for 0 , N , 4, it is larger than the classical limit F
5 1/2. Notice that the transformation Ub performed af-
ter the conditional measurement is the only one ensuring
that the output fidelity is independent of the amplitude of
the initial state. In Fig. 2 the behavior of the fidelity ver-
sus the average photon number N is shown in the rel-
evant regime. We can see that the fidelity reaches its
maximum F 5 2/3 for N 5 1/2, which means, according
to Eq. (18), that the physical system allows an optimal
cloning when its coupling constants are chosen so that
ug1 /g2u 5 (6 2 A32)1/2 . 0.586. Let us now consider the

Fig. 2. Fidelity of symmetric clones versus the average (equal)
photon number N of modes a2 and a3 .
asymmetric case. For N2 Þ N3 , the fidelities Fj
5 ^zu% juz& of the two clones [Eq. (16)] are given by

F2 5
1

2 1 N3 1 2N2 2 2@N2~N2 1 N3 1 1 !#1/2
,

(20)

F3 5
1

2 1 N2 1 2N3 2 2@N3~N2 1 N3 1 1 !#1/2
.

(21)

A question arises whether it is possible to tune the cou-
pling constants so as to obtain a fidelity larger than the
bound F 5 2/3 for one of the clones, say, %2 , while accept-
ing a decreased fidelity for the other clone. Indeed, for
example, if we impose F3 5 1/2, i.e., the minimum value
to ensure the genuine quantum nature of the telecloning
protocol, then we should choose N3 5

1
4 N2

2. In this case
the maximum value for F2 is given by F2 max 5 4/5, which
occurs for N2 5 1. More generally, by substituting Eq.
(21) into Eq. (20) and maximizing F2 with respect to N2 ,
keeping F3 fixed, we find that for N2 5 1/F3 2 1 and
N3 5 1/4(1/F3 2 1)21 we have

F2 5 4
~1 2 F3!

~4 2 3F3!
,

which shows that F2 is a decreasing function of F3 and
that 2/3 , F2 , 4/5 for 1/2 , F3 , 2/3. Notice that the
sum of the two fidelities F2 1 F3 5 1 1 3/4F2F3 is not
constant, being maximum in the symmetric case F2
5 F3 5 2/3. Notice also that the roles of %2 and %3 are
interchangeable in the considerations.

4. TELECLONING WITH A SEEDED
CRYSTAL
To confirm the feasibility of the telecloning scheme pre-
sented in Section 3, we now show that the same protocol
can be implemented also when the state that supports
teleportation is generated by Hamiltonian (1) starting
from a coherent state in one of the modes rather than
from the vacuum. This may be of interest from the ex-
perimental point of view, since seeding a crystal with a co-
herent beam is a useful technique to align the setup and
allows the verification of the classical evolution of the in-
teracting fields (see Section 6).

The analysis of the scheme is analogous to that of Sec-
tion 3; however, it starts from the initial state ua, 0, 0& in-
stead of the vacuum. The explicit expression of the
evolved state uTa& is derived in Appendix B. Notice that
the conservation law (2) implies that the populations for
seeded crystal Nja 5 ^Tauaj

†ajuTa& satisfy the relation
N1a 2 N2a 2 N3a 5 uau2. We refer the reader to Appen-
dix B for the explicit expressions of Nja and for their con-
nections to the populations Nj for vacuum input.

