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Abstract
A method for measuring the transmittivity of optical samples by using squeezed
vacuum radiation is illustrated. A squeezed vacuum field generated by a below-
threshold optical parametric oscillator is propagated through a non-dispersive
medium and detected by a homodyne apparatus. The variance of the detected
quadrature is used for measuring the transmittivity. With this method the
number of photons passing through the sample during the measurement interval
is drastically reduced. The results of some tests are reported.

1. Introduction

Vacuum fluctuations of electro-magnetic (e.m.) fields have been the ultimate limit on the
precision of optical measurements until the advent of squeezed light. Since then, many
attempts have been made to reduce the shot-noise level blurring several types of signals.
Caves [1] first proposed to combine coherent and squeezed vacuum radiation for overcoming
the quantum limit in gravitational wave antennas. Grangier et al [2] upgraded a polarization
interferometer by injecting a squeezed vacuum through a dark port. Polzik et al [3] provided
stunning evidence that a gain of some dB over the standard quantum limit is achieved in
the resonant interaction of atoms with squeezed light. Their experiment was performed by
combining in a well-defined phase relation a coherent field with the output of an optical
parametric oscillator (OPO) operating below-threshold.

Other experiments have exploited the correlation between twin beams for reducing the
noise level of the probe field [4–7]. The principles of these measurements were highlighted in
[4], where it was recognized that the losses occurring in one beam can be inferred from those
relative to the other one (see also [6–8]).

In this communication a method for probing the transmittivity T of a sample with squeezed
vacuum radiation is discussed. Standard methods rely on direct measurement of the radiation
intensity entering and leaving the sample. Sufficient accuracy can be achieved by using
beams so intense to contrast the shot-noise, although, in some circumstances, using high input
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intensity is either not useful (in the case of very low absorption) or unwise (strongly nonlinear
materials or samples whose structure may be altered by intense photon fluxes).

In alternative to the above schemes [1–3] in the proposed method the sample is irradiated
with a squeezed vacuum field. Then, the emerging one is combined with a coherent one
(local oscillator, LO) in a balanced homodyne detector measuring the fluctuations in a suitable
spectral range. The interaction of the squeezed vacuum with the sample modifies the spectrum
of the homodyne current by changing its variance. Hence, the transmittivity is determined by
measuring the variance changes. The main advantage of this method is a very low number of
photons interacting with the sample.

Below-threshold degenerate OPOs produce e.m. radiation represented by a combination
of squeezed vacuum and thermal components (squeezed-thermal-vacuum states, STV) with a
Gaussian statistics. The OPO working conditions determine the STV state properties [9, 10].
The propagation through non-resonant media transforms such a state into another STV one
with different variances of the field quadratures �X2

φ . The change of �X2
φ is used for

measuring the transmittivity T (section 2).
The squeezed radiation is analysed by a balanced homodyne detector providing the field

quadratures Xφ = 1
2 (a e−iφ + a† eiφ) via the controlled interference between the STV state

and a strong coherent LO of relative phase φ. Since the detected signal is proportional to Xφ

times the LO amplitude, the detection is efficient also in the case of very weak beams, as in
the present case. Consequently, the effects of the SNR on the accuracy can be disregarded.

Essential to this method is the use of a Gaussian distributed quadrature Xφ . This means
that for testing the method it is necessary to preliminarily measure the distribution function by
sampling Xφ an adequate number N of times. In alternative, it is also possible to determine
the whole Wigner function with quantum homodyne tomography (QHT) [11] using samples
uniformly distributed over the whole interval (0, 2π). Distributing N samples in the interval
(0, 2π) reduces the accuracy of only a few per cent. This slight loss is largely compensated
by a three-dimensional characterization of the STV state in the phase space. The aim of this
communication is to assess the feasibility of this scheme by testing the validity of two main
assumptions, namely (i) the generation of Gaussian STV states by a below-threshold OPO,
and (ii) the description of the absorption process as a simple scaling of the P-representation
of the STV state. The dependence of the accuracy of the proposed method on the STV state
parameters is also examined. Moreover, the method accuracy is compared with that achievable
with standard techniques. Measurements carried out with a below-threshold type-I lithium
niobate (LNB) OPO at λ = 1064 nm, generating few pW STV states, are reported.

