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Abstract
We address the nonlocality of fully inseparable three-mode Gaussian states
generated either by bilinear three-mode Hamiltonians or by a sequence of
bilinear two-mode Hamiltonians. Two different tests revealing nonlocality
are considered, in which the dichotomic Bell operator is represented by the
displaced parity and by the pseudospin operator respectively. Three-mode
states are also considered as a conditional source of two-mode non-Gaussian
states, whose nonlocality properties are analysed. We found that the
non-Gaussian character of the conditional states allows violation of Bell’s
inequalities (by parity and pseudospin tests) stronger than with a
conventional twin-beam state. However, the non-Gaussian character is not
sufficient to reveal nonlocality through a dichotomized quadrature
measurement strategy.

Keywords: nonlocality, Bell’s inequalities, continuous variables

1. Introduction

Einstein, Podolsky and Rosen (EPR) formulated their famous
argument about the completeness of quantum mechanics in
the framework of continuous variable systems [1]. However,
after Bohm gave a dichotomized version of it [2], the debate
concerning nonlocality moved to systems described by discrete
variables, leading Bell to formulate his celebrated inequalities
in a dichotomized fashion [3]. Recently the increasing
importance of continuous variable systems led many authors
to explore the nonlocality issue in its original setting, where
dichotomic observables to test Bell’s inequalities are not
uniquely determined. The attempts to translate Bell’s
inequalities to continuous variable systems clarified the fact
that crucial in a nonlocality test is the existence of a set of
dichotomized bounded observables used to perform the test
itself, from which the so called ‘Bell operator’ is derived.
The more debated question has dealt with the nonlocality
of the normalized version of the original EPR state, i.e. the
twin-beam (TWB) state of radiation produced by spontaneous
downconversion in a parametric amplifier [4]. The nonlocality
of the TWB state was not clear for a long time. Using
the Wigner function approach, Bell argued that the original
EPR state, and as a consequence the TWB too, does not
exhibit nonlocality because its Wigner function is positive,
and therefore represents a local hidden variable description [5].
More recently, Banaszek and Wodkiewicz [6] showed instead

how to reveal nonlocality of the EPR state through the
measurement of the displaced parity operator. Furthermore, a
subsequent work of Chen et al [7] showed that TWB’s violation
of Bell’s inequalities may achieve the maximum value admitted
by quantum mechanics upon a suitable choice of the measured
observables. Indeed, the amount of violation crucially depends
on the kind of Bell operator adopted in the analysis, ranging
from no violation to maximal violation for the same (entangled)
quantum state.

Systems which involve only two parties are the simplest
settings in which to study violation of local realism in quantum
mechanics. A more complex scenario arises if multipartite
systems are considered. Studying the peculiar quantum
features of these systems is worthwhile in view of their
relevance in the development of quantum communication
technology, e.g. to manipulate and distribute information in
a quantum communication network [8, 9]. Although the
study of multipartite nonlocality has originated without the
use of inequalities [10], an approach to derive Bell inequalities
has also been developed [11] for these systems and applied
to characterize their entanglement properties [12]. Being
originally developed in the framework of discrete variables,
these multiparty Bell inequalities have also found application
in the characterization of continuous variable systems [13, 14].

The aim of this paper is to apply the various approaches
hitherto developed to test the nonlocality of two- and three-
mode continuous variable systems. We will consider tripartite
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Gaussian states as well as non-Gaussian bipartite states. In the
first case strong violation of Bell inequalities is found, allowing
the Bell factor to reach values of B � 3, while in the second
case enhancement of nonlocality is obtained in comparison
with the TWB case.

The paper is organized as follows. In section 2 we review
the different approaches to test nonlocality in the framework
of continuous variables and introduce notation that will be
used throughout the paper. The three-mode states we are
interested in are introduced in section 3, and their violation of
local realism is analysed in sections 3.1 and 3.2. In section 4,
the tripartite states are considered as sources for conditional
generation of non-Gaussian bipartite states, whose nonlocal
proprties are then studied in sections 4.1, 4.2 and 4.3. Finally,
the main results obtained are summarized in section 5, which
closes the paper with some concluding remarks.

2. Nonlocality tests for continuous variables

In this section we will briefly recall the inequalities imposed
by local realism in the cases of our interest. Let us start by
focusing our attention on a bipartite system. Let m(α1) = ±1
and m(α′

1) = ±1 denote two possible outcomes of two
possible measurements on the first subsystem and similarly
m(α2) = ±1 and m(α′

2) = ±1 for the second subsystem. The
essential feature of these measurements is that they are local,
dichotomic and bounded. The Bell combination

F2 ≡ m(α1)m(α2) + m(α1)m(α
′
2)

+ m(α′
1)m(α2)− m(α′

1)m(α
′
2) (1)

under the assumption of local realism gives rise to the well
known Bell–CHSH inequality [15]:

B2 ≡ |E(α1, α2) + E(α1, α
′
2) + E(α′

1, α2)− E(α′
1, α

′
2)| � 2,

(2)
where E(α1, α2) is the correlation function between the
measurement results, i.e., the expectation value of the products
of the results of the experiments m(α1) and m(α2).