A compact expression for the evolved state is the follow-
ing:

uTa& 5 D1@af1~2t !# ^ D2@2af2~2t !#

^ D3@2af3~2t !#uT0&, (22)
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where fj(t), j 5 1, 2, 3, are given in Appendix A. Expres-
sion (22) can be easily derived by use of the Heisenberg
equation of motion for the field mode a1(t) [see Eqs. (3)].
The telecloning process proceeds as in Section 3, with cal-
culations performed with the shifted Fock basis u cn&1

[ D1(af1)un&1 and u cn& j [ Dj(2ā f̄ j)un& j , j 5 2, 3. If
the reference mode b is excited in a pure coherent state
s 5 uz&^zu, then, as in Section 3, the conditional state is
pure %b 5 u cb&& ^̂ cbu, with

u cb&& 5 uz2b&2 ^ uz3b&3 , (23)

i.e., the product of two independent coherent states. The
amplitudes are given by

z2b 5 ~z 1 b̄ 2 af1!k2 2 af2,

z3b 5 ~z 1 b̄ 2 af1!k3 2 af3,

where the quantities k j , j 5 2, 3, are given by Eq. (14).
The unitary transformation on a2 and a3 that completes
the telecloning is now given by

Ub 5 D2
†~ b̄ 2 k2af1 2 af2! ^ D3

†~ b̄ 2 k3af1 2 af3!.
(24)

In fact, the output conditional state coincides with that of
Eq. (15), so that the partial traces are identical to those
given in Eq. (16). For N2 5 N3 5 N, we obtain symmet-
ric clones with the same fidelity as in Section 3. More-
over conditions (17) and (18) still hold. Notice that also
the protocol for asymmetric cloning can be straightfor-
wardly extended to the present seeded scheme.

5. CONDITIONAL GENERATION OF
TWO-MODE ENTANGLEMENT
Another application of the three-mode entangled state of
Eq. (5) is the conditional generation of a two-mode en-
tangled state of radiation by on–off photodetection on one
of the modes of state uT0&. Indeed, it is possible to pro-
duce a robust two-mode entangled state that approaches
a TWB for unit quantum efficiency h of the photodetector.
In the following we evaluate some properties of the con-
ditional state when h Þ 1 to quantify its closeness to an
ideal TWB. Notice that, owing to the well-known prop-
erties of the TWB, this scheme also provides a valid check
of the whole apparatus from an experimental viewpoint.
Let us consider the situation in which a mode of the state
uT0&, say, the third mode, is revealed by an on–off photo-
detector. The POVM is two-valued $P0 , P1%, P0
1 P1 5 I, with the element associated with the no-
photons result given by

P0 5 I1 ^ I2 ^ (
n

~1 2 h!nun&33^nu. (25)

The probability of the outcome is given by

P0 5 Tr123@ uT0&^T0uP0#

5
1

1 1 N1
(
m,n

S N2

1 1 N1
D nFN3~1 2 h!

1 1 N1
Gm ~n 1 m !!

n!m!

5 ~1 1 hN3!21 , (26)
while the conditional output state %0 5 (1/P0)Tr3@ uT0&
3 ^T0uP0# reads as follows:

%0 5
1 1 hN3

1 1 N1
(

m,n,n8
S N2

1 1 N1
D ~n1n8!/2

3 FN3~1 2 h!

1 1 N1
Gm 1

m! F ~n 1 m !!~n8 1 m !!

n!n8!
G1/2

3 un 1 m, n&^n8 1 m, n8u. (27)

Remember that N1 5 N2 1 N3 . If h 5 1, this state re-
duces to the following TWB:

u c0& 5 S 1 1 N3

1 1 N1
D 1/2

(
n

S N2

1 1 N1
D n/2

un, n&. (28)

When the efficiency of the detector is not unitary, a ques-
tion arises on how to quantify the closeness of %0 to the
ideal state u c0&. From an operational point of view, we
can evaluate the photon-number correlation between the
first and second modes, which is defined as

z12 5
^~n1 2 n2!2& 2 ~^n1& 2 ^n2&!2

^n1& 1 ^n2&
(29)

and is zero in case of the TWB. After straightforward
calculations, we arrive at

z12 5
N3~1 2 h!~1 1 N3!