The paper is organized as follows. In the next section the properties of the STV
states undergoing lossy propagation are discussed. Then, in section 3, the accuracy of
the measurement of T based on this method is compared with that of different techniques.
Section 4 is dedicated to the description of the experimental tests. Eventually, in section 5,
conclusions are drawn.

2. Generation and propagation of STV states

The field generated by a below-threshold OPO satisfies the Langevin equation:

d

dt

[
a

a†

]
= (γ + δγ (t))

[
a†

a

]
−

[
(κ + iψ + iδψ(t))a

(κ − iψ − iδψ(t))a†

]
+

√
2κ1

[
ain

1

a
in†
1

]
+

√
2κ2

[
ain

2

a
in†
2

]
, (1)

where ain
1 is the noise entering the cavity through the output mirror M1 (see figure 1) and ain

2
represents both the noise entering through the input mirror M2 and the crystal contribution.
The quantities κ1, κ2 are damping coefficients, whereas κ = κ1 + κ2. The parametric gain is
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Figure 1. Schematic of the OPO cavity and the experimental setup. The STV states, generated
by the OPO, pass through a sample of variable transmittivity T and then are characterized by a
homodyne detector. State parameters are recovered by QHT data processing.

the sum of a stationary mean value, γ , and a small fluctuating contribution, δγ (t). Similarly,
ψ and δψ(t) are the mean cavity detuning and its fluctuations, respectively. In this context,
the ratio E = γ 2/κ2 represents the distance of the actual operating condition from the OPO
threshold power, while κ1/κ is the so-called coupling efficiency. In the frequency domain the
variance �X2 of the output quadrature X = Xφ=0 reads

�X2 = |κ2 − γ 2 − (ω2 − ψ2) + i2ωκ − 2κ1(κ + i(ω − ψ) + γ )|2 + 4κ1κ2|κ + i(ω − ψ) + γ |2
4|κ2 − γ 2 − (ω2 − ψ2) + i2ωκ|2 ,

where ω is the frequency offset from the optical frequency ω0, and δγ (t) and δψ(t) have been
neglected. The variance �Y 2 (Y = Xφ=π/2) is given by a similar expression with γ replaced
by −γ .

For a single-input cavity (κ2 = 0), and for ψ = 0, the product 16�X2�Y 2 reduces to
unity, corresponding to a minimum uncertainty state. In general, this condition is no longer
satisfied for double-ended cavities or non-zero detuning or lossy crystals. Then, it is worth
characterizing the OPO output at the sampled frequency ω by means of the adimensional
parameters:

nth = 2

(√
�X2�Y 2 − 1

4

)
(2a)

nsq = 1

4

(√
�X2

�Y 2
+

√
�Y 2

�X2
− 2

)
, (2b)

representing the average number of thermal and squeezed photons, respectively. They measure
the deviation of the actual state from the minimum uncertainty one and its effective squeezing.
In particular, the mean total photon number is given by

Ntot = nsq + nth + 2nsqnth, (3)

while the variance of the generic quadrature Xφ reads

�X2
φ = (2nth + 1)

4

(
1 + 2nsq + 2

√
(1 + nsq)nsq cos 2φ

)
. (4)

The photon numbers nth and nsq depend on the frequency offset ω and on the OPO parameters,
namely, distance from the threshold (E), escape efficiency (κ1/κ) and cavity detuning (ψ). In
figures 2(a) and (b) nsq and nth as functions of the ratio κ1/κ and for three different detunings
(ψ = 0.0, 0.1, 0.2) have been plotted (OPO gain one-half of the threshold E = 0.5 and
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Figure 2. nsq (a) and nth (b) versus coupling efficiency κ1/κ at half of the threshold power
(E = 0.5) for ω = 0. The curves refer to three different detunings ψ = 0.0, 0.1, 0.2 (full, dashed
and dot-dashed lines).

ω = 0). The detuning plays a more significant role in proximity of κ1/κ � 1, that is for a
single-ended cavity configuration.