In the case of an n-partite system, a nonlocality test
is possible using the Bell–Klyshko inequalities [11, 12]
which provides a generalization of inequality (2). These
inequalities are based on the following recursively defined
linear combination:

Fn ≡ 1
2 [m(αn) + m(α′

n)]Fn−1 + 1
2 [m(αn)− m(α′

n)]F ′
n−1, (3)

where m(αn) = ±1 and m(α′
n) = ±1 refer to measurements on

the nth party of the system, and F ′
n denotes the same expression

as Fn but with all the α j and α′
j exchanged. In the case of

a three-partite system, local realism assumption imposes the
following inequality from combination (3):

B3 ≡ |E(α1, α2, α
′
3) + E(α1, α

′
2, α3) + E(α′

1, α2, α3)

− E(α′
1, α

′
2, α

′
3)| � 2, (4)

where again E(α1, α2, α3) is the correlation function between
the measurement results. Quantum mechanical systems can
violate inequalities (2) and (4) by a maximal amount given by,
respectively, B2 � 2

√
2 and B3 � 4 (see, e.g., [12]).

We now briefly review three different strategies to reveal
quantum nonlocality in the framework of continuous variable
systems. Recall that in the case of a discrete bipartite system,

for example a spin- 1
2 two-particle system, the local dichotomic

bounded observable usually taken into account is the spin of
the particle in a fixed direction, say d. Hence the correlation
between two measurements performed over the two particles
is E(d1,d2) = 〈d1σ ⊗ d2σ〉, where the operator σ =
(σx , σy, σz) is decomposed on the Pauli matrix base and d1,d2

are two unit vectors. The quantum Bell operator analogue to
F2 in equation (1) is then given by the expression

B2,sp = d1σ ⊗ d2σ + d′
1σ ⊗ d2σ + d1σ ⊗ d′

2σ

− d′
1σ ⊗ d′

2σ. (5)

Consider now a n-partite continuous variable system
identified by the creation operator a†

j and the annihilation
operator a j ( j = 1, . . . , n) with associated boson commutation
relations. Following the original argument by EPR it is quite
natural to attempt to reveal the nonlocality of this system by
trying to infer quadratures of one subsystem from those of
the others. From now on, we will refer to this procedure as
a ‘homodyne nonlocality test’, as quadrature measurements
of radiation field are performed through homodyne detection.
Here we identify the quadrature x j (θ) according to the
definition xθj = 1√

2
(a j e−iθ + a†

j e
iθ ). As they are local but

neither bounded nor dichotomic, quadrature observables are
not immediately suitable to perform a nonlocality test based on
Bell’s inequalities. The procedure to make them bounded and
dichotomic is quite arbitrary and consists in the assignment
of two domains D+ and D− to each observable [16]. When
the result of a quadrature measurement falls in the domain
D± the value ±1 is associated with it. Usually the choice
D± = R

± is considered, though a choice suitable to the system
under investigation may be preferable. Considering a bipartite
system we can introduce the following quantities:

P++(x
θ
1 , xϕ2 ) =

∫
D+

dxθ1

∫
D+

dxϕ2 P(xθ1 , xϕ2 )

P+−(xθ1 , xϕ2 ) =
∫

D+

dxθ1

∫
D−

dxϕ2 P(xθ1 , xϕ2 )

P−+(x
θ
1 , xϕ2 ) =

∫
D−

dxθ1

∫
D+

dxϕ2 P(xθ1 , xϕ2 )

P−−(xθ1 , xϕ2 ) =
∫

D−
dxθ1

∫
D−

dxϕ2 P(xθ1 , xϕ2 ),

(6)

where P(xθ1 , xϕ2 ) is the joint probability distribution of the
quadratures xθ1 and xϕ2 . We can now identify the homodyne
correlation function EH (θ, ϕ) as

EH (θ, ϕ) = P++(x
θ
1 , xϕ2 ) + P−−(xθ1 , xϕ2 )

− P+−(xθ1 , xϕ2 )− P−+(x
θ
1 , xϕ2 ), (7)

which can be straightforwardly used to construct the Bell
combination B2,H of equation (2) and to perform the
nonlocality test. The main problem of pursuing such a
nonlocality test is that it is not suitable in the case of systems
described by a positive Wigner function, as the TWB state
of radiation defined as |X〉 = √

1 − X2
∑

n Xn|n n〉, where
X = tanh r and r is the squeezing parameter. Indeed, a
positive Wigner function can be interpreted as a hidden phase-
space probability distribution, preventing violation of the Bell–
CHSH inequality unless the measured observables have an
unbounded Wigner representation, which is not the case of
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the dichotomized quadrature measurement described above.
Considering in fact that P(xθ1 , xϕ2 ) can be determined as a
marginal distribution from the Wigner function, one can write
from equations (6) and (7)

EH (θ, ϕ) =
∫

dxθ1 dxϕ2 dx
θ+ π

2
1 dx

ϕ+ π
2

2 sgn(xθ1 , xϕ2 )

× W (xθ1 , x
θ+ π

2
1 , xϕ2 , x

ϕ+ π
2

2 ), (8)

where the integration is performed over the whole phase-space
and without loss of generality we have considered D± = R

±.
Equation (8) itself is indeed a local hidden variable description
of the correlation function, hence obeying inequality (2).

