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We address the balance of quantum correlations for continuous variable (CV) states.
In particular, we consider a class of feasible tripartite CV pure states and explicitly
prove two Koashi–Winter-like conservation laws involving Gaussian entanglement of
formation (EoF), Gaussian quantum discord and sub-system Von Neumann entropies.
We also address the class of tripartite CV mixed states resulting from the propagation
in a noisy environment, and discuss how the previous equalities evolve into inequalities.
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1. Introduction

Multipartite quantum correlations in continuous variable (CV) systems are valu-

able resources for quantum technology.1–8 Fully inseparable three-mode Gaussian

states9–11 have been proposed to realize cloning at distance,12,13 and experimental

schemes to generate multimode CV entangled states have been already suggested

and demonstrated.14–20

More recently, more general quantum correlations in bipartite Gaussian states

have been analyzed: Gaussian quantum discord has been introduced21,22 and ex-

perimentally investigated.23–25 For discrete variables several interesting relations

among the different measures of quantum correlations have been introduced26–33

with the aim of clarifying their different meaning and role.34

The dimension of the Hilbert space does not appear to play a crucial role and,

indeed, balance of correlations for CV systems has been derived in terms of the

Renyi entropy.35 In addition, balance of correlations in quantum measurements,
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and during the propagation in noisy channels, has been discussed both for discrete

and CVs.36–41

Motivated by these results, in this paper we investigate whether some form

of conservation laws for quantum correlations may be established for CV systems

and Gaussian measures of correlations. In particular, we consider a specific class

of feasible pure CV tripartite states, and analyze in detail the balance of Gaussian

correlations among the bipartite subsystems. We found that Koashi–Winter-like

relations, involving EoF, quantum discord and system entropies, may be generalized

to CVs using Gaussian measures of quantum correlations, at least for the class of

feasible states that we took into account. The results are encouraging enough to

suggest a direct experimental verification and to foster investigations of correlation

balance in more general Gaussian states. Our results may also be taken as an

argument in favor of the conjecture that Gaussian quantum discord is the quantum

discord for Gaussian states42 and contribute to the ongoing discussion on the nature

of quantum correlations in CV systems.43

The paper is structured as follows. In Sec. 2 we introduce the class of feasi-

ble tripartite Gaussian states we are going to consider. In Sec. 3 we present the

conservation laws for quantum correlations, whereas in Sec. 4 we consider the prop-

agation in a noisy environment, and discuss how the previous equalities evolve into

inequalities. Section 5 closes the paper with some concluding remarks.

2. A Class of Feasible Tripartite Gaussian States

Let us consider three-modes of a bosonic field, coupled through the interaction

Hamiltonian

H = γ1a
†c† + γ2b

†c+ h.c. (1)

The HamiltonianH describes, e.g., two interlinked bilinear interactions taking place

among three-modes of the radiation field. In fact, it has been studied long ago44,45

for the description of parametric processes in χ(2) media, assuming a suitable con-

figuration satisfying phase-matching conditions. Interaction schemes described by

H has been realized using a single χ(2) nonlinear crystal where the two interac-

tions take place simultaneously.19 The three-mode entanglement generated by H

may be indeed exploited to realize optimal cloning at distance of coherent states.20

Analogue interaction schemes may be realized in condensate systems.46,47

The Hamiltonian in Eq. (1) admits the constant of motion

K(t) ≡ NA(t)−NB(t)−NC(t) ≡ K(0) ,

where Nj(t) denotes the average number of photons in the jth mode. Starting

from the vacuum |0〉 ≡ |0〉1 ⊗ |0〉2 ⊗ |0〉3 we have K(0) = 0 and thus NA(t) =

NB(t) + NC(t)∀ t. The expressions for Nj(t) can be obtained by the Heisenberg

evolution of the field operators; upon introducing Ω =
√

|γ2|2 − |γ1|2 we have

NA = NB +NC , NB =
|γ1|2|γ2|2

Ω4
[cosΩt− 1]2 , NC =

|γ1|2
Ω2

sin2(Ωt) .
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The evolved state |T〉 = Ut|0〉 reads as follows

|T〉 = 1√
1 +NA

∑

nm

(

NB

1 +NA

)n/2(
NC

1 +NA

)m/2
√

(n+m)!

n!m!
|n+m,n,m〉 , (2)

where Ut = exp(−iHt) is the evolution operator. The states |T〉 are Gaussian

states, since they are generated from the vacuum by a bilinear Hamiltonian. Upon

introducing the canonical operators qk and pk, k = A,B,C, and the vector R =

(qA, pA, qB, pB, qC , pC)
T , it is straightforward to prove that the mean values of the

canonical operators are zero 〈R〉 ≡ 〈T|R|T〉 = 0, whereas the covariance matrix

(CM), whose elements are given by

Σhk =
1

2
〈{Rk, Rh}〉 − 〈Rk〉〈Rh〉 ,

can be written in the following block form:

