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Abstract. We demonstrate an optical scheme involving two interlinked nonlinear
interactions taking place simultaneously in a second-order nonlinear crystal. The
three-mode output state is fully inseparable and endowed with perfect photon-
number correlations among the generated fields. In order to discriminate between
classical and quantum correlations we evaluate the quantum noise reduction, i.e.
compare the fluctuations of the difference photocurrent between one mode and the
sum of the other two with those coming from three uncorrelated coherent states.
Preliminary results indicate that our scheme may achieve three-mode sub-shot
noise correlations with current technology.

1 Introduction

In the last decade nonlinear interactions involving several modes of radiation have attracted
much attention in order to realize all-optical information processing [1] and generate nonclassical
states of light [2]. In particular, nonlinear interactions in the quantum regime may be used to
generate multimode entangled states. Interest in entanglement has grown recently due to its
apparent usefulness as an enabling technology in quantum information and communication
protocols such as quantum teleportation [3], dense coding [4,5] and quantum computation [6].
Most of the concepts have been initially developed for discrete quantum variables though, more
recently, attention has been also devoted to continuous variable (CV) systems and multiphoton
states of light [7,8]. In particular, multipartite CV entanglement has been suggested to realize
telecloning [9–11], to enhance communication networks [12] and to improve the discrimination
of quantum operations [13].
Several experimental schemes to generate multimode entangled states have been suggested

and demonstrated. The first example is provided by the original teleportation experiments in
Ref. [14], where one mode of a twin beam was mixed with a coherent state, although no specific
analysis was made on the entanglement properties (besides the verification of teleportation). A
similar scheme, where one mode of a twin beam is mixed with the vacuum, has been demon-
strated and applied to controlled dense coding [15]. Moreover, a fully inseparable three-mode
entangled state has been generated and verified by mixing three independent squeezed vacuum
states in a network of beam splitters [16]. Recently we suggested and demonstrated a com-
pact scheme to realize three-mode entanglement by means of two interlinked χ(2) interactions
occurring in a single nonlinear crystal in a type-I non-collinear phase-matching geometry [17].
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Other schemes involving cascaded interactions have been also analyzed theoretically either in
periodically poled crystals [18] or in second-order nonlinear ones [19,20]. Notice, however, that
the use of a single nonlinear medium makes the system more compact and robust compared to
other schemes suggested and demonstrated so far, in which additional parametric sources and
linear devices, such as beam splitters, introduce unavoidable losses.
In this paper we review the generation scheme and address the characterization of the

three-mode state at the output. We will not deal with characterization of entanglement. Rather
we focus on correlations in the photon number and analyze in some details the possibility of
revealing sub-shot-noise correlations among the three modes. As we will see theoretically, and
on the basis of preliminary experimental results, our scheme is suitable to detect nonclassical
correlations with current technology.
The paper is structured as follows. In section 2 we report the theoretical description of

our scheme, together with the evaluation of intensity correlations. In section 3 we describe the
experimental setup and report the experimental results. Section 4 closes the paper with some
concluding remarks.

2 Theory

In our scheme two interlinked interactions, namely a spontaneous parametric downconversion
(SPDC) process and a sum-frequency generation, are taking place simultaneously in a single
nonlinear crystal. Five fields aj are involved in the interactions, two of which, say a4 and a5,
are considered as non-evolving pumps and thus are treated within the parametric approxima-
tion and included in the coupling coefficients. The effective Hamiltonian that describes our
interaction scheme is given by

Hint = γ1a
†
1a
†
3 + γ2a

†
2a3 + h.c. , (1)

where γ1 and γ2 are coupling coefficients. The earliest studies on the dynamics and quantum
properties of the states realized via this Hamiltonian can be traced back to the works in
Refs. [21]. The relevance in studying the dynamics generated by the above Hamiltonian in
details lies in the fact that it can be realized in a variety of different contexts, from quantum
optics [11,18,20,22] to condensate physics [23]. Studies have been also performed in which
the coupling between two optical modes and a vibrational mode of a macroscopic object,
such as a mirror, has been considered [24]. Recently, also ions trapped in a cavity have been
demonstrated to realize the Hamiltonian in Eq. (1) for a suitable configuration [25].
The Hamiltonian admits the following conservation law of photon numbers N1,2,3

∆(t) ≡ N1(t)−N2(t)−N3(t) ≡ ∆(0). (2)

If we take the vacuum |0〉 ≡ |0〉1 ⊗ |0〉2 ⊗ |0〉3 as the initial state, we have

N1(t) = N2(t) +N3(t) (3)

∀t, being Nj(t) = 〈a†j (t)aj(t)〉 the mean number of photons in the j-th mode. Under these
hypotheses the evolved state at any time t can be written as

|T0〉 = Ut|0〉 =
1√
1 +N1

∑

mr

(
N2
1 +N1

)m/2(
N3
1 +N1

)r/2√ (m+ r)!
m!r!

|m+ r,m, r〉 . (4)

