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The knowledge of the density matrix of a quantum state plays a fundamental role in several fields ranging from
quantum information processing to experiments on foundations of quantum mechanics and quantum optics.
Recently, a method has been suggested and implemented in order to obtain the reconstruction of the diagonal
elements of the density matrix exploiting the information achievable with realistic on/off detectors, e.g. silicon
avalanche photo-diodes, only able to discriminate the presence or the absence of light. The purpose of this
paper is to provide an overview of the theoretical and experimental developments of the on/off method, including
its extension to the reconstruction of the whole density matrix.
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1. INTRODUCTION
The knowledge of the density matrix of a quantum state is
fundamental for several applications, ranging from quantum
information1 to the foundations of quantum mechanics2 and
quantum optics.3–10 In turn, many efforts have been devoted to
find reliable methods to fully or partially reconstruct the density
matrix especially. This is especially true for the density matrix
in the photon number basis, and in this case the reconstruc-
tion of the diagonal elements, i.e., the photon statistics, is of
great relevance for the characterization and use of the state in
quantum communication and information processing. In fact, the
field of photodetection has received much attention in the last
decades. However, the choice of a detector with internal gain
suitable for the measurement is still a non trivial task when
the flux of the photons to be counted is such that more than

∗Author to whom correspondence should be addressed.

one photon is detected in the time-window of the measurement,
which in turn is set by the detector pulse-response, or by an
electronic gate on the detector output, or by the duration of the
light pulse. In this case, we need a congruous linearity in the
internal current amplification process: each of the single elec-
trons produced by the different photons in the primary step of
the detection process (either ionization or promotion to a con-
duction band) must experience the same average gain and this
gain must have sufficiently low spread. The fulfillment of both
requisites is necessary for the charge integral of the output cur-
rent pulse to be proportional to the number of detected photons.
Photon detectors that can operate as photon counters are rather
rare.11!12 Among these, Photo-Multiplier Tubes (PMT’s)13!14 and
hybrid photo-detectors15!16 have the drawback of a low quan-
tum efficiency, since the detection starts with the emission of an
electron from the photo-cathode. Solid state detectors with inter-
nal gain, in which the nature of the primary detection process
ensures higher efficiency, are still under development. Highly
efficient thermal photon counters have also been used, though
their operating conditions are still extreme (cryogenic condi-
tions) to allow common use.17–19 Better results can in principle
be obtained using photon chopping in conjuction with single-
photon detectors, whereas the experimental implementation of
loop-detectors has shown interesting performances. The advent of
quantum tomography provided an alternative method to measure
photon number distributions.20!21 However, the tomography of a
state, which has been applied to several quantum states,9!22–25
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needs the implementation of homodyne detection, which in turn
requires the appropriate mode matching of the signal with a suit-
able local oscillator at a beam splitter. Such mode matching is a
particularly challenging task in the case of pulsed optical fields.

Photodetectors that are usually employed in quantum optics
such as Single Photon Avalanche Detectors (SPADs) operating
in the Geiger mode18!26–28 appear, at a first sight, to be defi-
nitely useless as photon counters. They are the solid state photo-
detectors with the highest quantum efficiency and the greatest
stability of the internal gain. However, they have the obvi-
ous drawback that the breakdown current is independent of the

number of detected photons, which in turn cannot be deter-
mined. The outcome of these SPADs is either “off” (no photons
detected) or “on” i.e., a click indicating the detection of one or
more photons. Actually, such an outcome can be provided by
any photodetector (PMT, hybrid photodetector, cryogenic ther-
mal detector) for which the charge contained in dark pulses is
below that of the output current pulses corresponding to the
detection of at least one photon. Notice that for most high-gain
PMTs the anodic pulses corresponding to no photons detected
can be easily discriminated by a threshold from those correspond-
ing to the detection of one or more photons. Despite the above
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considerations, a certain effort has been devoted to the recon-
struction of the photon distribution from realistic detectors,33–37

and an effective method to reconstruct the photon distribu-
tion starting from on/off photodetection has been suggested,29–31

developed,32 and implemented in the last five years.38!39!41–44

Convincing results have been obtained for the reconstruction of
the photon distribution of both single- and bi-partite quantum
optical states, thus showing that an appropriate data processing
may turn SPAD into a powerful tool for quantum state recon-
struction. The technique has been later extended to the recon-
struction of the entire density matrix, including the off-diagonal
elements.52

The purpose of this paper is to review the theoretical basis of
the on/off method, and of its experimental implementations, as
well as its application to the reconstruction of the density matrix
in different optical regimes. The paper is structured as follows.
In Section 2 we give an overview on the method focusing on the
reconstruction of the photon distribution for single-mode states.
Section 3 describes the extension of the method to the bipar-
tite case and report experimental implementation and results. In
Section 4 we describe how the method can be extended to achieve
the reconstruction of the whole density matrix and report some
recent experimental results about the reconstruction of the quan-
tum state of light from coherent and pseudo-thermal sources.
Finally, Section 5 closes the paper with some concluding remarks
and summarizing future perspectives.

