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Reconstruction of the photon distribution in a micromaser

S. Olivares1,2(a), F. Casagrande1(b), A. Lulli1(c) and M. G. A. Paris1,3,4(d)

1 CNISM, UdR Milano Università - I-20133 Milano, Italia
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Abstract – We suggest an iterative, maximum-likelihood–based, method to reconstruct the
photon number distribution of the steady-state cavity field of a micromaser starting from the
statistics of the atoms leaving the cavity after the interaction. The scheme is based on measuring
the atomic populations of probe atoms for different interaction times and works effectively using a
small number of atoms and a limited sampling of the interaction times. The method has been tested
by numerically simulated experiments showing that it may be reliably used in any micromaser
regime, leading to high-fidelity reconstructions for single-peaked distributions as well as for double-
peaked ones and for trapping states.
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Introduction. – The one-atom maser or micromaser
is perhaps the most relevant example of open quantum
system in cavity quantum electrodynamics (CQED) [1].
Since its first experimental realization [2] this system
has allowed to investigate many fundamental aspects in
quantum optics. The micromaser dynamics results from
the interplay of a coherent interaction between a beam
of two-level atoms and a resonant cavity mode in the
microwave domain, as described by the Jaynes-Cummings
(JC) model [3], and the dissipative process due to the
contact of the cavity with the environment. At the steady
state the radiation field inside the high-Q cavity may
show highly non-classical features, as for example sub-
Poissonian photon statistics [4] or quantum collapses and
revivals [5]. In addition, states characterized by a trun-
cated photon number distribution, the so-called trapping
states (TS) of the cavity field [6], may be generated.
These states show up only at very low temperature and
may be affected by collective atomic interactions [7].
Under suitable pumping conditions, photon distribution
at the steady state may also show two coexisting maxima,
that is the signature of first-order phase-transitions [8].
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Operating the micromaser under pulsed regime and trap-
ping conditions the generation of Fock states has been also
reported [9]. A micromaser was implemented also on a
two-photon transition [10] and more recently a microlaser
was operated in the optical regime [11].
A crucial aspect of the micromaser is that, in order to

preserve high-Q values of the cavity, the cavity field is
not accessible to direct measurements. As a consequence,
any information on its properties must be inferred from
the atoms leaving the cavity after the interaction. In
fact, the relation between the atomic statistics and the
properties of the cavity field has been theoretically and
numerically investigated [12] also including the back-
action due to the atomic measurements [13]. On the other
hand, to the best of our knowledge, no method has been
suggested to reconstruct the whole photon distribution
by exploiting the complete information carried by the
atoms leaving the cavity. In earlier experiments [4,5] the
atomic statistics was obtained by counting the number
of excited (ground) atoms in a time interval longer
than the cavity lifetime, and then this frequency was
compared with the theoretical expression (see below)
for the experimental set of parameters. As a matter of
fact, the photon distribution was not reconstructed from
the measurements. In experiments leading to TS [6] the
steady-state photon distribution is composed only by few
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terms allowing a simple fit of experimental data, whereas
in the experiments to generate Fock states [9] the cavity
field state |n〉 is prepared by a pulse of n pump atoms and
only one probe atom is measured to obtain the atomic
inversion that ideally involves only one Rabi frequency. In
this case, the advantage to measure only one probe atom
is that of avoiding the cavity field state reduction due to
repeated atomic measurements.
In this letter, we suggest a method to reconstruct the full

steady-state photon distribution of the cavity field starting
from measurements of the statistics of probe atoms. The
basic idea is that atoms leaving the cavity after different
interaction times are carrying the complete information
about the cavity field itself. Indeed, the method is based
on measuring the atomic statistics for different interaction
times and then estimating the photon distribution using
maximum-likelihood reconstruction. As we will see, the
method is very effective in any operating regime of the
micromaser and allows reliable reconstructions for single-
peaked distributions as well as for multi-peaked ones
and for trapping states. Remarkably, the method works
effectively starting from the statistics of a small number
of atoms and a limited sampling of the interaction times.
As a consequence, the atoms used to probe the cavity field
are only slightly perturbing the steady-state, which itself
depends on the interaction time of the pump atoms, i.e.,
the method can be used on-line with experiments. We also
notice that at the steady-state, the cavity field density
matrix is diagonal in the Fock number basis, and thus the
reconstruction of the photon distribution corresponds to
the full quantum state reconstruction. On the other hand,
the characteristics of the micromaser spectrum [14] are
related to the decay of off-diagonal elements of the cavity
field density matrix in the transient regime.