In order to overcome this obstacle different strategies have
been considered by many authors, based essentially on parity
measurements. Banaszek and Wodkiewicz [6] demonstrated
the nonlocality of the TWB, considering as a local observable
on subsystem j the parity operator on the state displaced by
α j (hence we will refer to this procedure as a ‘displaced parity
(DP) nonlocality test’), which is dichotomic and bounded:

�(α) =
n⊗

j=1

D j (α j )(−1)n j D†
j (α j ). (9)

In the above formula, α = (α1, . . . , αn), while n j = a†a and
D j (α j ) = exp[α j a

†
j − α∗

j a j ] denote the number operator and
the phase space displacement operator for the subsystem j .
Hence the correlation function reads

EDP(α) = 〈�(α)〉, (10)

from which Bell’s combinationsB2,DP in equation (2) andB3,DP

in equation (4) can be easily reconstructed in the cases n = 2, 3.
The reason why this procedure would also be able to reveal
nonlocality in the case of quantum states characterized by a
positive Wigner function is clear using the following relation:

W (α) =
(

2

π

)n

〈�(α)〉. (11)

Indeed, the analogue of equation (8) is

EDP(α) =
∫

d2nλ

(
2

π

)n

W (α)δ(2n)(α − λ). (12)

The Dirac-δ distribution being unbounded, inequations (2)
and (4) are no longer necessarily valid forB2,DP and B3,DP. The
maximal violation found with this procedure for a EPR state
is B2,DP � 2.32 [17], still far from the maximum violation
admitted by quantum mechanics.

Another strategy, developed by Chen et al [7], shares a
similar behaviour as the one described above, allowing us to
reveal the nonlocality for quantum states with positive Wigner
function. Interestingly, this type of nonlocality test, which we
will refer to as a ‘pseudospin (PS) nonlocality test’, admits
a maximum violation for the EPR state. It can be seen as
a generalization to continuous variable systems of the one
introduced by Gisin and Peres for the case of discrete variable
systems [18], hence, for the case of a pure bipartite system, it
is equivalent to an entanglement test [17]. Let us consider the
following set of operators, known as pseudospins in view of

their commutation relations, sj = (s j
x , s j

y , s j
z ) acting on the j th

subsystem

s j
z =

∞∑
n=0

(|2n + 1〉 j 〈2n + 1| − |2n〉 j 〈2n|),

s j
x ± s j

y = 2s j
±,

d j s j = s j
z cos θ j + sin θ j(eiϕ j

s j
− + e−iϕ j

s j
+),

(13)

where s j
− = ∑∞

n=0 |2n〉 j 〈2n +1| = (s j
+)

† and d j is a unit vector
associated with the angles θ j and ϕ j . In analogy to the spin- 1

2
system and defining d = (d1, . . . ,dn) the correlation function
is simply given by

EPS(d) =
〈

n⊗
j=1

d j s j

〉
, (14)

from which the Bell combinations B2,PS and B3,PS are
evaluated. Different representations of the spin- 1

2 algebra
have also been discussed in the recent literature [19, 20].
In particular in [20] it has been pointed out that different
representations lead to different expectation values of the
Bell operators. Hence, the violation of the Bell inequality
for continuous variable systems turns out to depend on,
besides orientational parameters, also configurational ones. In
the following sections we will also consider the pseudospin
operators Π j = (�

j
x ,�

j
y,�

j
z ) taken into account in [20],

which have the following Wigner representation:

W
�

j
x
= sgn x j W

�
j
y
= −δ(x j )P

1

y j

W
�

j
z
= −πδ(x j )δ(y j ),

(15)

where x j = x0
j , y j = x

π
2
j andP stands for the ‘principal value’.

The correlation function obtained using operators Π j will be
indicated as E ′

PS(d) = 〈⊗n
j=1d jΠ j 〉.

3. Three-mode nonlocality

In this section we will analyse the nonlocal properties of
tripartite Gaussian states. In particular, we will consider two
classes of states, the first one proposed by Van Loock and
Braunstein [13], the second one proposed in [21]. The reason
why we consider these two classes is that the first is a very
natural and scalable way to produce multimode entanglement
using only passive optical elements and single squeezers,
while the second one is the simplest way to produce three-
mode entanglement using a single nonlinear optical device.
Indeed, both states can be achieved experimentally [22, 23].
As concerns the first class of states, it is generated with
the aid of three single-mode squeezed states combined in a
‘tritter’ (a three-mode generalization of a beam-splitter). The
evolution is then ruled by a sequence of single- and two-mode
quadratic Hamiltonians. As a consequence, being generated
from vacuum, the three-mode entangled state is Gaussian and
its Wigner function is given by

WS(x, y) = 1

π3
exp

[
−(x, y)C−1

(
x
y

)]
, (16)
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where x = (x1, x2, x3), y = (y1, y2, y3) are the positions and
momenta of the three modes and C−1 is the inverse of the
covariance matrix, whose explicit expression reads

C =




R S S 0 0 0
S R S 0 0 0
S S R 0 0 0
0 0 0 T −S −S
0 0 0 −S T −S
0 0 0 −S −S T



, (17)

where R = cosh 2r + 1
3 sinh 2r , T = cosh 2r − 1

3 sinh 2r ,
S = − 4

3 cosh r sinh r and r is the squeezing parameter (with
equal squeezing in all initial modes). The second class of
tripartite entangled states is generated in a single nonlinear
crystal through the following interaction Hamiltonian:

Hint = γ1a†
1a†

3 + γ2a†
2a3 + H.c. (18)

Hint describes two interlinked bilinear interactions taking place
among three modes of the radiation field coupled with the
support of two parametric pumps. It can be realized in χ(2)

media by a suitable configuration exposed in [23]. Notice
that the same dynamics can be implemented in different
physical systems, including optomechanical couplers and
Bose–Einstein condensates in the linear regime [24–26]. The
effective coupling constants γ j , j = 1, 2, of the two parametric
processes are proportional to the nonlinear susceptibilities and
the pump intensities. If we take the vacuum |0〉 ≡ |0〉1 ⊗
|0〉2 ⊗|0〉3 as the initial state, the evolved state |T〉 = e−iHint t |0〉
belongs to the class of the coherent states of SU (2, 1) and it
reads [24, 27]

|T〉 = 1√
1 + N1

∑
pq

(
N2

1 + N1

)p/2( N3

1 + N1

)q/2

× e−i(pφ2+qφ3)

√
(p + q)!

p!q!
|p + q, p, q〉, (19)

where N j (t) = 〈a†
j (t)a(t)〉 represents the average number of

photons in the j th mode and φ j are phase factors. The explicit
expressions of N j (t) are

N2 = |γ1|2|γ2|2
�4

[cos�t − 1]2,

N3 = |γ1|2
�2

sin2(�t),

(20)

with � = √|γ2|2 − |γ1|2 and N1 = N2 + N3. For this second
class, the initial state Gaussian and the Hamiltonian being
quadratic, the evolved states will also be Gaussian. The Wigner
function reads as follows [21, 28]:

WT (x, y) = 1

π3
exp

[
−(x, y)V−1

(
x
y

)]
, (21)

where V−1 is the inverse of the covariance matrix, whose
explicit expression is

V =




F A B 0 −D −E
A G C −D 0 L
B C H −E −L 0
0 −D −E F −A −B

−D 0 −L −A G C
−E L 0 −B C H



, (22)
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Figure 1. Plot of the Bell combination (24). Only values violating
Bell inequality (4) are shown.

where

A = 2
√

N2(1 + N1) cosφ2 D = 2
√

N2(1 + N1) sinφ2

F = 2N1 + 1 B = 2
√

N3(1 + N1) cos φ3

E = 2
√

N3(1 + N1) sin φ3 G = 2N2 + 1

C = 2
√

N2 N3 cos(φ2 − φ3) L = 2
√

N2 N3 sin(φ2 − φ3)

H = 2N3 + 1.

(23)

Both classes of states are fully inseparable for any value of
the coupling constants; namely, they cannot be written as a
factorized state for any grouping of the modes. Therefore, they
are good candidates to reveal true tripartite nonlocality. Being
Gaussian states, however, nonlocality cannot be revealed by
homodyne detection. In the following we analyse the results
for displaced parity and pseudospin tests.

3.1. Displaced parity test

Let us start the study of tripartite system nonlocality using the
‘displaced parity test’. Considering the correlation function
EDP(α) given by equation (10), the state (16) was found in [13]
to give a maximal violation of B3,DP � 2.32 in the limit of
large squeezing and small displacement. The study in [13]
however was performed for a particular choice of displacement
parameters: α1 = α2 = α3 = 0 and α′

1 = α′
2 = α′

3 = i
√
J .

A numerical optimization of the displacement parameters
led us to identify a number of parametrizations that allow
a significantly higher violation of Bell’s inequality. As an
example, consider the one given by α1 = α2 = α3 = i

√
J and

α′
1 = α′

2 = α′
3 = −2i

√
J from which it follows that

B3,DP = 3 exp(−12e−2rJ )− exp(24e2rJ ), (24)

hence the remarkably high asymptotic value of B3,DP = 3 is
found for large r and J 
= 0 (see figure 1). The importance of
a suitable choice of the displacement parameters is apparent
if this asymptotic value is compared to the violations obtained
in the nonlocality study performed in [13]. In that work in
fact generalizations to more than three modes of state (16)
were also considered, giving an increasing violation of Bell
inequality as the number of modes increases, but never finding
a violation greater than 2.8. Determining the optimal choice
of the displacement parameters for a given state is in general
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Figure 2. Bell combination obtained choosing optimized
displacement parameters for state (19) (see text for details). Only
values violating Bell inequality (4) are shown.

a challenging task. To our knowledge indeed there exists no
general prescription to find it, and ultimately one must rely onto
a numerical analysis (see, e.g. [29]). Nevertheless, a careful
inspection of the symmetries of the state under consideration
may be helpful. In order to clarify this observation let us
consider the explicit expression of the correlation function
EDP(α1, α2, α3) for state (16):

E(α1, α2, α3) = exp
{
− 2

3 e2r [(y1 + y2 + y3)
2 + (x2 − x3)

2

+ (x2 − x1)
2 + (x1 − x3)

2] − 2
3 e−2r [(x1 + x2 + x3)

2

+ (y2 − y3)
2 + (y2 − y1)

2 + (y1 − y3)
2]
}
. (25)