ΣT =







DA OAB OAC

OAB DB OBC

OAC OBC DC






. (3)

where:

DA =

(

NA +
1

2

)1 , DB =

(

NB +
1

2

)1 , DC =

(

NC +
1

2

)1 , (4a)

OAB =
√

NB(NA + 1)P , OAC =
√

NC(NA + 1)P , OCB =
√

NBNC 1 ,
(4b)

with NA = NB +NC , 1 = Diag(1, 1) and P = Diag(1,−1). Since partial trace is a

Gaussian operation the single-mode partial traces:

̺A = TrBC

[

|T〉〈T|
]

, ̺B = TrAC

[

|T〉〈T|
]

, ̺C = TrAB

[

|T〉〈T|
]

,

and the two-mode ones

̺AB = TrC
[

|T〉〈T|
]

, ̺AC = TrB
[

|T〉〈T|
]

, ̺BC = TrA
[

|T〉〈T|
]

,

are Gaussian states as well. The corresponding CM may be obtained by dropping

the corresponding lines in ΣT. The single-mode partial traces thus have diagonal

CM σk = Dk, corresponding to thermal states:

ν(Nk) =
∑

p

Np
k

(Nk + 1)p+1
|p〉〈p| , k = A,B,C , (5)

and the corresponding von Neumann entropies are given by

Sk = f
(

√

detσk

)

= f

(

Nk +
1

2

)

,

where:

f(x) =

(

x+
1

2

)

ln

(

x+
1

2

)

−
(

x− 1

2

)

ln

(

x− 1

2

)

for x >
1

2
. (6)
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The CM of the two-mode partial traces are given by

σAB =

(

DA OAB

OAB DB

)

, σAC =

(

DA OAC

OAC DB

)

, σBC =

(

DB OBC

OBC DC

)

(7)

and are already in the so-called standard block form (to which any CM may be

brought by means of local symplectic transformations)

σ =

(

A C

C B

)

A = Diag(a, a) , B = Diag(b, b), C = Diag(c1, c2) .

For σAB and σAC we have c1 = −c2 whereas for σBC we have c1 = c2. This means

that ̺AB and ̺AC are squeezed thermal states (STS) of the form:

̺AB = S(r)ν(NC)⊗ |0〉〈0|S†(r) , sinh2 r =
NB

1 +NC
, (8)

̺AC = S(r)ν(NB)⊗ |0〉〈0|S†(r) , sinh2 r =
NC

1 +NB
, (9)

respectively, S(r) = exp{r(a†b† − ab)} being the two-mode squeezing operator,

whereas ̺BC corresponds to a mixed thermal state (MTS) that may equivalently

expressed as (recall that NA = NB +NC):

̺BC = U(φ)ν(NA)⊗ |0〉〈0|U †(φ) , cos2 φ =
NB

NB +NC
, (10)

̺BC = U(φ) |0〉〈0| ⊗ ν(NA)U
†(φ) , cos2 φ =

NC

NB +NC
, (11)

where U(φ) = exp{φ(a†b − ab†)} is a bilinear mixing operator describing e.g., the

action of a beam splitter.

3. Balance of Correlations

In order to investigate the correlations between the modes of the state |T〉, we intro-
duce the symplectic eigenvalues λ

(hk)
± of the two-mode state ̺hk and the minimum

symplectic eigenvalue λ̃
(hk)
− of its partial transpose, which may be obtained as48:

λ
(hk)
± = 2−1/2

√

Ih + Ik + 2Ihk ±
√

(Ih + Ik + 2Ihk)2 − 4Jhk ,

λ̃
(hk)
− = 2−1/2

√

Ih + Ik − 2Ihk −
√

(Ih + Ik − 2Ihk)2 − 4Jhk ,

(12)

respectively, where

Ik = detDk , Ihk = detOhk , Jhk = detσhk .

Note that:

Sk = f(
√

Ik) . (13)
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whereas the von Neumann entropies of the two-mode partial traces are given by

Shk = f(λ
(hk)
+ ) + f(λ

(hk)
− ) . (14)

The positivity of the state is equivalent to λ
(hk)
± ≥ (1/2) and the positivity of the

partially transposed state to λ̃
(hk)
− ≥ (1/2). The bipartite Gaussian state ̺hk is thus

entangled if and only if 0 ≤ λ̃
(hk)
− < (1/2). In our case we have

λ
(hk)
− =

1

2
and λ

(hk)
+ =

1

2
+Nj (15)

and thus the von Neumann entropy of any two-mode partial trace equals the von

Neumann entropy of the remaining (single) mode, in formula:

Shk = Sj (16)

where, in both Eqs. (15) and (16), we have h 6= k 6= j and h, k, j = A,B,C.