Since these states have been obtained by neglecting the time-dependent part of both gain
and detuning, they share the Gaussian statistics of the driving fields ain

1,2. They can be thought

of as obtained by squeezing a thermal state ν = (nth + 1)−1[nth/(nth + 1)]a
†a , with nth being the

number of thermal photons (see equation (2a)), whose actual temperature is not necessarily
coincident with the local one. As a consequence the density matrix is

� = S(ζ )νS†(ζ ), (5)

where S(ζ ) = exp
{

1
2ζa†2 − 1

2ζ ∗a2
}

is the squeezing operator (nsq = sinh2 |ζ |) [9, 10].
These STV states are described by a Gaussian Wigner function centred at the origin:

W(α) = 1
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with P(β) being the corresponding P-representation:
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.

After propagation through a medium of transmittivity T the density matrix

� =
∫
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modifies as
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∫
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Table 1. Coefficients A and B computed by equations (9), (11) (left) and experimental ones
measured by QHT (right).

A B A(QHT) B(QHT)

Ntot 0 1 −0, 05 ± 0, 07 1, 1 ± 0, 1
nth 0.12 0.89 0.07 ± 0.05 0.85 ± 0.07
nsq −0.12 1.14 −0.16 ± 0.05 1.14 ± 0.07

�X2 − 1
4 is the deviation of the actual STV variance from the vacuum state case (shot-noise).

A similar expression is found for �Y 2
T .

In principle, in the absence of multiple reflections within the sample, the transmittivity
T is given by T = T1TslabT2, where T1 and T2 are the Fresnel transmission coefficients at the
input and output faces of the sample respectively and Tslab is the sample internal transmittivity.

Next, introducing the subfixes 0 and T for labelling upstream and downstream quantities,
respectively, for a generic quadrature Xφ the variance transforms as

�X2
φ,T − 1

4 = T
(
�X2

φ,0 − 1
4

)
. (6)

Accordingly, T can be obtained by measuring the upstream and downstream quadrature
variances:

T = �X2
φ,T − 1

4

�X2
φ,0 − 1

4

. (7)

This relation suggests a simple way to measure T through the deviations of a generic quadrature
from the vacuum noise level.

By means of equations (4) and (7), T can be also expressed as

T = (2nth,T + 1)
(
1 + 2nsq,T + 2

√
(1 + nsq,T )nsq,T cos 2φ

) − 1

(2nth,0 + 1)
(
1 + 2nsq,0 + 2

√
(1 + nsq,0)nsq,0 cos 2φ

) − 1
. (8)

On the other hand, Ntot transforms proportionally to T as for a classical field:

Ntot,T = T Ntot,0. (9)

Using equation (3) in the above expression and combining it with equation (8) nth,T and nsq,T

can be expressed in terms of T and of the initial values nth,0 and nsq,0:

2nth,T + 1 =
√

[1 − T + T (1 + 2nth,0)(1 + 2nsq,0)]2 − [
2T (1 + 2nth,0)

√
(1 + nsq,0)nsq,0

]2

2nsq,T + 1 = 1 − T + T (2nth,0 + 1)(1 + 2nsq,0)

2nth,T + 1
.

(10)

For the STV state used in the test discussed in section 4 (nth,0 = 0.55 and nsq,0 = 0.11) nth,T

and nsq,T are linear in T, that is
nth,T

nth,0
= Ath + BthT ,

nsq,T

nsq,0
= Asq + BsqT . (11)

In table 1 the coefficients calculated by linearizing equations (10) have been reported (first
two columns) together with those obtained experimentally (last two columns). For the sake of
completeness the measured ratio Ntot,T /Ntot,0 has been reported as well, in order to evidentiate
the agreement with the theoretical value of equation (9).

In the measurements discussed below, T was determined through a direct measurement
of the parameters nth and nsq by the QHT technique based on pattern functions.
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Figure 3. (a) Relative error δT
T

√
N
2 (equation (14)) and (b) number Nph of photons hitting the

sample for δT
T

= 0.01 (equation (15) and κτs = 6) versus transmittivity T. The plots refer to
ω = ψ = 0, at half the threshold (E = 0.5) and κ1/κ = 0.5, 0.75, 1) (dot-dashed, dashed and full
lines).