Hence, from equation (4) it follows that the Bell combination
B3,DP is given by the sum of three positive terms and one
negative one. It is reasonable to expect that the maximal
violation of nonlocality will be achieved for large r . We
see from equation (25) that, in this limit, all the correlation
functions inB3,DP vanish for nonzero displacements, unless the
coefficients of e2 r are zero. Hence we impose the following
system of equations, which allows the three positive terms in
B3,DP not to vanish (we considerαk = xk +iyk andα′

k = x ′
k +iy ′

k
for k = 1, 2, 3):

(y ′
1 + y2 + y3)

2 + (x2 − x3)
2 + (x2 − x ′

1)
2 + (x ′

1 − x3)
2 = 0

(y1 + y ′
2 + y3)

2 + (x ′
2 − x3)

2 + (x ′
2 − x1)

2 + (x1 − x3)
2 = 0

(y1 + y2 + y ′
3)

2 + (x2 − x ′
3)

2 + (x2 − x1)
2 + (x1 − x ′

3)
2 = 0.

(26)

We see that the parametrization used to obtain equation (24) is a
solution of this system. Clearly, any other solution will give, in
the limit of large r , the same violation given by equation (24),
namely B3,DP → 3. In order to compare the violation of Bell’s
inequality admitted by the state (16) with the one that will
be obtained below considering the state (19), it is useful to
rewrite equation (24) as a function of total mean photon number
N = N1 + N2 + N3. Given that N = 3 sinh2 r and optimizing
the displacement J we obtain the result shown in figure 3.
The asymptotic expression of the optimized displacement as

a function of N is J = 1
8N arcsinh

(√
N
3

)
, hence very small

angles are required.

N

B

2.2

2.4

2.6

2.8

3

5 10 15 20

Figure 3. Bell combination B3,DP for state (16), dotted curve,
and (19), solid curve. The displacement parameters J have been
optimized to give the maximum value of B for N fixed.

Consider now the tripartite state generated by the
Hamiltonian (18). The correlation function is now given by
equation (10) through the Wigner function (21). The symmetry
of the state suggests a maximum violation of the Bell inequality
for N2 = N3 = N/4 (recalling equation (20)), while the
fact that the separability of the state does not depend on the
phases φ2 and φ3 [21] suggests that they are not crucial for the
nonlocality test. If we consider the same parametrization that
led us to equation (24) and fix φ2 = φ3 = π , we find

B3,DP

= −1 + e
6J

(
1+N+2

√
2

√
N(2+N)

)
+ 2e

3
2 J

(
4+7N+6

√
2

√
N(2+N)

)

e
4J

(
3+3N+2

√
2

√
N(2+N)

) ,

(27)

from which follows an asymptotic violation of Bell’s
inequalities of B3,DP � 2.89, for large N and small J . A
slightly better result is found if a parametrization more suitable
and numerically optimized for state (19) is considered: α1 =
2
3

√
J , α2 = α3 = α′

1 = 0, α′
2 = −√

J , α′
3 = √

J , φ2 = 0
and φ2 = π . The Bell combination B3,DP for this choice
of parameters is depicted in figure 2. We note that in this
case a larger choice of angles allows the violation of the Bell
inequality if compared with figure 1. As before, optimizing the
displacement J for each N , it is possible to find the maximum
violation of the Bell inequality as a function of N . We find that
the asymptotic relation between the optimized displacement
and the total photon number is now J N � 3.21, confirming
that not too small displacements are required. The asymptotic
violation of Bell’s inequality is nowB3,DP � 2.99. To compare
the results obtained for the two states (16) and (19) we have
plotted in figure 3 the Bell combination B3,DP as a function of
the mean total energy N , while the displacement J has been
chosen in order to maximize B3,DP at fixed energy. Notice
that even if the two states have exactly the same asymptotic
violation, state (16) reaches it for lower energies.

3.2. Pseudospin test

Consider now the pseudospin nonlocality test. Let us calculate
the expectation value of the correlation function (14) for the
state |T 〉 (for simplicity we consider φ2 = φ3 = 0). The only
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non-vanishing contributions are given by

c1 = 〈s1
z ⊗ s2

x ⊗ s3
x 〉 = 〈s1

z ⊗ s2
y ⊗ s3

y〉

= −
√

N2 N3

2(1 + N1)2

∑
s,t

(
N2

1 + N1

)2s( N3

1 + N1

)2t

× (2s + 2t + 1)!

(2s)!(2t)!
√
(2s + 1)(2t + 1)

,

c2 = 〈s1
x ⊗ s2

z ⊗ s3
x 〉 = −〈s1

y ⊗ s2
z ⊗ s3

y〉

=
√

N3

2(1 + N1)3/2

∑
s,t

(
N2

1 + N1

)2s( N3

1 + N1

)2t

× (2s + 2t)!

(2s)!(2t)!

√
2s + 2t + 1

2t + 1
,

c3 = 〈s1
x ⊗ s2

x ⊗ s3
z 〉 = −〈s1

y ⊗ s2
x ⊗ s3

z 〉

=
√

N2

2(1 + N1)3/2

∑
s,t

(
N2

1 + N1

)2s( N3

1 + N1

)2t

× (2s + 2t)!

(2s)!(2t)!