2. ON/OFF RECONSTRUCTION OF THE
PHOTON DISTRIBUTION

Let us consider a single-mode quantum optical state. All the
accessible information on the state can be obtained using the
Born trace rule on its density matrix ", which, in the photon
number basis, reads as follows

"=
"∑

n!m=0

"nm # n$%m # (1)

In particular, the information about the photon distribution of the
state is given by the diagonal elements "n ≡ "nn of the desnsity
matrix.

In this Section we are going to show how reconstruction of
the "n’s for a general quantum optical state is possible upon
exploiting the set of binary data obtained by a two-level, on/off,
detector. We assume that our state is revealed by a detector like
silicon SPADs or a photomultiplier operating in Geiger mode,
i.e., a detector discriminating only between the absence of the
presence of the light with a quantum efficiency 0≤ # ≤ 1. If we
label by 0 (off) and 1 (on) the two possible outcomes, the overall
measurement process for this kind of detector may be described
by a two-value positive operator-valued measure (POVM) of the
form

$0%#&=
"∑

n=0

%1−#&n # n$%n #! $1%#&= I−$0%#& (2)

The off probability, p0 = Tr'"$0%#&(, is thus given by:

p0%#&=
"∑

n=0

%1−#&n"n =
"∑

n=0

An%#&"n (3)

and the detection probability by p1%#& = 1−p0%#&. We assume
to have the possibility of varying the quantum efficiency # of our
detector and to perform K on/off measurements, each one with
a different #. The set of experimental data will thus be a sample
from the overall distribution

P0 ≡
{
p)* p) =

"∑

n=0

A)n"n )= 1! + + + !K
}

(4)

where we have defined A)n ≡ An%#)&. According to the nor-
malization condition of quantum states we may always assume
"n ) 0, ∀n > N for some N . Equation (4) may be thus rewritten
as a linear system:

P0 =! ·" "≡ ,"1! + + + ! "N - (5)

where the matrix of coefficients ! is a nonsingular Vandermonde
matrix of order N +1, whose coefficients are the geometric pro-
gression %1−#)&

n.
The simplest way to extract the photon distribution from the

above relation is of course via matrix inversion. On the other
hand, the form of the matrix ! is such that numerical inversion
with P0 substituted by the experimental frequencies F0 is highly
inefficient, i.e., it would require a huge number of experimental
runs to avoid large numerical fluctuations. The need of a faster
and statistically more reliable solution thus arises. A closer look
to Eq. (5) reveals that it represents a linear positive (LINPOS)
statistical model for the unknowns "n coefficients, which may
be effectively solved by means of a maximum likelihood (ML)
approach, i.e., upon finding the "n’s there are most likely to pro-
duce the observed data. If n) is the total number of experimental
runs performed with quantum efficiency #) and n0) the regis-
tered number of off events, then the overall probability, i.e., the
likelihood, of the observed sample is given by "=p0%#)&

n0)%1−
p0%#)&&

n)−n0) . Upon, using the expectation maximization (EM)
algorithm45 to maximize the likelihood functional (actually the
log-likelihood L = log"), and imposing the normalization con-
straint

∑
n "n = 1, we arrive at the iterative formula

"%i+1&
n = "%i&

n

K∑

)=1

[
A)n∑K
.=1A.n

f)

p)',"
%i&
n -(

]
(6)

where ,"%i&
n - is the distribution as reconstructed at the i-th

step of the iterative algorithm, f) = n0)/n) is the experimen-
tal frequency of the off event with quantum efficiency #), and
p)',"

%i&
n -( is the probability of the off event with quantum effi-

ciency #), as evaluated using the distribution ,"%i&
n - at the i-th

step.31

The formula in Eq. (6) allows one to reconstruct the pho-
ton distribution in terms of experimental off frequencies f) and,
of course, of the values of the quantum efficiencies #) them-
selves. Being an iterative algorithm, the need of a measure
of convergence arises. This may be obtained either checking
whether it effectively leads to a maximum for the likelihood func-
tional or, alternatively, upon introducing an error parameter /%i&,
defined as the distance between the experimental off frequencies
and the corresponding probability reconstructed at the i-th step,

/%i& = K−1
K∑

)=1

# f)−p)%,"
%i&
n -& # (7)
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In fact, the error /%i& effectively measures how well the recon-
structed distribution reproduces the observed data. In turn, we
found excellent results upon stopping the iteration number when
the value of /%i& goes below a certain threshold quantifying the
overall precision of the reconstruction.

In order to assess the accuracy of the method, we consider
a measure of fidelity for the reconstructed photon distribution
in comparison to the theoretical one or expected one "

%th&
n , as

follows

G%i& =
N∑

n=0

√
"%th&
n "%i&

n (8)

Several simulated experiments have shown the reliability of the
method, which is also robust against fluctuations in the values
of the quantum efficiencies #). This is a crucial feature for the
experimental implementation of the method, where the values #)

are unavoidably determined within some confidence interval, and
may fluctuate during the experimental runs.