For the symplectic eigenvalues of the partial transposes we have

λ̃AB
− =

1√
2

[(

NA +
1

2

)2

+ 2NB(NA + 1) +

(

NB +
1

2

)2

− (NA +NB + 1)
√

4NB(NA + 1) +N2
C

]1/2

, (17)

λ̃AC
− = λ̃AB

− (NB ↔ NC) , (18)

λ̃BC
− =

[

(NB −NC)
2 +NB +NC +

1

2
− |NB −NC |

√

(NA + 1)2 − 4NBNC

]1/2

,

(19)

from which it is easy to see that for any value of NB and NC we have

0 ≤ λ̃
(AB)
− ≤ 1

2
, 0 ≤ λ̃

(AC)
− ≤ 1

2
, λ̃

(BC)
− ≥ 1

2
,

i.e., ̺AB and ̺AC are entangled states whereas ̺BC is separable. If 0 ≤ λ̃
(hk)
− <

(1/2), i.e., ̺hk is entangled, then the Gaussian EoF is given by

Ehk(̺) = f(yhk) ,

where49,50:

yhk =
(
√
Ih +

√
Ik)(

√
IhIk − |Ihk|+ 1/4)− 2

√

|Ihk|J̃hk
(
√
Ih +

√
Ik)2 − 4|Ihk|

, (20)

with J̃hk = det(σhk + (1/2)Ω), and the symplectic form Ω given by

Ω = ω ⊕ ω , ω =

(

0 1

−1 0

)

.
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In our case, ̺AB and ̺AC are entangled and we have:

yAB = yBA =
1

2
+

NB

1 +NC
, yAC = yCA =

1

2
+

NC

1 +NB
, (21)

respectively. On the other hand, being the state ̺BC separable, yBC = yCB = 1/2

and thus its EoF is zero.

For MTS and STS the Gaussian quantum discords D→(̺hk) ≡ Dhk and

D←(̺hk) ≡ Dkh (measurements performed on the first and second mode respec-

tively) may be expressed as21:

Dhk = f(
√

Ih) + f

(

√

Ik − 2|Ihk|
1 + 2

√
Ih

)

− f(λ
(hk)
− )− f(λ

(hk)
+ ) , (22a)

Dkh = f(
√

Ik) + f

(

√

Ih − 2|Ihk|
1 + 2

√
Ik

)

− f(λ
(hk)
− )− f(λ

(hk)
+ ) . (22b)

Starting from Eqs. (22) we can write a conservation law for the quantum corre-

lations of the two-modes state ̺hk. At first, we rewrite Eqs. (22) as follows:

Dhk + h(λ
(hk)
+ ) = Sh + f

(

√

Ik − 2|Ihk|
1 + 2

√
Ih

)

− f(λ
(hk)
− ) , (23a)

Dkh + h(λ
(hk)
+ ) = Sk + f

(

√

Ih − 2|Ihk|
1 + 2

√
Ik

)

− f(λ
(hk)
− ) , (23b)

where we used Eq. (13). Besides, for the state (2), Eqs. (15) say that f(λ
(hk)
− ) = 0

and f(λ
(hk)
+ ) = Sj , h 6= k 6= j, where we used the identity λ

(hk)
+ =

√

Ij . Further-

more, it is straightforward to verify that:

√

Ih − 2|Ihk|
1 + 2

√
Ik

= yhj (h 6= k 6= j) (24)

with yhj given in Eqs. (21). Summarizing, for the state |T〉 in Eq. (2), Eqs. (23)

leads to the following conservation laws

Dhk + Sj = Sh + Ekj , (25a)

Dhk + Shk = Sh + Ekj , (25b)

with h 6= k 6= j and h, k, j = A,B,C.

The above equalities are explicitly showing that Koashi–Winter-like conserva-

tion laws for quantum correlations may be written for CV systems using Gaussian

measures for quantum correlations, at least for the class of feasible states described

by Eq. (2). Equation (25b) is the direct counterpart of the balance of correlations

obtained for discrete variables, and thus we may expect, or conjecture, that it is

of general validity for CV systems. On the other hand, Eq. (25a) is due to the

specific properties of the state |T〉. Notice also that the validity of Eq. (25b) may

represent an argument in favor of the conjecture that Gaussian quantum discord is

the quantum discord for Gaussian states.42 Finally, we notice that both Eqs. (25a)
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and (25b) represent an independent check of the formula for the EoF in the case of

nonsymmetric states.50

4. Balance of Correlations in the Presence of Noise

In this section we investigate how, and to which extent, the conservation laws (25)

addressed in Sec. 3 are modified by the propagation of the state in noisy channels.