√
2s + 2t + 1

2s + 1
, (28)

and by 〈s1
z ⊗ s2

z ⊗ s3
z 〉 = 1. The correlation function then,

according to equations (13) and (14), reads as follows:

EPS(d) = cos θ1 cos θ2 cos θ3

+ c1 cos θ1 sin θ2 sin θ3(cosϕ2 cosϕ3 + sin ϕ2 sin ϕ3)

+ c2 cos θ2 sin θ1 sin θ3(cos ϕ1 cosϕ3 − sin ϕ1 sin ϕ3)

+ c3 cos θ3 sin θ1 sin θ2(cosϕ1 cos ϕ2 + sin ϕ1 sin ϕ2).

(29)

Hence, without loss of generality, we can fix for example
ϕ1 = 0 and ϕ2 = ϕ3 = π and look for the maximum
violation of Bell inequality (4) constructed from equation (29).
Notice that if the coefficients ci (i = 1, 2, 3) were equal to one
then the maximum violation admitted, B3,PS = 4, should be
reached. Considering equation (28) two limiting cases can be
studied. First, for large N2 and small N3 (or vice versa) a
numerical evaluation of the coefficients ci shows that c3 → 1,
while the other two vanish. Hence, considering θ3 = 0, the
correlation function (29) reduces to that of a TWB subjected
to a pseudospin nonlocality test (see equation (39) below),
hence allowing an asymptotic violation of B3,PS = 2

√
2. This

result should be expected, since in this limiting case state (19)
reduces to a TWB for modes a1 and a2, while mode a3 remains
in the vacuum state and factors out. Consider now the case in
which N2 = N3 = N/4. A numerical evaluation shows that
the coefficients ci → 1

2 for large N , hence also in this case
the maximum violation cannot be attained. The asymptotic
violation turns out to be B3,PS � 2.63.

As already mentioned in section 2 other representations
for the pseudospin operators can be considered. Using
equations (15) and (21) it is possible to calculate the correlation
function E ′

PS(d). Setting again the azimuthal angles ϕi = 0,
the latter shows the same structure as EPS(d) where now the
coefficients ci are replaced by

c′
1 =

2 arctan
(

N
2
√

1+N

)

π(1 + N)
c′

2 = c′
3 = 2 arctan

√
N

π(1 + N
2 )

. (30)

An appropriate choice of angles leads to a maximal violation
of Bell’s inequality given by B3,PS � 2.22 (see figure 4), which

N

B

0 2 4 6 8

1.8

1.9

2

2.1

2.2

Figure 4. Plot of Bell combination B3,PS for states (21) and (16),
solid and dashed curves respectively. N is the total number of
photons as in figure 3.

is now reached for N � 1, a value for which the coefficients
c′

i are approximately near their maxima. As already pointed
out, we see that different representations of the pseudospin
operators give rise to different expectation values for the Bell
operator.

Applying now the same procedure to state (16) we find
the same structure for the correlation function E ′

PS, where the
coefficients are now given by

c′
1 = c′

2 = c′
3 =

−6 arctan
( 4 cosh(r) sinh(r)√

3(2+e4r)

)

π
√

5 + 4 cosh(4r)
. (31)

After an optimization of the angles θ i we obtain a maximal
violation of B3,PS � 2.09 (see figure 4), for r � 0.42
(N � 0.56) that maximizes the coefficients ci .

4. Degaussified state and two-mode nonlocality

In this section we consider the tripartite state (19) as a source
of two-mode states. In particular, we study the nonlocality
of a two-mode non-Gaussian state obtained by a conditional
measurement performed on state (19).

Gaussian states are at the heart of quantum information
processing with continuous variables. The reason for
this is that the character of the vacuum state of quantum
electrodynamics is Gaussian. This observation, in
combination with the fact that the quantum evolutions
achievable with current technology are described by
Hamiltonian operators at most bilinear in the quantum fields,
accounts for the fact that the states commonly produced
in laboratories are Gaussian. In fact, bilinear evolutions
preserve the Gaussian character of the vacuum state. In
addition, it is worth noticing that the operation of tracing
out a mode from a multipartite Gaussian state preserves the
Gaussian character too, and the same observation is valid
when the evolution of a state in a standard noisy channel is
considered. Indeed, the only feasible way to ‘degaussify’ a
state is through a conditional measurement, or by statistically
mixing it with another Gaussian state. The reason to study non-
Gaussian states is that when the Gaussian character is lost, then
immediately the Wigner function of the state becomes negative,
for pure states, hence stronger nonclassical properties should
emerge. Actually, various authors have recently investigated
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the nonlocality properties of two-mode non-Gaussian states. In
particular, a twin-beam state subjected to inconclusive photon
subtraction (IPS state) has been considered in [30] and [31],
while in [17] it has been pointed out that if the entangled
coherent states [32] could be produced experimentally they
would allow for the maximal violation (i.e., B2 = 2

√
2) both

in the case of a DP test as well as a PS test.
The most natural way to obtain a non-Gaussian state from

a Gaussian one is by elimination of its vacuum component.
In fact, such a state is necessarily described by a negative
Wigner function (in fact 〈0|�|0〉 ∝ ∫

d2nα W (α)e−2|α|2 ). Due
to the structure of state (19) its vacuum component can be
subtracted by a conditional measurement on mode a3, the same
observation being valid for mode a2. Consider a photodetector
able to distinguish only the presence or the lack of photons,
i.e., an ON/OFF photodetector, and the state �1 conditioned to
the presence of at least one photon. The probability operator
measure (POVM) is two valued, {�0,�1},�0 +�1 = I, with
the element associated with the ‘no photon’ result given by