Since the maximum likelihood method provides an asymptoti-
cally unbiased estimator, the confidence interval on the determi-
nation of the element "%i&

n can be estimated, for large number of
measurements, in terms of the variance:

02
n = %KFn&

−1 (9)

being Fn the Fisher information:

Fn =
K∑

)=1

1
l)

(
1l)
1"n

∣∣∣∣
"n="

%i&
n

)2

(10)

where

l) =
∑N

n=0A)n"n∑K
)=1

∑N
n=0A)n"n

As a first example of experimental reconstruction, we consider a
weak coherent state generated by a cw He–Ne laser emission and
detected by a SPAD. The maximum quantum efficiency is given
by the nominal efficiency of the detector, i.e., #= 0+66, whereas
the lower values of # needed by the algorithm are obtained by
inserting neutral filters on the optical path of the signal beam. In
the upper panel of Figure 1 we show the reconstructed photon
number distribution, compared to a Poissonian distribution with
the same mean value. In turn, a best fit procedure shows that the
reconstructed photon number distribution is compatible with the
one expected for a coherent state with a mean number of pho-
tons equal to %n$ = 5+39. We also show the convergence of the
algorithm: the inset in the upper panel shows the log-likelihood
L as a function of the number of steps of the iterative formula
whereas in the lower panel we report the error parameter /%i& and
the fidelity G%i& as a function of the number of steps. At con-
vergence we have fidelity G ! 0+995 between the reconstructed
distribution and the expected Poissonian.

As a second example, we consider an experiment where
single-photon states are generated by means of a PDC heralding
technique.38!39 In this scheme, a pair of correlated photons of dif-
ferent polarization are produced by pumping a type-II 2-barium-
borate (BBO) crystal with a CW argon ion laser beam (351 nm)
in collinear geometry. After having split the photons of the pair
by means of a polarizing beam splitter, the detection of one of
the two by a silicon avalanche photodiode detector (SPCM-AQR-
15, Perkin Elmer) is used to herald the presence of the second
photon in the other channel, that is a window of 4.9 ns is opened
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Fig. 1. On/off reconstruction of single-mode states. The upper panel shows
the reconstruction of the photon distribution for a weak coherent state (blue)
compared to a Poissonian distribution (red) with the same mean value. The
data corresponds to a coherent state with a mean number of photons %n$=
5!39. The inset shows the behaviour of the log-likelihood L as a function of
the number of steps of the iterative algorithm. In the lower panel we show
the behaviour of the error parameter "#i$ and of the fidelity G#i$ as a function
of the number of steps of the iterative algorithm.

for detection in the second arm, in correspondence to the detec-
tion of a photon in arm 1. This heralded photon is then measured
by another SPAD (SPCM-AQR-15, Perkin Elmer) preceded by
an iris and an interference filter (IF) centered at 702 nm (4 nm
of FWHM) inserted with the purpose of reducing the noise due
to the stray light. The overall quantum efficiency of the detec-
tion apparatus is # = 20% (estimated by Klyshko method),40!49

whereas lower quantum efficiencies are obtained by inserting cal-
ibrated neutral filters (NF) on the optical path of the heralded
photon.

The reconstructed photon distribution is in excellent agreement
with the expected one: together with a dominant single photon
component, a vacuum, "0 = 0+027±0+002, and double pair "2 =
0+019±0+002 components have been obtained. Those are quanti-
tatively in agreement with the expectations, due to a small rate of
dark counts in the heralding detector, which trigger the measure-
ment in absence of the heralded photon, and to the presence of
a small multiphoton component in the PDC output. Finally, we
mention a recent experiment, where the method was applied to
the reconstruction of the photon distribution of one arm of stim-
ulated PDC, i.e., PDC with a coherent seed in the signal mode.46

In this case, a generalized version of the reconstruction algorithm
has been developed, which allows us to include constraints on
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specific moments, and it has been shown that it provides very
good reconstruction in critical cases.

3. EXTENSION TO THE BIPARTITE CASE
Multimode states often occur in quantum optical implementations
of quantum information processing, either because of the intrisic
properties of the involved interactions, or for the need of the
specific application. In turn, in this Section, our aim is to present
the extension of our method to the multimode case. In particular,
we focus attention to the bipartite case and present the results of
a set of experiments, performed to reconstruct the joint photon
distribution of the two modes exiting a beam splitter.42 In order
to generalize the formulas of the previous Section we assume
to deal with a pair of modes that are detected by two on/off
detectors. There are four possible outcomes, which occur with
the following probabilities






p00%#&=
∑

n!k An%#&Ak%#&3nk

p01%#&=
∑

n!k An%#&'1−Ak%#&(3nk

p10%#&=
∑

n!k'1−An%#&(Ak%#&3nk

p11%#&= 1−p00%#&−p10%#&−p01%#&

(11)

where:
3nk = %nk # 3 # nk$ # nk$=# n$⊗ # k$ (12)

is the joint photon distribution of the bipartite state, i.e., the
diagonal elements of the four-index two-mode density matrix,
and # is the quantum efficiency of the photodetectors, which
we assume to be identical. The above equations provide a rela-
tion between the statistics of the clicks of the two detectors and
the actual statistics of photons. Upon assuming, because of the
normalization, that the element 3nk ) 0 are negligible beyond
some threshold ∀ n! k ≥ N , we may work in a (bipartite) trun-
cated %N +1&× %N +1& Hilbert space. Again, if we can properly
change the quantum efficiency of our system in such a way that
K different measurements can be performed (with K different
values #), )= 1! + + + !K, ranging from #1 = #min to a maximum
value #K = #max), the whole amount of on/off detection statistics
collected may give enough information to reconstruct the joint
photon distribution of the bipartite state.