Photon distribution at the steady state. – A
schematic diagram of the micromaser setup is given in
fig. 1 where a beam of two level atoms, excited in the upper
Rydberg level of the maser transition, continuously and
resonantly pump a high-Q microwave cavity mode. The
cavity temperature is kept as low as 0.5K in order to have
a small mean thermal photon number nth. The velocity of
the atoms can be selected so that the interaction time tint
between each atom and the cavity mode can be selected
with high precision. The atomic flux has a Poissonian
distribution with a mean pump rate R. The state of the
atoms leaving the cavity can be detected by field ionization
techniques.
The atomic decay rate γa and the cavity decay rate

γ are taken such that tint"R−1" γ−1" γ−1a . Under
the above conditions only one atom interacts with the
cavity mode each time, thus realizing a perfect JC inter-
action. The cavity field dynamics, including dissipation
effects, can be described by a Master equation and a
steady-state regime can be obtained. If "F denotes the
(diagonal) steady-state density operator of the cavity field,
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Fig. 1: Schematic diagram of the micromaser setup.

the photon distribution pn ≡ pn(Θint, Nex, nth) = 〈n|"F|n〉
can be expressed as [8]

pn = p0

n∏
m=1

(Nex/m) sin
2
(
Θint
√
m/Nex

)
+nth

1+nth
, (1)

where p0 is a normalization constant, Nex =R/γ the
effective pump rate, and Θint ≡ gtint

√
Nex the dimension-

less pump parameter, g being the atom-cavity coupling
constant.
A striking consequence of eq. (1) is the existence

of trapping states of the cavity field [6]. In the limit of
nth→ 0 the distribution pn vanishes at photon numbers nq
(q= 1, 2, . . .) such that Θint ≡ qπ

√
Nex/(1+nq). The TS

correspond to narrow dips which appear in the stationary
mean photon number 〈N〉=∑n npn as a function of the
pump parameter Θint. Another interesting form of pn can
be obtained if the pump parameter is set to Θint ∼= π2
corresponding to the maximum amplification (MA)
regime of the micromaser. In this case, pn has a shape
like that of a coherent state with the same mean
photon number. Finally, close to Θint = 2π and multiples
thereof, the photon distribution pn assumes a double-
peaked (DP) structure corresponding to a first-order
phase transition [1,8].
When the system is at steady-state, the probability to

find one atom in the excited state after its interaction with
the cavity field for a time tk is given by

Pk =
∞∑
n=0

ckn pn , ckn =
1+cos

(
τk
√
n+1

)
2

(2)

where Pk ≡ Pe(τk) and τk = gtk, is the dimensionless
interaction time. Equation (2) provides a link between the
experimentally measurable statistics of the probe atoms
and the (inaccessible) photon distribution of the cavity
field. Equation (2) is the statistical model to be inverted
by the method illustrated in the next section.

Reconstruction of the photon distribution. – At
a first sight, eq. (2) seems to provide a scarce piece
of information about the photon distribution pn of the
micromaser. However, if the atomic statistics is recorded
for a suitable set of values of the interaction times, then
the information is enough to reconstruct the full photon
distribution. As we will see, the inversion of eq. (2), i.e.,
the reconstruction of pn, may be obtained by maximum-
likelihood estimation upon a suitable truncation of the
Hilbert space.

64002-p2



Reconstruction of the photon distribution in a micromaser

The reconstruction scheme proceeds as follows: the
micromaser is pumped until it has reached the steady state
for a fixed set of parameters. Then we stop the atomic
pump flux and, in a time much shorter than the cavity
photon lifetime γ−1, a probe atom prepared in the excited
state is sent through the cavity. The velocity of this probe
atom may be adjusted in order to vary the interaction time
in a given range. After the interaction with the steady-
state cavity field the probe atom is detected. We denote
by fk =Nk/Nx the experimental frequency of probe atoms
found in the excited state after an interaction time τk, Nx
being the total number of probe atoms sent through the
cavity with the same interaction time τk. Of course, since
atom detection modifies the cavity field state, every probe
atom is followed by pump atoms to restore the steady-
state field. In the following, we assume that the values of
interaction times for the probe atoms τk, k= 0, . . . , nτ are
uniformly distributed between a minimum value τ0 and a
maximum one τnτ , which, in turn, are determined by the
maximum and minimum velocities allowed by the specific
experimental implementation.
Equation (2) is a statistical model for the parameters
pn that can be solved by the maximum-likelihood (ML)
estimation. We assume that the photon distribution can be
truncated at the ñ -th term (i.e., pn is negligible for n> ñ)
and, without loss of generality, that Nx is independent
of k. The global probability of the sample, i.e., the
log-likelihood (with normalized Pk) of the detected data
reads as follows:

L=
1

Nx
log
∏
k

(
Pk∑
m Pm

)Nk
=
∑
k

fk log
Pk∑
m Pm

. (3)

ML estimates of pn are the values maximizing the log-
likelihood L. Since the model is linear and the unknowns pn
are positive the solution can be obtained using an iterative
procedure [15–18]. Indeed, the equations ∂L