�0 = I1 ⊗ I2 ⊗
∑

n

(1 − η)n|n〉33〈n|, (32)

where η is the efficiency of the photodetector. The probability
of the outcome is given by

P1 = Tr123[|T〉〈T|�1] = ηN3

(1 + ηN3)
, (33)

while the conditional output state reads as follows:

�1 = 1

P1
Tr3[|T〉〈T|�1]

= 1 + ηN3

(1 + N1)ηN3

∞∑
p=1

(
N3

1 + N1

)p 1 − (1 − η)p

p!
(a†)p

×
∑
n,n′

(
N2

1 + N1

)n+n′

|n n〉〈n′ n′|a p

= 1 + ηN3

(1 + N1 + N2)ηN3

∞∑
p=1

(
N3

1 + N1

)p

× 1 − (1 − η)p

p!
(a†)p|X〉〈X |a p, (34)

where we have identified the TWB with X =
√

N2
1+N1

. To

calculate the Wigner function associated with stateρ1 , consider
that the characteristic function of the POVM �1 reads as
follows:

χ[�1](µ) = πδ2(µ)− 1

η
exp

[
−|µ|2 2 − η

2η

]
, (35)

hence the characteristic function of �1 is given by

χ[�1](λ1, λ2) = 1

P1

{
χ[|T 〉〈T |](λ1, λ2, 0)

− 1

η

∫
d2µ

π
χ[|T 〉〈T |](λ1, λ2, µ) exp

[
−|µ|2 2 − η

2η

]}
.

(36)

After some algebra the Wigner function associated with state
ρ1 can now be calculated. It reads as follows:
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Figure 5. Bell combination obtained choosing optimized
displacement parameters for state �1 (see text for details). Only
values violating inequality (2) are shown.

W1(x, y)

= 1 + ηN3

4ηN3

{(
2

π

)2 1√
det V ′ exp

[
−(x, y)(V′)−1

(
x
y

)]

− 1

η

(
2

π

)2 2√
det D

exp

[
−(x, y)(D−1)′

(
x
y

)]}
, (37)

where, from now on, x = (x1, x2), y = (y1, y2), and
D = V + diag

(
0, 0, 2−η

η
, 0, 0, 2−η

η

)
. In order to simplify the

notation we have indicated with O′ the 4 × 4 matrix obtained
from the 6×6 matrix O deleting the elements corresponding to
the third mode (third row/column and sixth row/column), due
to the trace over the third mode. Of course, the easiest way to
obtain a bipartite state from state (19) is to discard a mode, say
the third one, by tracing over it. The state �Tr then obtained is
simply given by the following Wigner function:

WTr(x, y) =
(

2

π

)2 1

4
√

det V ′ exp

[
−(x, y)(V′)−1

(
x
y

)]
.

(38)
The Wigner function WTr being Gaussian, we expect that this
state will exhibit weaker nonlocality with respect to state (34).
In the rest of the section the nonlocal properties of the usual
TWB state and of the states (34) and (38) will be compared.
Notice that state (16) can be considered as an extension to three
modes of the TWB. All of the three nonlocality tests introduced
in section 2 will be taken into account.

4.1. Displaced parity test

We first study the violation of inequality (2) in the case
of a ‘displaced parity test’. As already mentioned, in [6]
Banaszek and Wodkiewicz found for the first time that the
TWB state exhibits a violation of local realism. They
obtained the following asymptotic violation for infinite energy:
B2,DP � 2.19. Generalizing their procedure this result can
be improved, yielding to a maximum asymptotic violation
of B2,DP � 2.32 [17]. We have considered the following
parametrization to obtain the maximum violation for a TWB:
α1 = −α2 = i

√
J and α′

1 = −α′
2 = −3i

√
J . The asymptotic

relation between the squeezing parameter and the displacement
angles is e2rJ = log 3

32 . Using the same parametrization and
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considering the Bell combination B2,DP for the state �Tr, it
turns out that the same asymptotic value of the TWB is reached
for large N2 and small N3. In fact, as already noticed, when
this limit is considered the original tripartite state (19) reduces
to a factorized state composed by a TWB and the vacuum
state. Consider now the conditional state ρ1 and again the
case of large N2 and small N3, say N3 = 10−2 1

N2
. As in the

tripartite case the phase coefficients φ2 and φ3 play no rule in
the characterization of nonlocality. A stronger violation of Bell
inequality is then found and it is depicted in figure 5, where
the parametrization α1 = 1

2α2 = 1
3α

′
1 = i

√
J and α′

2 = 0 has
been adopted. Indeed the asymptotic violation is higher then
the previous, namely B2DP � 2.41. It can be found, for large
N2, when J N2 � 0.042. A comparison with the violation
of nonlocality attained with a IPS state shows an identical
asymptotic behaviour [31]. Nevertheless, the scheme proposed
here offers the advantage that the production rate of state �1

[i.e., the conditional probability (33)] is much greater then
the production rate of the IPS state [see [33], equation (14)].
This is due to the fact that only a single ON/OFF detection
is required to produce �1, rather than the coincidence of two
ON/OFF detections for the case of the IPS state. This could
be useful from a practical viewpoint.