In more details, by re-ordering the diagonal matrix elements
according to the rule

3nk → qp p = 1+k+n %1+N &

we may define the vectors

g = %p #1
00 ! + + + !p #K

00 !p #1
01 ! + + + !p #K

01 !p #1
10 ! + + + !p #K

10 & (13)

q= %300!301!310! + + +& (14)

and thus summarize the on/off statistics with the compact
formula:

g) =
%N+1&2∑

p=1

B)pqp )= 0! + + + !3K

that is
g = # ·q (15)

where we have introduced the matrix # with entries:

'#()p =






A)nA)k )= 1! + + + !K

A)n%1−A)k& )= K+1! + + + !2K

%1−A)n&A)k )= 2K+1! + + + !3K

(16)

where, inverting the transformation rule introduced above, we
have k = %p−1&mod%1+N & and n= %p−1−k&/%1+N &.

Equation (15) represents a finite statistical linear model for the
positive unknown qp. As for the single-mode case we may solve
the model using a ML approach and, in particular, we may use
EM algorithm to obtain an iterative solution of the maximization
problem

q%i+1&
p = q%i&

p

3K∑

)=1

[
B)p∑
. B.p

h)

g)',q
%i&
p -(

]
(17)

where q
%i&
p denotes the p-th element of the reconstructed joint

distribution, g)',q
%i&
p -( are the detection probability reconstructed

at the i-the step and h) are the experimental frequencies of the
off events, i.e.,

h) =






f00 = n00)/n) )= 1! + + + !K

f01 = n01)/n) )= K+1! + + + !2K

f10 = n10)/n) )= 2K+1! + + + !3K

(18)

being n01)!n10)!n00) the number of single and double off events
observed on the whole amount n) of experimental runs per-
formed with # = #).

In order to evaluate the confidence interval on the determina-
tion of the element q%i&

n we still use Eq. (9), but now the Fisher
information Fp is rewritten as

Fp =
3K∑

)=1

1
d)

(
1d)

1qp

∣∣∣∣
qp=q

%i&
p

)2

(19)

with

d) =
∑%N+1&2

p=1 B)pqp
∑3K

)=1
∑%N+1&2

p=1 B)pqp

The analogous of the total error /%i& of Eq. (7) is given by /%i& =
%3K&−1∑3K

)=1#h) − g)',q
%i&
p -( #, which measures the distance of

the reconstructed off probabilities from the measured frequen-
cies. Also for the two-mode case, the algorithm may be stopped
when /%i& achieves a minimum or goes below a certain thresh-
old value. Finally, the fidelity (Eq. (8)) for the reconstructed
joint photon number distribution may be generalized as G%i& =
∑%N+1&2

p=1

√
q%th&
p q%i&

p giving us the chance to compare the obtained
q
%i&
p with the expected ones (q%th&

p ).
Let us now report the experimental results obtained by apply-

ing the reconstruction method presented above to two differ-
ent bipartite states. The first is the state obtained with a single
photon state passing through a beam splitter (BS), whereas the
second corresponds to the splitting of a PDC single branch. In
both cases, which corresponds to very different optical regimes,
the algorithm provides good reconstruction of the joint photon
distribution.42!43

In our first experimental setup, see Figure 2,42 a 0.2 W, 398 nm
pulsed (with 200 fs pulses and 76 MHz repetition rate) laser
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Fig. 2. On/off reconstruction of two-mode states. Schematic diagram of the
experimental setup realizing the type-II PDC heralded photon source used to
generate a two-mode superposition of a single-photon state with the vacuum.
The idler photon is addressed to an IF (RG) filter, collected and sent to
SPAD1, opening a coincidence window in the TAC modules; the signal goes
through the NF and the IF (RG) filters, and then is split by the BS, whose
outputs are collected and sent to SPAD2 and SPAD3 to close the coincidence
windows. The output of the two TACs is also sent to an AND logical gate
whose outputs gives the number of double coincidences.

pump have been generated by second harmonic of a Ti:Sapphire
laser at 796 nm and then injected into a (5×5×1) mm type-II
BBO crystal, leading to the generation of entangled photon pairs
by parametric downconversion. The detection of a photon on one
of two correlated branches of degenerate PDC emission is used
as trigger to herald the presence of the correlated photon in the
other direction.