In conclusion, it is worth noticing that the above expressions of T are valid for Gaussian
field quadratures. A Gaussian statistics follows from the assumption of time independent gain
and detuning of the OPO. In section 4, the correctness of this assumption will be discussed
for the used OPO by measuring the deviations from the Gaussian statistics by means of the
kurtosis parameter Kφ , vanishing for the Gaussian case, defined as

Kφ = �X4
φ(

�X2
φ

)2 − 3, (12)

with �X4
φ being the fourth-order moment of Xφ .

3. Accuracy

The limit of the uncertainty on the estimate of T expressed by equation (7) depends on the
confidence interval δ

[
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with N being the number of acquired data, the relative error on T is given by
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(14)

This expression gives, for a given T, the relative error as a function of N and �X2
φ,0 which in

turns depends on the OPO working condition, namely, distance from the threshold (E), escape
efficiency (κ1/κ) and cavity detuning (ψ). On the other hand, the total number of photons
Nph hitting the sample during the measurement is

Nph = NtotNκτs, (15)

with τ−1
s being the sampling rate and Ntot given by equation (3).

In figure 3(a) δT
T

√
N
2 (see equation (14)) has been plotted as a function of the transmittivity

T for ω = ψ = 0, E = 0.5, and three different escape efficiencies (κ1/κ = 0.5, 0.75, 1).
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The relative error increases for T approaching zero. Figure 3(b) gives the photon dose Nph

(equation (15)) necessary to obtain a relative error δT
T

= 0.01 for the parameters of figure 3(a)
and κτs = 6. The plot evidentiates the increase of Nph by more than an order of magnitude
for T less than 0.01.

Instead of keeping φ constant during the acquisition of the N samples, the angle can be
varied uniformly in the interval 0 � φ � 2π . The ensemble so obtained can be processed
by means of QHT [11] for obtaining the field Wigner function. The tomographic processing
can be based on the so-called pattern function method, consisting in averaging the pattern
function Rη[Ô](Xθj

, θj ) relative to an assigned operator Ô, and having for argument the j th
realization Xθj

of X̂θ for the LO phase θj ,

〈Ô〉 = 1

N

N∑
j=1

Rη[Ô]
(
Xθj

, θj

) = Rη[Ô]. (16)

The subfix ‘η’ indicates the dependence of the pattern function on the homodyne efficiency η.
For the operator Ô = �X2

φ the confidence interval provided by this method reads

δQHT
[
�X2

φ

] = 1√
N

√
�R2

[
�X2

φ

]
, (17)

with �R2[Ô] = R2
η[Ô] − Rη[Ô]

2
. Consequently equation (13) is still valid with δ

[
�X2

φ

]
replaced by δQHT

[
�X2

φ

]
.

Next, taking into account the analytic expressions of R2
η

[
�X2

φ

]
and Rη

[
�X2

φ

]
[12], it can

be shown that

�R2
[
�X̂2

φ

] = C0 + C1 cos(2φ) + C2 cos(4φ), (18)

with the coefficients C0, C1 and C2 given in the appendix. For the variances �X2,�Y 2

relative to OPO devices similar to those used in the experimental test, δQHT
[
�X2

φ

]
differs from

δ
[
�X2

φ

]
only by some per cents. This means that collecting N samples in the interval (0, 2π)

reduces the accuracy with respect to the constant phase case by only a few per cent.
Conventional measurements of T using coherent CW probe beams and the radiation power,

P, as observable, are in some way corrupted by the detector noise equivalent power (NEP),
and the measurement error reads

δP =
√

h̄ω0BP + NEP, (19)

with ω0 being the radiation frequency, and B the detection bandwidth.
Measuring T as the ratio PT /P0 of the power downstream and upstream the sample the

relative error is

δT

T
= 1

SNR

√√√√ 1

T 2

(
1 +

√
h̄ω0B

NEP

SNRT

N

)2

+

(
1 +

√
h̄ω0B

NEP

SNR

N

)2

, (20)

with SNR = P0/NEP and N the number of data.
The total number of photons (see equation (15)) passing through the sample during the

measurement interval is now given by

Nph = SNR
NEP

h̄ω0
Nτs (21)

so that, the factor h̄ω0B

NEPN
in equation (20) can be replaced by SNRBτs

Nph
(with Bτs > 1). Then the

ratio Bτs

Nph
is a function of δT

T
, T and SNR. Using for SNR the limiting value

SNR � T

δT

√
1

T 2
+ 1,
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Figure 4. Photon dose passing through the sample (Nph) versus T in the case of standard
transmission measurements. The curve refers to Bτs = 10 and δT

T
= 0.01.

the plot of figure 4 representing Nph versus T for δT
T

= 0.01 and Bτs = 10 has been obtained.
Comparing it with figure 3(b) the much lower photon dose required by the present method
appears evident.