4.2. Pseudospin test

Let us now focus on the ‘pseudospin nonlocality test’.
Considering a TWB state, it is known that the correlation
function (14) has the following expression (setting to zero the
azimuthal angles) [7]:

EPS(θ1, θ2) = cos θ1 cos θ2 + fTWB sin θ1 sin θ2, (39)

where, denoting by N the total photon number,

fTWB =
√

N(N + 2)

1 + N
. (40)

It turns out that the violation of Bell inequality in this context
increases monotonically to the maximum value of 2

√
2 as the

function fTWB goes to unity. A straightforward calculation
shows that an expression identical in form to equation (39) can
be found both in case of state �1 and �Tr, where the following
functions f1 and fTr can be identified:

f1 = 2

√
N2

1 + N1

(1 + N3η)

N3(1 + N1)η

∞∑
k,p=0

(2k + p)!

(2k)!p!

×
√

2k + p + 1

2k + 1
(1 − (1 − η)p)

(
N3

1 + N1

)p( N2

1 + N1

)2k

,

fTr = 2

√
N2

1 + N1

1

1 + N1

∞∑
p,q=0

(
N2

1 + N1

)2p( N3

1 + N1

)2q

× (2p + 2q)!

(2p)!(2q)!

√
2q + 2p + 1

2p + 1
. (41)

In order to compare the violations in the three different cases,
let us fix as in the previous subsection a small value for N3. A
plot of the functions fTWB, f1 and fTr versus the total number
of photons of the TWB for the former and of the initial three-
partite state for the latter two is given in figure (6). It can be
seen that state �1 achieves large violations for smaller energies
with respect to the other two states. Finally, a comparison with
the violation attained with the IPS state may be found in [34].

N
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Figure 6. Comparison between the values of the functions fTWB

(solid curve), f 1 (dotted curve) and fTr (dashed curve) defined in
the text (the summation has been numerically performed for η = 0.8
and N3 = 0.1).

4.3. Homodyne detection

The negativity of the Wigner function (37) may suggest
performing a nonlocality test based upon a homodyne detection
scheme. While the positivity of a Wigner function avoids
violating the Bell inequality (2) with such a test, its negativity
is yet not sufficient in general to ensure a violation. Quantum
states with a negative Wigner function that does not violate
local realism with a homodyne test are given for example
in [35]. Considering state (34) it is necessary to calculate the
correlation function (8). Substituting the Wigner function (37)
into equation (8) and performing the integral we obtain the
following result:

EH (ψ) = 1 + ηN3

4ηN3

{
−
(

2

π

)2 1√
det V ′

[
2(1 + 2N3)π

× arctan

(
2 cosψ√

(1+2N1)(1+2N2)

(1+N1)N2
− 4 cos2 ψ

)]

− 1

η

(
2

π

)2 2√
det D

[
2π(−1 + N3(−2 + η))

1 + N3η

× arctan

(
2 cosψ√

(1+2N1−N3η)(1+2N2+N3η)

(1+N1)N2
− 4 cos2 ψ

)]}
, (42)

whereψ = θ +ϕ+φ2. A plot of the correlation function (42) is
depicted in figure 7 for unitary efficiency η, together with the
classical correlation function of two spin- 1

2 particles [36] (see
the caption for details). Unfortunately, the comparison shows
clearly that the correlation given by equation (42) is always
lower then the classical one, hence despite the negativity of
Wigner function (37) no violation of the Bell inequality is
achievable with this scheme.

5. Conclusions

A detailed analysis of the nonlocality properties of multipartite
continuous variable systems obtained by parametric optical
systems has been presented, using the more recent approaches
developed with this aim. We have considered in particular
two classes of tripartite Gaussian states that seem promising
for quantum communication purposes in order to implement
multipartite quantum protocols. The results show that for
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Figure 7. Comparison between the correlation functions obtained
from two spin- 1

2 particles classically correlated (solid line) and from
equation (42): N2 = 0.5 (dotted curve), N2 = 1 (dot–dashed curve),
N2 = 5 (dashed curve). In all cases we have fixed N3 = 0.5 and
η = 1.

these states a nonlocality test based on displaced parity
measurements is more suitable to reveal violation of local
realism than one based on pseudospin operators. These
results are just the opposite of what have been obtained
for the bipartite case. Notice, however, that a systematic
approach to pseudospin operators for continuous variables has
not been developed yet, hence we have only used the two
inequivalent configurational parametrizations more suitable
for calculations. For the displaced parity test we obtained
a remarkably high asymptotic value for the Bell parameter,
B3,DP � 3. In this case the choice of a proper parametrization,
suitable for the state under investigation, has been revealed to
be crucial.

We have also explored the possibility of enhancing
nonlocality in bipartite systems considering states endowed
with a nonpositive Wigner function. We investigated a method
to conditionally produce such a state from the tripartite systems
considered above. As expected, the Bell parameter reaches a
value higher than for a TWB, namely B2,DP � 2.41. In the case
of a pseudospin test an enhancement of nonlocality has also
been demonstrated, while a violation of local realism using a
dichotomic quadrature measurement cannot be achieved.
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