The idler photon is addressed to an optical filter (a narrow
band interference filter or a red glass, as will be specified later),
collected by a lens and finally sent to a silicon SPAD (SPAD1).
The corresponding signal is properly filtered (with the same fil-
ter as the idler photon) and then sent into a beam splitter (BS),
separating in two the optical path of the photon and thus gen-
erating a bipartite state, that is the nonlocal superposition of a
single photon state and the vacuum in the two arms

# 4BS$=
√
5 # 0$ # 1$+

√
1− 5 # 1$ # 0$ (20)

where 5 is the BS transmittance. The BS is followed, on both out-
put arms, by a collection/detection apparatus, denoted by SPAD2
and SPAD3, of the same type as SPAD1 (all the detectors were
Perkin Elmer SPCM-AQR-15 silicon SPADs). The proper set of
quantum efficiencies are obtained by inserting, before the BS,
several neutral filters (NF) of different transmittance, calibrated
by measuring the ratio between the counting rates on D2 and D3
with the filter inserted and without it. In correspondence of the
detection of a photon in arm 1, a coincidence window is opened
on both detectors on arm 2: this may be obtained by sending
the output of D1 as Start to two Time-to-Amplitude Converters
(TAC) that received the detector signal of D2 and D3 as stop.
The 20 ns coincidence window has been set such to avoid spuri-
ous coincidences with PDC photons belonging to the following
pulse (we remind that the repetition rate of the laser is 76 MHz).
The TAC outputs are then addressed to the computer and to an
AND logical gate in order to reveal coincidences between them;
its output is also collected via computer, together with one TAC’s
valid start, giving us the total number of opened coincidence win-
dows. These four data sets allow evaluating the frequencies f00,

f01, f10, f11, needed for the reconstruction of the photon statistics.
The background is estimated and subtracted by measuring the
TACs and AND outputs out of the window triggered by SPAD1
detection. The maximum quantum efficiency is evaluated as the
ratio between the sum of coincidences in SPAD2 and SPAD3 and
the counting rate on SPAD1 without the insertion of any NF.48!49

In order to verify the method in different conditions we have
also considered four alternatives given by the combination of a
balanced (50%–50%) or unbalanced (40%–60%) BSs with two
optical filters sets, either large band red glass filters (RG) with
cut-off wavelength at 750 nm, or interference filters (IF) with
peak wavelength at 796 nm and a 10 nm FWHM. The first test
has been performed with the 50%–50% BS and the interference
filters, for which we have collected data for K = 33 different
quantum efficiencies (starting from an overall value # = 0+044).
Elaborating these data with our reconstruction algorithm within
a 3× 3 Hilbert space choice (N = 2) lead to the reconstructed
joint photon distribution shown in Figure 3: here we can appre-
ciate how the only relevant entries are 301 and 310 (single photon
transmitted or reflected by the beam splitter), in good agreement
with the inserted BS ratio.

There is also a small nonzero vacuum component 300 which
is due to a non perfect background evaluation and subtraction in
the experimental data and perhaps to some light absorption in
the system caused by the BS cube. An additional test has been
performed with the same BS but with different optical filters (red
glass (RG) filters with .cut−off = 750 nm) in order to explore a
different range of frequencies. The overall quantum efficiency
in this experiment is # = 0+088, and the acquisition has been
repeated with K = 33 decreasing values. Effective reconstruction
of the photon distribution has been obtained also in this case.
Then we replaced the 50%–50% BS cube with an unbalanced
60%–40% BS plate, maintaining the RG large band filters: with
this setup we have an overall quantum efficiency #= 0+0123, and
have performed K = 41 data collection. The difference between
the transmitted and reflected branch of the BS was evident and

Fig. 3. On/off reconstruction of two-mode states. The plot shows the recon-
structed %nk entries of the joint photon distribution of our # &BS$ for the setup
with 50%–50% BS and 10 nm FWHM IF.
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in agreement with the known beam splitter ratio, with the only
nonzero 3nk being 310 and 301. Finally, for the last test we have
replaced the RG filters with the previous IF ones and obtained
a similar result, i.e., excellent reconstruction of the joint photon
distribution.

As a second example we consider the two-mode state obtained
by inserting a single branch of type-I PDC emission without
triggering, which corresponds to a multi-thermal multi-photon
state,6 into a unbalanced beam splitter. In a setup similar to the
previous one,42 we have generated PDC light by means of a
(5× 5× 5) mm Type-I BBO crystal pumped by a Q-switched
(triplicated to 355 nm) Nd:Yag laser with 5 ns pulses, power up
to 200 mJ per pulse and 10 Hz repetition rate. Because of the
very high power of the pump beam, a state with a large num-
ber of photon is generated for each pulse. We have therefore
attenuated (by using 1 nm FWHM IF and neutral filters) the mul-
tithermal state before sending it to the BS and then detecting
both the outgoing beams. Again, different quantum efficiencies
are obtained by inserting (before the BS) Schott neutral filters,
whose calibration is obtained by measuring the power of a diode
laser before and after them, with the calibration laser injected in
the same point as the PDC in order to minimize the effect due to
eventual non homogeneous NF filters. The coincidence scheme is
realized sending two Q-switch triggered pulses to two TAC mod-
ules as start inputs, and the SPADs outputs as stop. Then, having
set properly the 20 ns coincidence window, we address the two
TAC outputs to the AND logic port, and the valid stops to the
counting modules (together with one TAC’s valid start and the
AND output). The background is estimated and subtracted in the
same way as in the previous experiment. The maximum quantum
efficiency in this experiment has been evaluated by multiplying
the SPADs nominal quantum efficiencies, the IF peak transmit-
tance and the fiber couplers effective efficiency, measured with
the diode laser leading to # = 0+25. The expected on/off joint
statistics for this optical state is:






p#
00 = 'M%M +#Nave&

−1(M

p#
01 = 'M%M +#5Nave&

−1(M −p#
00

p#
10 = ,M'M +#%1− 5&Nave(

−1-M −p#
00

(21)

where Nave is the average number of photons, M the number
of propagation modes and 5 the BS transmittance. The recon-
structed joint photon statistics (now upon a 17× 17 truncated
Hilbert space) have been compared with the expected two-mode
multithermal distribution