We assume that the three-modes evolve through three identical uncorrelated noisy

channels and that the Markovian approximation is valid. The propagation is thus

described by the following Master equation

˙̺t =
γ

2

∑

k=1,2,3

{

(Nth + 1)L[ak] +NthL[a†k]
}

̺t , (26)

where ̺t is the density matrix of the tripartite system described by the field oper-

ators a1 = a, a2 = b and a3 = c, L[a]̺t = 2a̺ta
† − a†a̺t − ̺ta

†a is the Lindblad

superoperator, γ is the overall damping rate, while Nth represents the effective

number of photons of the noisy channels.2 Upon preparing the three-modes in the

initial state |T〉, the Gaussian nature is preserved during the evolution and the

evolved CM Σt can be written as48:

Στ = e−τΣT + (1− e−τ )Σ∞ (27)

where we introduced τ = γt, ΣT is the CM of the initial state given in Eq. (3) and

Σ∞ = (1/2)(1+2Nth)14 is the asymptotic CM, 14 being the 4× 4 identity matrix.

By using the evolved CM (27) and its time-dependent local symplectic invari-

ants, we can calculate the quantities appearing in Eqs. (23). In particular, now one

has:

f(λ
(hk)
− ) ≥ 0 and f(λ

(hk)
+ ) ≤ Sj (28)

and, in turn, the equalities (25) changes into inequalities. The analytic expressions

of the evolved conservation laws may be evaluated analytically, but they are quite

clumsy and are not reported here explicitly.

In order to study the evolution of the law (25a) we define the following function:

∆hk(τ) = [Dhk(τ) + Sj(τ)] − [Sh(τ) + Ekj(τ)] , (29)

where all the involved quantities are calculated starting from the results of the

Sec. 3 but with the evolved state ̺t. As an example, Fig. 1 is a region-plot ∆hk(τ)

as functions of τ and δ = NB−NC for givenNB andNth: depending on the values of

the involved parameters, ∆hk(τ) can be positive or negative. In particular, ∆AB and

∆AC are always negative, ∆BA whereas d ∆CA can change the sign (remarkably,

this holds true also for Nth = 0). For the case of symmetric states. i.e., δ = 0, one

can write the following set of inequalities:

DAB + SC ≤ SA , DBA + SC ≥ SB + EAC , (30a)

DAC + SB ≤ SA , DCA + SB ≥ SC + EAB , (30b)
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Fig. 1. (Color online) Balance of the correlations in the presence of dissipation and thermal noise.
Region plots of ∆hk, h 6= k with h, k = A,B, C, as functions of δ = NB − NC of τ = γt. We set
NB = 1 and Nth = 0.2. Gray and white regions refer to the corresponding ∆hk > 0 and ∆hk < 0,

respectively. The red line represents the separability time τsep: if τ ≥ τsep then λ̃
(hk)
− ≥ (1/2) and

the state ̺hk(t) is no longer entangled (Ent.) and becomes separable (Sep.), i.e., Ehk = 0. See the
text for details.
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Fig. 2. (Color online) Balance of the correlations in the presence of dissipation and thermal noise.

Region plots of ∆
(KW)
hk

, h 6= k with h, k = A,B, C, as functions of δ = NB − NC of τ = γt, for
the same choice of the other involved parameters as in Fig. 1. Note that one always has ∆hk > 0
(gray regions). The red line still represents the separability time τsep. See the text for details.
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DBC + SA ≥ SB + ECA , DCB + SA ≥ SC + EBA , (30c)

where we used EBC = ECB = 0.

Analogously, to address the evolution of the conservation law (25b), we introduce

the function:

∆
(KW)
hk (τ) = [Dhk(τ) + Shk(τ)]− [Sh(τ) + Ekj(τ)] . (31)

As one can see in Fig. 2, where we plot ∆
(KW)
hk (τ) for the same choice of parameters

as in Fig. 1, now one finds the following inequality holding for all the bipartitions,

and any value of the interaction time,

Dhk(τ) + Shk(τ) ≥ Sh(τ) + Ekj(τ) , (32)

h 6= k 6= j and h, k, j = A,B,C. Inequality (32) generalizes to CV and Gaussian

measures of correlation, the inequality discussed in Ref. 32 for the discrete case.

5. Conclusion

In conclusion, we have proved that the balance of correlations originally investi-

gated for three-qubit systems, involving EoF, quantum discord and single-system

entropies is valid also for a feasible class of tripartite Gaussian CV states, upon

using Gaussian measures of quantum correlations. Furthermore, in the presence of

dissipation and thermal noise, the balance turns into inequalities between the pre-

vious quantities, depending on the actual values of the involved parameters. The

results are encouraging enough to suggest a direct experimental verification and to

foster investigations of correlation balance in more general Gaussian states.
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