In case a coherent beam (aα) is mixed with a squeezed thermal vacuum (aSTV), as in [3],
the total field is described by

atot = eiθaSTV + aα,

with θ being their locked phase difference.
It can be shown that the addition of the squeezed component modifies slightly

equation (19) with B replaced by

Beff = B
(
1 + nsq + nth + 2nsqnth +

√
(1 + nsq)nsq cos 2θ

)
.

For cos 2θ = −1 and
√

(1 + nsq)nsq > nsq + nth + 2nsqnth the squeezed vacuum component
reduces the effective detector bandwidth. The reduction of B (typically Beff � 5B) implies a
proportional decrease of Nph for assigned δT

T
and T.

4. The experiment

The reliability and accuracy of the method were tested with a sample of variable transmittivity.
The T values obtained via QHT were compared to those measured, with an accuracy of 10−4,
with standard techniques employing 1 mW coherent beam at λ = 1064 nm. A schematic of
the experimental set- up is shown in figure 1.

STV states were generated by a degenerate type-I OPO and characterized by a homodyne
detector, both described in details in [13]. In the present case, cavity mirrors were adjusted in
such a way as to have a cavity linewidth of 15 MHz.

The OPO output was propagated through a variable neutral density filter, which changes T
without introducing misalignment, and keeping homodyne visibility at a constant value. The
transmittivity T was varied between 0.45 and 1 in discrete steps. The beam passing through the
non-absorbing zone (T = 1) of the filter was used as a reference state. The field leaving the
absorber was sent to an homodyne detector with an overall efficiency of η = 0.88±0.02. The
average electrical signal level at the homodyne output was 15 dB higher than the electronic
noise.

Tomographic data were acquired by sampling the homodyne signal. To avoid any effect
of the laser technical noise on the measurement, data sampling was performed by mixing the
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Figure 5. Distribution of X values measured for E = 0.5 (a) and 0.95 (b). The kurtosis K0
(equation (12)) is respectively equal to 0.005 and 0.5. Full lines represent Gaussian with the same
mean and variance.
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Figure 6. TQHT versus Tst. Experimental points are plotted together with the expected behaviour
of equation (9) (straight line).

homodyne current with a sinusoidal signal of frequency � = 5 MHz. Then, the resulting
current was low-pass filtered, with a cut-off frequency of 2.5 MHz, and 106 samples were
collected with at 2.5 Msample/s (τs = 400 ns) in order to pick up statistically independent
data.

Fixing E = 0.50 the reference STV state had Ntot,0 = 0.79 ± 0.06, nth,0 = 0.55 ± 0.02
and nsq,0 = 0.11 ± 0.01, corresponding to a photon flux of 107 s−1. For this state it resulted
Kφ � 0.01 (see figure 5(a) and equation (12)) for any φ, thus indicating that the corresponding
quadrature statistics was very close to the Gaussian one.

In order to reduce the influence of residual fluctuations of the STV state, each experimental
point was averaged over multiple (∼5) tomographic acquisitions. In the present conditions the
QHT error was negligible with respect to the standard deviations of the STV state parameters.

To assess the robustness of the method, the transmittivity, TQHT, obtained by tomographic
reconstruction was compared with the corresponding value, Tst, provided by standard intensity
measurements.

In figure 6, TQHT = Ntot,T /Ntot,0 (see equation (9)) was plotted versus Tst together with
the expected behaviour TQHT = Tst (straight line). A linear regression of the data with
TQHT = A

(QHT)
tot + B

(QHT)
tot Tst gave A

(QHT)
tot = −0.05 ± 0.07 andB

(QHT)
tot = 1.1 ± 0.1 in good

agreement with the expected values of Atot = 0 and Btot = 1 respectively.
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Figure 7. nsq,T versus Tst. Experimental points are compared with equation (11b). The points in
the inset are relative to four measurements for an attenuator transmittivity equal to 0.64 while the
error bar has been calculated by using equation (14).
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Figure 8. Quantum limit (shadowed area) of the relative error on T for the experimental case
discussed in the text and N = 104.