3nm = %n+m+M −1&!
n!m!%M −1&! · %1+Nave/M&−M

%1+M/Nave&m+n
(22)

and the calculated fidelity is larger than G ) 0+99 for i ≥ 2000.
Overall, this experiment confirms the reliability of our method,
even when it is dealing with a larger Hilbert space and more
intense beams, corresponding to quantum states with a larger
number of photons.

4. FULL STATE RECONSTRUCTION BY
ON/OFF PHOTODETECTION

The method described in the previous Sections may provide the
complete information on a quantum optical state when the den-
sity matrix of such a state is diagonal, i.e., all the off-diagonal

elements are equal to zero. Of course, in real systems, it often
occurs that also off-diagonal elements are relevant and a ques-
tion arises on whether the on/off method may be generalized to
obtain a more general procedure providing the reconstruction of
the whole density matrix. In turn, the answer is positive, and
basically require to supplement the on/off method with some
additional phase information. Before entering into the details of
our implementation let us consider a generic single-mode state,
mixed with a strong coherent state, from now on the local oscilla-
tor (LO), in an unbalanced beam-splitter, i.e., high transmittance
and low reflectance. In this case then the transmitted mode is
displaced,50 i.e., it is equivalent to the signal mode shifted by a
displacement operator D%6& = exp%6a† −6∗a&, where a (a†) is
the photon destruction (creation) operator associated to the sig-
nal mode and 6 =# 6 # ei7 is the local oscillator field amplitude
rescaled by the BS reflectance. If one measures the photon dis-
tribution of the transmitted beam, this corresponds to measuring
the displaced Fock-state probability distribution of the original
signal, i.e.,

pn%6&= %n!6 # " # n!6$ (23)

where # n!6$ ≡D%6& # n$ are the displaced Fock states and " is
the signal mode density operator. Note that pn is now a function
of the displacement 6 also.

The on/off state reconstruction method is, in turn, based on
the above equation.51 In fact, upon truncating the Hilbert space
at dimension n0 we can expand Eq. (23) as follows

pn%6&=
n0∑

k!m=0

%n!6 # k$%k # " #m$%m # n!6$ (24)

Expressing the displaced Fock states # n!6$ in the ordinary Fock
basis, one obtains:51

pn%6& = e−#6#2n!
n0∑

k!m=0

√
k!m!%k # " #m$

×
j̄∑

j=0

l̄∑

l=0

%−1&j+l # 6 #m+k+2%n−j−l& ei%m−k&7

j!%n− j&!%k− j&!l!%n− l&!%m− l&! (25)

where j̄ ≡ min,n!k- and l̄ ≡ min,n!m-. Now, we assume #6#
fixed, so that for any value of #6#, pn%6& can be regarded as
a function of 7 and expanded in a Fourier series, the general
component being:

p%s&
n %# 6 #& = 1

28

∫ 28

0
pn%6&e

is7d7

=
n0−s∑

m=0

G%s&
n!m%# 6 #&%m+ s # " #m$ (26)

with:

G%s&
n!m%# 6 #& = e−#6#2n!

√
m!%m+ s&!

×
j̃∑

j=0

l̄∑

l=0

%−1&j+l # 6 #2%m+n−j−l&+s

j!%n− j&!%m+ s− j&!l!%n− l&!%m− l&!
(27)

where j̃ ≡ min,n!m+ s-. We notice that p%s&
n %# 6 #& is related to

the density matrix element whose row and column indices differ
by s. If the photon number distribution pn%6& is measured for

8



Delivered by Ingenta to:
UniversitÃ½ degli studi di Milano

IP : 159.149.45.88
Thu, 02 Dec 2010 14:21:10

R E V I EWAdv. Sci. Lett. 4, 1–11, 2011

n= 0!1! + + + !N , with N ≥ n0, then Eq. (26) represents, for each
fixed value of s, a system of %N + 1& linear equations connect-
ing the %N +1& measured quantities p%s&

n to %n0+1−s& unknown
density matrix elements. This system is clearly overdetermined,
so it can be inverted using the least squares method in order to
obtain the density matrix elements from the measured probabili-
ties. The reconstructed off-diagonal density matrix elements can
thus be obtained as:

%m+ s # "rec #m$=
N∑

n=0

F %s&
n!m%# 6 #&p%s&

n %# 6 #& (28)

where

F %s&
n!m%# 6 #&= ,'G%s&

n!m%# 6 #&(T G%s&
n!m%# 6 #&-−1'G%s&

n!m%# 6 #&(T (29)

is the generalized Moore-Penrose inverse of G. The F matrix
satisfies the condition:

N∑

n=0

F %s&
m′!n%# 6 #&G%s&

n!m%# 6 #&= 9m!m′ (30)

for m!m′ = 0!1! + + + !n0 − s, so that from the exact probabilities
the correct density matrix elements are found ("rec ≡ "). Further-
more, the least squares method ensures that the ∗p%s&

n calculated
from "rec according to Eq. (26) best fit the measured quantities
such that

∑N
n=0%

∗p%s&
n −p

%s&
n &2 is minimized. In conclusion, upon

combining Eqs. (28) and (26), we find out the formula for the
direct sampling of the density matrix from the measured photon
number distribution of the displaced state:51

%m+ s # "rec #m$= 1
28

N∑

n=0

∫
F %s&
n!m%# 6 #&eis7pn%6&d7 (31)

It is worth mentioning that this method, given that the pn%6& are
known, requires only the value of 7 to be varied.

Let us now extend our method to the case of imperfect pho-
todetection with non-unit quantum efficiency #. The measured
photodistribution Pk%6& is related to the actual photon number
distribution pn%6& by a Bernoullian convolution

Pk%6&=
"∑

n=0

Mk!n%#&pn%6& (32)

where Mk!n%#& is:

Mk!n%#&=






(
n
k

)
#k%1−#&n−k k ≤ n

0 k > n
(33)

The analogue of Eq. (26) for the measured quantities P %s&
n %# 6 #&

is given by

P %s&
n %# 6 #&=

n0−s∑

m=0

G%s&
n!m%# 6 #!#&%m+ s # " #m$ (34)

where the new matrices

G%s&
n!m%# 6 #!#&=

"∑

k=0

Mn!k%#&G
%s&
k!m%# 6 #& (35)

are obtained from the G%s&
k!m%# 6 #&, as defined in Eq. (27), and

can be inverted in the same way described above to obtain some

matrices F %s&
m!n%# 6 #!#& to be used, as in Eq. (31), to reconstruct

the whole density matrix.
The key element to realize the above method and, in turn, to

achieve the reconstruction of the off-diagonal elements of the
density matrix, is an interferometric setup where the signal mode
and the local oscillator are mixed in an unbalanced beam splitter.
In practice, a source beam is sent to a Mach-Zehnder interfer-
ometer in which the part reflected by the first beam splitter is
taken as the signal, while the transmitted portion is regarded as
the local oscillator. The two modes are then mixed by the sec-
ond beam splitter, which is effectively used to perform a sort of
unbalanced homodyning. Upon changing the length of the optical
path in one arm of the inteferometer, one may tune the relative
phase between the signal mode and the local oscillator. In this
way, one may measure the distributions pn%6& at fixed # 6 # and
for different phases. Besides, upon performing some action on
the signal mode, one may also apply the reconstruction method
to different input states. In the following, we report the results
for the reconstruction of a coherent state and for a thermal state
obtained by inserting a rotating glass plate in the path of the
signal beam.

In our set-up,52 see Figure 4, the output of a He–Ne laser
(. = 632+8 nm) is lowered to the single photon regime by neu-
tral filters. The spatial profile of the signal is then purified from
non-Gaussian components by a spatial filter realized by two con-
verging lenses and a 100 )m diameter wide pinhole. An iris just
after the pinhole ensures the selection of a single Gaussian spa-
tial mode. The laser cavity is also preserved by back-reflections,
which may cause instability, by means of an optical isolator con-
sisting in a Faraday rotator between two polarizers. The second
polarizer (say, B) angle is shifted by 451 with respect to the first
one (A), so that the light transmitted by the latter, whose polar-
ization is rotated by 451 by the Faraday rotator, is all transmitted
also by the second. Since the polarization rotation by Faraday

Fig. 4. Setup for the reconstruction of the density matrix for a coherent and
a pseudo-thermal state. The emission of a He–Ne laser (' = 632!8 nm) is
lowered to single photon regime by neutral filters. A spatial filter realized
by two converging lenses and a 100 (m diameter-wide pinhole purifies the
shape of the signal and allows to select a single spatial mode. A beam-
splitter reflects part of the beam to a control detector used to monitor the
laser amplitude fluctuations, while the remaining part is sent to the interfer-
ometer. The phase between the “short” and “long” paths in the interferometer
can be changed by driving the position of the reflecting prism by means of a
PI piezo-movement system. A set of variable neutral filters allows to collect
photons for different values of the quantum efficiency. The element in the
dotted box is a rotating glass plate which is inserted in the setup only for
the generation of the pseudo-thermal state. The detectors used are Perkin-
Elmer Single Photon Avalanche Photodiode (SPCM-AQR) gated by a 20 ns
wide time window with (repetition rate = 200 kHz). A single run consists of
5 repetitions of 4 seconds acquisitions and events are recorded by a NI-6602
PCI counting module.
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effect is in the same direction regardless of the laser propagation
direction, any back-reflected light passing through B, would suf-
fer another 451 rotation before reaching a polarizer and would
thus be stopped, being orthogonal to the polarizer angle.