∂pn
= 0 can be

written as∑
l Pl∑
l fl

∑
k

ckn∑
m cmn

fk
Pk
= 1, ∀n= 0, · · · , ñ. (4)

Then, by multiplying both sides of eq. (4) by pn, we get a
map Tpn = pn, whose fixed point can be obtained by the
following iterative solution:

p(h+1)n =
p(h)n∑
m p

(h)
m

∑
k

ckn
(
∑
l cln)

fk

P
(h)
k

, (5)

where p(h)n is the value of pn evaluated at the h-th

iteration, and P(h)k =
∑
n ckn p

(h)
n . Equation (5) is usually

referred to as the expectation-maximization solution of
ML, and is known to converge unbiasedly to the ML
solution. As a matter of fact, eq. (5) provides a solution

once the initial distribution p(0)n is chosen. In our simu-
lated experiments we start from the uniform distribution

p(0)n = (1+ ñ)−1 in the interval [0, ñ], though any other

distribution p(0)n such that
∑
n p
(0)
n = 1, p

(0)
n )= 0 ∀n, would

be appropriate as well. Indeed, the initial distribution is

(a)

(b)

(c)

Fig. 2: Reconstruction of the photon number distribution from
Monte Carlo simulated experiments for different steady-state
micromaser regimes. On the left we report the probability
Pe(τ) of finding an atom in the excited state as a func-
tion of the interaction time τ (as obtained from the recon-
structed distribution, solid line) compared with the actual
frequencies observed in the simulated experiments (crosses).
On the right we show the reconstructed photon distribution
(black circles) compared with the theoretical one (histograms).
The micromaser parameters are Nex = 25.0, nth = 10

−5 and
(a) TS regime, Θint/π= 2.5; (b) MA regime, Θint/π= 0.5; (c)
DP regime, Θint/π= 2.18. In all the simulated experiments
τ0 = 0.5, nτ = 200, and Nx = 200, Nit = 1000.

slightly affecting only the convergence rate and not the
precision at convergence [19].

Monte Carlo simulated experiments. – Reliability
and accuracy of the present method have been tested by
an extensive set of numerically simulated experiments,
corresponding to different micromaser steady-state
regimes. As a figure of merit to assess the accuracy

of the reconstructed distribution p(r)n , i.e., the similarity
to the actual distribution pn of eq. (1), we consider

the fidelity G=
∑
n

√
p(r)n pn. In fig. 2 we show the
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Table 1: Mean photon number and Fano factor of the recon-
structed distributions of fig. 2 compared with the theoretical
values.

Θint n F n(r) F (r) G (%)

TS 2.5π 2.52 0.22 2.53 0.21 99.73
MA 0.5π 24.38 1.02 24.35 1.07 99.43
DP 2.18π 7.85 4.05 7.75 4.08 99.71

(a) (b)

Fig. 3: (a): Fidelity of the reconstruction G as a function of the
number nτ of sampling times at fixed number of data Nx = 200
for each time value. (b) Fidelity of the reconstruction G as a
function of the number Nx of data for each time value at fixed
number nτ = 200 of sampling interaction times. Both plots refer
to the case of the TS state, i.e., the reconstruction reported in
fig. 2a. In both plots we report the fidelity for different values
of the number of iterations Nit, from bottom to top: Nit = 100,
200 and 1000. The error bars are obtained by averaging over
one hundred simulated experiments.

simulated experimental data for the measurement of
Pe(τ), generated by Monte Carlo technique, and the
comparison between the theoretical photon distributions
and those obtained by ML estimation. We consider as
interesting examples the TS, MA and DP steady-state
micromaser regimes. In these regimes the photon number
distribution is sub-Poissonian, nearly Poissonian, and
super-Poissonian, respectively. In order to better appre-
ciate the accuracy of our reconstruction method we also
report (see table 1) the first two moments of the cavity
field distribution, i.e., the mean photon number n= 〈a†a〉
and the Fano factor F =

[〈(a†a)2〉− 〈a†a〉2] /〈a†a〉,
a being the mode operator of the cavity field and
〈· · ·〉=Tr ["F · · ·] denoting the ensemble average. As it is
apparent from table 1 a very good agreement is obtained
for all the considered regimes between the values obtained
from the reconstructed distributions and the actual ones.
Being our reconstruction method based on an iterative

solution an important aspect to keep under control is
its convergence. In fig. 3 we show the fidelity of the
reconstruction as a function of the number nτ of sampling
interaction times and the number Nx of measures for each
interaction time, for different numbers of iterations Nit.
As it is apparent from fig. 3 the fidelity increases with

both nτ and Nx and it reaches an asymptotic value which

Fig. 4: Reconstruction of the photon number distribution as
in fig. 2c but with reduced sampling parameters Nx = 70,
nτ = 50, and Nit = 300. For these values of parameters we have
n= 11.55, F = 2.34, n(r) = 11.23, F (r) = 2.50, and G= 99.49%.