In order to estimate TQHT through other quantities, the measured value of nsq,T /nsq,0

versus Tst was plotted in figure 7 together with the linear approximation of equation (11b).
Linear regression on experimental data gave A(QHT)

sq = −0.16±0.05 and B(QHT)
sq = 1.14±0.07,

values in good agreement with Asq = −0.12, Bsq = 1.14.
Each experimental point of figure 7 represents an average value obtained over multiple

acquisitions. In the inset the different values of TQHT, corresponding to four acquisitions
at Tst = 0.64, are reported. The bar indicates the quantum limit error, calculated by using
equation (14). As it can be seen, all the points are spread over a range comparable to the
quantum limit.

In figure 8 the shadowed area represents the quantum limit for the accuracy versus T (see
equation (14)) for the present experimental conditions and N = 104. The accuracy width is
almost constant in the tested range of T while it deteriorates for low transmittivity, as expected.

Finally, an identical behaviour was observed for nth,T /nth,0 (not plotted) resulting in
A

(QHT)
th = 0.07 ± 0.05, B

(QHT)
th = 0.85 ± 0.07 (Ath = 0.12, Bth = 0.89).

A summary of the experimental findings is reported in table 1.
The photon flux at the OPO output F = Ntot/τ , with τ being the cavity photon lifetime,

was less than 107 s−1, for Ntot � 0.7 and τ ≈ 6.6 × 10−8, corresponding to an optical power
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�4.2 pW. The method was tested for different input states, by varying E and hence the photon
flux by showing a good reliability down to a photon flux F ∼ 5 × 106 s−1 (i.e. ∼2.2 pW and
Ntot,0 = 0.37).

With N = 106δQHT[�X2] ∼ 1.3 × 10−3 and δQHT[�Y 2] ∼ 0.8 × 10−3 corresponding
to δT /T ∼0.0024 and ∼0.056 for T = 1. These QHT estimates were slightly less accurate
than those one could obtain by concentrating N/2 data on X and N/2 on Y quadratures and
computing their variances.

5. Conclusions

A scheme for measuring the optical transmittivity of a sample by using squeezed vacuum
radiation has been demonstrated. The main advantage of this method is a number of photons
hitting the sample during the measurement some orders of magnitude smaller than that relative
to standard techniques based on intensity measurements of coherent beams.

The core of the method consists in the measurement of the variance �X2
φ of a generic

quadrature of a squeezed vacuum field, generated by a below-threshold OPO and passing
through the sample under investigation. The quadrature is measured by a homodyne detector.
In the simplest implementation �X2

φ is obtained by averaging the squared samples Xφ relative
to a constant phase φ. In the test described in the paper Xφ has been obtained by scanning
the interval φ ∈ (0, 2π). This approach has been preferred since it provides a complete
reconstruction of the squeezed vacuum Wigner function.

Essential to this scheme is the assumption of Gaussian statistics for the squeezed vacuum
field. This property has been checked on the recorded samples relative to a given phase and
confirmed by the field Wigner function.

The accuracy of this method has been compared with that based on absorption of coherent
beams (with and without a squeezed vacuum component) as a function of sample transmittivity,
number of data and detection bandwidth. In the case the number of photons interacting with
the sample during the measurement is an important parameter, the proposed method is the
most accurate.

The experimental tests have shown that, for photon fluxes of the order of few pW (at
1064 nm), the accuracy is of the order of the quantum limit, that is the method does not suffer
substantially from other technical noise sources.
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Appendix

The coefficients C0, C1 and C2 of equation (18) are given by

C0 = 1

4

[
27

2
(�X4 + �Y 4) + 9�X2�Y 2 +

(
1 − 3

η

)
(�X2 + �Y 2) +

1

4

(
3

η2
− 2

η
+ 1

)]

C1 = 1

2
(�X2 − �Y 2)[3(�X2 + �Y 2) − 1]

C2 = 3

8
(�X2 − �Y 2)2.
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