After a beam-splitter, part of the beam is addressed to a con-
trol detector in order to monitor the laser amplitude fluctuations,
while the remaining part is sent to the interferometer, its main
structure consisting in a single invar block custom designed and
developed at INRIM. A PI piezo-movement system allows to
change the phase between the two paths by driving the posi-
tion of the reflecting prism with nanometric resolution and high
stability. For each position of the prism, the off events are col-
lected for different sets of neutral filters, and thus, for different
quantum efficiencies. The detector, a Perkin-Elmer Single Pho-
ton Avalanche Photodiode (SPCM-AQR), is gated by a 20 ns
wide time window with a repetition rate of 200 kHz. In order
to obtain a reasonable statistics, a single run consists of 5 rep-
etitions of 4 s acquisitions. Events are recorded by a NI-6602
PCI counting module. In this case, since all the attenuations
in front of the detectors can be included in the generation of
the state, the overall maximum quantum efficiency is assumed
to be 0+66, as the nominal efficiency declared by the man-
ufacturer data-sheet of the photodetectors. As said before, in
another set of measurements, a rotating glass plate was inserted
in the path of the signal in order to reconstruct a pseudo-thermal
state.

In Figure 5 we report the reconstructed density matrix in the
Fock representation (diagonal and subdiagonal) for a coherent
state with real amplitude z) 1+8 and a thermal state with average
number of photons equal to nth ) 1+4. As it is apparent from the
plots, the off-diagonal elements are correctly reproduced in both
cases despite the limited visibility. Here the raw data are frequen-
cies of the off event (see Fig. 6) as a function of the detector

ρnm

ρnm

∆nm ∆nmCoherent
state

Thermal
state

Fig. 5. State reconstruction by phase-modulation and on/off measure-
ments. In the upper plots we report the reconstructed density matrix in
the Fock representation (diagonal and subdiagonal elements) for the signal
excited in a coherent state with real amplitude z ) 1!8 (left) and a thermal
state with average number of photons equal to nth ) 1!4 (right). In the lower
plots we show the absolute difference )nm = #%exp

nm − %th
nm # between recon-

structed and theoretical values of the density matrix elements for the signal
excited in a coherent (left) or a thermal (right) state.

Coherent
state
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Fig. 6. State reconstruction by phase-modulation and on/off measure-
ments. In the main plot we report the off frequencies as a function of the
quantum efficiency as obtained when the signal under investigation is a
coherent state and for different phase-shifts. The two insets show the recon-
structed photon distributions for the two phase-modulated versions of the
signal corresponding to maximum and minimum visibility at the output of the
Mach-Zehnder interferometer. The vertical black bars denote the mean value
of the photon number for the two distributions, %a†a$= 3!5 and %a†a$= 2!9.

efficiency, taken at different phase modulations :, whereas the
intermediate step corresponds to the reconstruction of the pho-
ton distribution for the phase-modulated signals. In Figure 6 we
report the frequencies of the off events and the reconstructed
photon distributions at the minimum and maximum of the inter-
ference fringes. In our experiments we used N: = 12 and # 6 #2=
0+01 for the coherent state and # 6 #2= 1+77 for the thermal state.
The use of a larger N: would allow the reliable reconstruction of
far off-diagonal elements, which has not been possible with the
present configuration. Work along these lines is in progress and
results will be reported elsewhere.

The evaluation of uncertainties on the reconstructed states
involves the contributions of experimental fluctuations of on/off
frequencies as well as the statistical fluctuations connected with
photon-number reconstruction. It has been argued54!55 that fluc-
tuations involved in the reconstruction of the photon distribution
may generally result in substantial limitations in the informa-
tion obtainable on the quantum state, e.g., in the case of multi-
peaked distributions.56 For our purposes this implies that neither
large displacement amplitudes may be employed, nor states
with large field and/or energy may be reliably reconstructed,
although the mean values of the fields measured here are defi-
nitely non-negligible. On the other hand, for the relevant regime
of weak field or low energy, observables characterizing the
quantum state can be safely evaluated. In our experiments, the
absolute errors ;nm =# 3exp

nm − 3th
nm # on the reconstruction of

the density matrix in the Fock basis are reported in Figure 5.
Notice also that any uncertainty in the nominal efficiency of the
involved photodetectors does not substantially affect the recon-
struction in view of the robustness of the method to this kind of
fluctuations.31
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5. CONCLUSIONS AND OUTLOOKS
In this paper we gave a panorama of the status of the art about
the characterization of optical states by means of on/off pho-
todetection. We have briefly reviewed the theoretical basis of the
on/off method, and have reported the main recent experimental
results for the reconstruction of the diagonal elements of single-
and two-mode states, as well as for the reconstruction of the full
density matrix of single-mode states. The on/off reconstruction
method has been now tested in several optical regimes and it
proved both effective and statistically reliable. This prompts to
further applications of the scheme as a tool for the characteriza-
tion at quantum level. In fact, we are currently going to apply
the on/off method as an advanced characterization of detectors,
i.e., for the reconstruction of their probability operator-valued
mesaures (POVMs).
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