~1 1 hN3!@2N2 1 N3~1 2 h!#
, (30)

which, for any given value of the quantum efficiency h, is
a decreasing function of N2 and an increasing function of
N3 . A global quantity to characterize the state in Eq.
(27) is the fidelity with a reference TWB state. The natu-
ral choice for the reference is the TWB u c0&, according to
the following argument. At first, when we calculate the
fidelity between the state in Eq. (27) and a generic TWB
of parameter j, i.e., uj& 5 (1 2 j2)1/2Snjnun, n&, we have

F~h, j! 5 ^ju%0uj&

5 ~1 2 j2!
1 1 hN3

1 1 N1

3 (
m,n,n8, p,q

jp1qS N2

1 1 N1
D ~n1n8!/2

3 FN3~1 2 h!

1 1 N1
Gm 1

m! F ~n 1 m !!~n8 1 m !!

n!n8!
G1/2

3 dn
pdn8

qd0
m

5
1 1 hN3

1 1 N1

1 2 j2

$1 2 j@N2 /~1 1 N1!#1/2%2
. (31)

Then we look for the parameter j that maximizes the fi-
delity. Expression (31) shows that the value of j maxi-
mizing the fidelity is, independently of h, j 5 @N2 /(1
1 N1)#1/2. By substituting into Eq. (31), we arrive at

F~h! 5
1 1 hN3

1 1 N3
. (32)
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Therefore the maximum fidelity is obtained for h 5 1,
and the correct reference state is the TWB u c0&. In con-
clusion, the state generated through conditional on–off
photodetection on the third mode of uT0& is a robust two-
mode entangled state with a fidelity to a TWB given by
Eq. (32). Notice that h , F(h) , 1 for any choice of N3 .
The same analysis is valid for a conditional measurement
performed on mode a2 , in which case we obtain an en-
tangled state of modes a1 and a3 [in this case the role of
N2 and N3 should be exchanged in Eqs. (30)–(32)]. On
the other hand, we notice that a conditional photodetec-
tion on mode a1 does not lead to an entangled state of
modes a2 and a3 .

6. OPTICAL SCHEME
An experimental implementation of the scheme proposed
in this paper can be obtained by use of a single nonlinear
crystal in which the two interactions described by Hamil-
tonian (1) take place simultaneously. The interactions
correspond to two phase-matched second-order nonlinear
processes in which five fields interact and two of them do
not evolve (parametric approximation). Among the five
fields aj involved in the interactions, a4 and a5 will be the
nonevolving pump fields.

The energy-matching and phase-matching conditions
required by the interactions can be written as v4 5 v1
1 v3 , v2 5 v3 1 v5 , k4 5 k1 1 k3 , and k2 5 k3
1 k5 , where kj is the wave vectors (in the medium) cor-
responding to v j , which make angles q j with the normal
to the entrance face of the crystal. It is possible to satisfy
these phase-matching conditions with a number of differ-
ent choices of frequency and interaction angle depending
on the choice of the nonlinear medium. Here we propose
an experimental setup based on a b-BaB2O4 crystal
(BBO, cut angle of 32 deg, cross section of 10 mm
3 10 mm, and 4-mm thickness, Fujian Castech Crystals,
Inc., Fuzhou, China) as the nonlinear medium and the
harmonics of a Q-switched, amplified Nd:YAG laser (7-ns
pulse duration, Quanta-Ray GCR-3-10, Spectra-Physics,
Inc., Mountain View, California) as the interacting fields.
We choose a compact interaction geometry in which two
type-I noncollinear interactions with the two pump beams
superimposed in a single beam with mixed polarization
take place (see Fig. 3). With reference to Fig. 3, the