actually depends on the choice of the other parameters.
Of course, also the number of iterations Nit affects the
fidelity value at convergence. Notice, however, that the
reconstruction is already very accurate with a number of
iterations Nit = 100. It is worth noticing that the number
of sampling times nτ cannot be increased at will, since it
is limited by experimental constraints. In order to check
the statistical reliability of the algorithm we report the
results from repeated (simulated) experiments. The error
bars in fig. 3 are obtained by averaging over one hundred
simulated experiments.
A question arises on whether the present method could

be effectively employed with a small number of atoms
and a limited sampling of the interaction times. This is
of course a crucial aspect concerning its possible imple-
mentation in a realistic scenario. We found, by means
of an extensive set of simulated experiments, that the
answer is positive and that accurate reconstructions may
be obtained using realistic values of the parameters.
In fig. 4 we report, as an example, the results of a
simulated experiment, corresponding to that of fig. 2c,
now performed with nτ = 40, Nx = 30 and Nit = 50. As
it is apparent from the plots, the reconstruction is still
very accurate despite the fact that the total number of
observations has been dramatically decreased.

Error analysis. – The quality of the reconstruction is
affected both by the accuracy of the experimental data and
by the choice of the range of interaction times [τ0, τnτ ] in
which the atom statistics is sampled. The former is respon-
sible for the fluctuations in the reconstructed distribution,
whereas the latter affects the potential biasedness of the
reconstruction. Let us first analyze the effect of the choice
of the interval [τ0, τnτ ]. An extensive numerical analysis
has shown that the optimal range is the one including as
many as possible neat oscillations. In order to illustrate
the point, let us focus on the specific example of the MA
regime (fig. 2b, left plot): the last visible minimum of Pe
is at τ ≈ 4.3. This is already quite blurred (the oscillations
appearing after this one are totally blurred, so we did not
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Fig. 5: The absolute deviation ∆n of the reconstructed distri-
bution from the theoretical value together with the standard
deviation of the mean δn. See the text for details. The left
and right plots are obtained by W = 10 runs of the simulated
experiments presented in fig. 2b and fig. 2c, respectively.

consider them in our analysis), but it is still crucial for
a reliable reconstruction. In fact, the first steep and well-
recognizable oscillations may be obtained also by means of
photon distributions quite different from the actual one,
whereas in order to describe also the small oscillations
appearing as τ increases, one is led towards the actual
distributions.
On the other hand, the fluctuations in the reconstructed

distribution are essentially due to the fluctuations of
the data themselves. The overall accuracy of the ML
reconstruction can be estimated either by modeling the
statistics of counts [20] or, more directly, by virtue of the
central limit theorem, by repeated experiments. Let us
denote by pn(h) the photon distribution as obtained by
ML reconstruction in the h-th run. Then, the fluctuations
of each run may be simply evaluated as the sample
variance

Var(pn)=
1

W

W∑
h=1

[pn(h)−〈pn〉]2 , (6)

where W is the number of runs and

〈pn〉= 1
W

W∑
h=1

pn(h)

is the total mean.
In order to assess statistical reliability and accuracy

we compare the absolute deviations ∆n = pn−〈pn〉
of the reconstructed distribution from the theoretical
values pn with the standard deviation of the mean
δn ≡

√
Var(pn)/W . The results for the MA and DP

cases, i.e., the regimes with many-component photon
distributions, are reported in fig. 5 for the simulated
experiments described in fig. 2b and fig. 2c. As it is
apparent from the plot, about 99% of the determinations
are within two standard deviations from the theoretical
value, thus confirming the statistical reliability of the
method.
Another issue to be addressed is that concerning the

choice of the truncation dimension ñ, which, in turn,

may be a relevant parameter for the reliability of the
reconstruction procedure. Our strategy has been that of
starting with a very large truncation dimension and then
reducing it step by step until a loss of normalization has
been reached. This procedure may be expensive in terms
of computational resources, but ensures to circumvent the
introduction of spurious information. On the other hand,
a systematic analysis may be carried out analyzing the
spectrum of the so-called G-operator [18].

Summary and conclusions. – We have suggested
a novel iterative method to reconstruct the full photon
distribution of the cavity field of a micromaser at the
steady state starting from the statistics of the probe atoms
leaving the cavity after different interaction times. Our
methods works effectively using a small number of atoms
and a limited sampling of the interaction times. This
features, together with its accuracy and fast convergence,
make it suitable for being used on-line with experiments.
The method has been tested by numerically simulated
experiments showing that it may be reliably used in any
steady-state regime of the micromaser leading to high-
fidelity reconstructions for single-peaked distributions as
well as for double-peaked ones and for trapping states.
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