Fig. 3. Interaction scheme. The pump beams a4 and a5 are as-
sumed to impinge on the crystal face along the normal. The val-
ues of the crystal cut angle q8 and of the interaction angles q1 ,
q2 , and q3 are calculated to satisfy the phase-matching condi-
tions. The wavelengths of the interacting modes are l(v1)
5 l(v3) 5 1064 nm, l(v4) 5 l(v5) 5 532 nm, and l(v2)
5 355 nm.
wavelengths of the interacting modes are l(v1) 5 l(v3)
5 1064 nm, l(v4) 5 l(v5) 5 532 nm, and l(v2)
5 355 nm. The interaction angles, calculated by assum-
ing that the two pump beams propagate along the normal
to the crystal entrance face, are q8 5 37.74 deg, q1
5 2q3 5 10.6 deg, and q2 5 3.5 deg, and, since the
crystal we used was cut at 32 deg, it had to be rotated to
allow phase matching. To demonstrate the feasibility of
the scheme in Fig. 3, we adopted the experimental setup
depicted in Fig. 4. The fundamental and second-
harmonic outputs of the Nd:YAG laser were sent to a har-
monic separator, and then each beam was collimated to a
diameter suitable to illuminate the BBO crystal. The po-
larization of the second-harmonic beam emerging from
the laser is elliptic, and the two polarization components
were separated through a thin-film plate polarizer (P1 in
Fig. 4). On the ordinarily polarized component, a l/2
plate was inserted to modulate the intensity of beam a5 ,
without affecting the intensity of the other pump, a4 .
The two beams were then recombined through a second
thin-film plate polarizer (P2) and sent to the BBO. As a
first verification of the effectiveness of the interaction de-
scribed by the Hamiltonian (1), we implemented the
seeded configuration discussed in Section 4 by injecting
the BBO with a portion of the fundamental laser output
(see Fig. 4) to realize the initial condition for field a1 .

As a first quantitative check, we measured the energy,
E2 , of the beam generated at v2 as a function of the en-
ergy, E5 , of the ordinarily polarized pump beam for fixed
values of the energies of the extraordinarily polarized
pump beam, E4 , and of the seed beam, E1 . We prelimi-
narily measured E1 by using a pyroelectric detector
(ED200, Gentec Electro-Optics, Inc., Quebec, Quebec,
Canada), which also allows checking the stability of the
source. By averaging over more than 100 pulses, we
found a value of approximately 48 mJ per pulse, only 50%
of which is ordinarily polarized and thus suitable for the
interaction. To measure energy E4 , we inserted another
pyroelectric detector (ED500, Gentec) after P2 . By aver-

Fig. 4. Experimental setup. The fundamental and second-
harmonic outputs of the Nd:YAG laser are sent to a harmonic
separator, and then each beam is collimated to a diameter suit-
able to illuminate the BBO crystal. The polarization of the
second-harmonic beam emerging from the laser is elliptic, and
the two polarization components are separated by a thin-film
plate polarizer (P1). On the ordinarily polarized component, a
l/2 plate is inserted to modulate the intensity of beam a5 , with-
out affecting the intensity of the other pump, a4 . The two
beams then recombine at a second thin-film plate polarizer (P2)
and are sent to the BBO. D5 and D2 are pyroelectric detectors.
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aging again over more than 100 pulses, we found a value
of approximately 158 mJ per pulse. To obtain a reliable
measurement of E5 , we inserted, on the path of beam a5 ,
a cube beam splitter and a calibrated glass plate to ex-
tract a fraction of the beam. We varied energy E5 by ro-
tating the l/2 plate, and its measurement was performed
with the same detector ED500 as before (see D5 in Fig. 4).
To measure the energy E2 of the output pulses, we used
another pyroelectic detector (PE10, Ophir Optronics Ltd.,
Jerusalem, Israel; see D2 in Fig. 4). The values of E5 and
E2 were measured simultaneously as averages over the
same 20 laser shots at each rotation of the l/2 plate. In
Fig. 5 we show the measured values of E2 (open circles),
as a function of the measured values of E5 . We can com-
pare the experimental results with the field evolution cal-
culated according to the classical equations25:

E2 5
v2

v1

c1E4c2E5

~c2E5 2 c1E4!2

3 $cos@~c2E5 2 c1E4!1/2z# 2 1%2E1 , (33)

where c1 5 8.3 3 104 (J m2)21 and c2 5 2.6 3 105

(J m2)21 are the coupling constants that apply to the
present interactions. In Fig. 5 we show the values (filled
circles) of E2 as calculated according to Eq. (33) for the ex-
perimental values of E5 and for fixed values E1
5 24 mJ and E4 5 158 mJ. The agreement between
measured and calculated values is excellent.

7. CONCLUSIONS AND OUTLOOKS
We have suggested a scheme to generate fully inseparable
three-mode entangled states of radiation based on inter-
linked bilinear interactions taking place in a single x (2)

nonlinear crystal. We have shown how the resulting
three-mode entanglement can be used to realize symmet-
ric and antisymmetric telecloning machines that achieve

Fig. 5. Comparison of the experimental results with the field
evolution calculated according to Eq. (33). Open circles, mea-
sured values of the energy of field a2 as a function of the mea-
sured values of the energy of pump field a5 ; filled circles, values
of the energy of field a2 as calculated from the classical evolution
of the interacting fields as a function of the measured values of
the energy of pump field a5 .
optimal fidelity for coherent states. An experimental
implementation involving a BBO nonlinear crystal is sug-
gested, and the feasibility of the scheme is analyzed.
Preliminary experimental results are presented: As a
first quantitative check, we measured the energy of the
beam generated at v2 as a function of the energy of the
ordinarily polarized pump, for fixed values of the energies
of the extraordinarily polarized pump beam and of the
seed beam. The agreement between measured and cal-
culated values is excellent.

To realize the telecloning protocol described in Section
3, we need to generate three-mode entanglement from
vacuum. This should be possible by implementing the
same experimental setup as in Fig. 4 with a different la-
ser source able to deliver a higher intensity. In fact, we
plan to use a mode-locked amplified Nd:YLF laser (IC-
500, High Q Laser Production, Hohenems, Austria) with
which it is easy to achieve an intensity value of 50
GW/cm2 in a collimated beam. Since such a value was
enough to generate bright twin beams in a 4-mm-thick
BBO crystal, it should allow us to obtain the three-mode
entangled state described in this paper, not only by seed-
ing the crystal but also for an initial vacuum state.

APPENDIX A: HEISENBERG EVOLUTION
OF MODES
In this appendix we calculate the dynamics generated by
the Hamiltonian (1) in the Heisenberg picture. The
equations of motion are given by

ȧ1
† 5 iḡ1a3 ,

ȧ2 5 2ig2a3 ,

ȧ3 5 2ig1a1
† 2 iḡ2a2 . (A1)

This system of differential equations can be Laplace
transformed in the following algebraic system:

a1
†~0 ! 1 mã1

†~m! 5 iḡ1ã3~m!,

a2~0 ! 1 mã2~m! 5 2ig2ã3~m!,

a3~0 ! 1 mã3~m! 5 2ig1ã1
†~m! 2 iḡ2ã2~m!, (A2)

where we have defined the Laplace transform of aj(t):

ã j~m! [ E
0

`

dt exp~2mt !aj~t !. (A3)

The determinant of system (A2) is

D 5 m~m 1 G!~m 2 G!, (A4)

where G [ (ug1u2 2 ug2u2)1/2; therefore its solution reads

ã1
†~m! 5

1

D
@~ ug2u2 1 m2!a1

†~0 ! 1 ḡ1ḡ2a2~0 !

1 iḡ1ma3~0 !#,

ã2~m! 5
1

D
@2g1g2a1

†~0 ! 1 ~m2 2 ug1u2!a2~0 !

2 ig2ma3~0 !#,
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ã3~m! 5
1

D
@2ig1ma1

†~0 ! 2 imḡ2a2~0 !

1 m2a3~0 !#. (A5)

The solution of system (A1) follows from antitransforming
Eqs. (A5). We have

a1
†~t ! 5 f1a1

†~0 ! 1 f2a2~0 ! 1 f3a3~0 !, (A6)

a2~t ! 5 g1a1
†~0 ! 1 g2a2~0 ! 1 g3a3~0 !,

(A7)

a3~t ! 5 h1a1
†~0 ! 1 h2a2~0 ! 1 h3a3~0 !,

(A8)

where the coefficients are given by

f1~t ! 5
1

V2
~ ug1u2 cos Vt 2 ug2u2!, (A9)

f2~t ! 5
ḡ1ḡ2

V2
~cos Vt 2 1 !, (A10)

f3~t ! 5 i
ḡ1

V
sin~Vt !, (A11)

g1~t ! 5
g1g2

V2
~1 2 cos Vt !, (A12)

g2~t ! 5
1

V2
~ ug1u2 2 ug2u2 cos Vt !, (A13)

g3~t ! 5 2i
g2

V
sin~Vt !, (A14)

h1~t ! 5 2i
g1

V
sin~Vt !, (A15)

h2~t ! 5 2i
g2

V
sin~Vt !, (A16)

h3~t ! 5 cos~Vt !, (A17)

and V [ iG 5 (ug2u2 2 ug1u2)1/2.

APPENDIX B: SCHRODINGER EVOLUTION
IN A SEEDED CRYSTAL
In this appendix we derive the explicit expression of the
evolved state from ua, 0, 0&. We can write the Hamil-
tonian (1) as follows:

H int 5 g1K† 1 g2J 1 H.c., (B1)

with the definitions K [ a1a3 and J [ a2a3
†. To calcu-

late the evolved state, we can proceed by factorizing the
temporal evolution operator of the system; to this pur-
pose, we introduce the following operators:

J1 [ a1a1
† 1 a3

†a3 , J2 [ a3
†a3 2 a2

†a2 ,

M [ a1a2 ,
which form with K and J a closed algebra. Actually, the
temporal evolution operator can be written in the follow-
ing way:

Û~t ! 5 exp~b1K†!exp~b2M†!exp~b3J†!exp~b4J1!

3 exp~b5J2!exp~b6J !exp~b7K !exp~b8M !,

(B2)

which allows us to calculate the evolution of a generic ini-
tial state as a function of b i . In the case under investi-
gation we obtain

Û~t !ua, 0, 0& 5 Û~t !expS 2
uau2

2 D(
n

an

An!
un, 0, 0&

5 expS 2
uau2

2 D exp~b1K†!exp~b2M†!

3 exp~b3J†!exp~b4J1!(
n

an

An!
un, 0, 0&

5 expS 2
uau2

2 D exp~b1K†!exp~b2M†!

3 exp~b3J†!exp~b4!

3 (
n

@a exp~b4!#n

An!
un, 0, 0&

5 expS 2
uau2

2 D exp~b4!exp~b1K†!

3 (
n, p

@a exp~b4!#n

An!

b2
p

Ap!

@~n 1 p !!#1/2

An!

3 un 1 p, p, 0&

5 expS 2
uau2

2 D exp~b4! (
n, p,q

b1
qb2

p

3 @a exp~b4!#n
@~n 1 p 1 q !!#1/2

n!Ap!q!

3 un 1 p 1 q, p, q&. (B3)

It can be demonstrated28 that

exp~b4! 5
1

~1 1 N1!1/2
, b1 5 S N3

1 1 N1
D 1/2

,

b2 5 S N2

1 1 N1
D 1/2

.

Moreover, for the population with initial vacuum Nj
5 ^T0uaj

†ajuT0& and initial seed Nja 5 ^Tauaj
†ajuTa&, we

have the relations
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N1 5
N1a 2 uau2

1 1 uau2
, N2 5

N2a

1 1 uau2
,

N3 5
N3a

1 1 uau2
.
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