It can be demonstrated that the state in Eq. (4) is a fully inseparable three-mode Gaussian
state [26], i.e. a state that is inseparable with respect to any grouping of the modes, thus
permitting realizations of truly tripartite quantum protocols such as conditional twin-beam
generation and telecloning [11]. The mean numbers of photons Nj that appear in Eq. (4) can
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be obtained by the Heisenberg evolution of the field operators. In particular, by introducing
Ω =

√
|γ2|2 − |γ1|2 we have N1 = N2 +N3 and

N2 =
|γ1|2|γ2|2

Ω4
[cosΩt− 1]2 N3 =

|γ1|2
Ω2
sin2(Ωt) . (5)

We see that when |γ2|2 > |γ1|2 the dynamics is oscillatory; viceversa, when |γ1|2 > |γ2|2 we
find an exponential behavior.
The state in Eq. (4) is endowed with perfect correlations in the number of photons. The

three-mode photon distribution is given by

PT (n,m, r) = δn,m+r
1

1 +N1

(
N2
1 +N1

)m(
N3
1 +N1

)r (m+ r)!
m!r!

, (6)

from which we can derive the photon-number correlation coefficients between the components of
the entangled state. In particular, due to the conservation law in Eq. (3), we expect the existence
of strong intensity correlations among the number of photon n1 and the sum of the other two, say
n2+n3. Actually, by exploiting Eq. (6), the corresponding correlation coefficient reads as follows

ε(1,2+3) =
〈n1(n2 + n3)〉 − 〈n1〉〈n2 + n3〉√

(〈n12〉 − 〈n1〉2)
[
〈(n2 + n3)2〉 − 〈n2 + n3〉2

] =
N1(1 +N1)

N1(1 +N1)
≡ 1. (7)

Eq. (7) shows that ε1,2+3 is identically equal to 1 and thus it does not depend on the number
of photons generated by the interlinked interactions. Moreover, if we calculate the partial
photon-number correlations, namely between n1 and n2 or n1 and n3 or again n2 and n3, we
obtain expressions similar to that reported in Eq. (7), but, in general, they do depend on the
mean number of photons involved:

ε(1,2)=
〈n1n2〉 − 〈n1〉〈n2〉√

(〈n12〉 − 〈n1〉2) [〈n22〉 − 〈n2〉2]
=

N2(1 +N1)√
N1(1 +N1)N2(1 +N2)

N1!1−→
√
N2
1 +N2

N2!1−→ 1

ε(1,3)=
〈n1n3〉 − 〈n1〉〈n3〉√

(〈n12〉 − 〈n1〉2) [〈n32〉 − 〈n3〉2]
=

N3(1 +N1)√
N1(1 +N1)N3(1 +N3)

N1!1−→
√
N3
1 +N3

N3!1−→ 1

ε(2,3)=
〈n2n3〉 − 〈n2〉〈n3〉√

(〈n22〉 − 〈n2〉2) [〈n32〉 − 〈n3〉2]
=

N2N3√
N2(1 +N2)N3(1 +N3)

N3!1−→
√
N2
1 +N2

N2!1−→ 1.

(8)

As the detectors we used to perform the correlation measurements are not ideal, we would
rewrite the expressions in Eqs. (7) and (8) by taking into account the non-unitary quantum
efficiency of the detection apparatus. In particular, let us assume that the photodetection on
the three arms is performed with the same quantum efficiency η and without dark counts.
The probability operator-valued measure (POVM) of each detector, describing the statistics
of detected photons, is thus given by a Bernoullian convolution of the ideal number operator
spectral measure

Π̂mj = ηj
mj

∞∑

nj=mj

(1− ηj)
nj−mj

(
nj
mj

)
|nj〉〈nj | (9)

with j = 1, 2, 3. As it was extensively derived in Ref. [27], Eq. (9) can be exploited to calculate
the expressions of the number of detected photons mj and of its variance σ2(mj) in terms of
the number of photons nj and its variance σ2(nj)

m̂j = ηjn̂j , σ2(mj) = η2jσ
2(nj) + ηj(1− ηj)〈n̂j〉. (10)
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Fig. 1. Generation of a separable three-mode classical state obtained by sending a thermal state |ν〉
on two subsequent beam-splitters (BS) whose second port is left unexcited |0〉.

We notice that, in general, the statistical distribution of the number of detected photons
is different from that of the number of photons. Nevertheless, the correlation coefficients
calculated for the detected photons can also assume high values; in particular, the correlation
coefficient calculated between m1 and the sum m2 +m3 reads as follows

εm1,2+3 =
η2(1 +N1)N1√
η2N21 (1 + ηN1)2

=
η(1 +N1)

(1 + ηN1)
N1→∞−→ 1 (11)

where we have supposed that the detectors have the same quantum efficiency η.
As it has been already noticed for the bipartite case [27], however a high value of the cor-

relation index is not sufficient to discriminate between quantum and classical correlations. As
for example, the state generated by sending a thermal state on two subsequent beam-splitters
(see Fig. 1), whose second port is left unexcited, is classical but it shows large correlations.
In fact, in the ideal case in which the quantum efficiency is equal to 1 and the transmittance
of the beam-splitters is τ1 = τ2 = 1/2, it can be demonstrated that the correlation coefficient
calculated between the photons exiting the first beam-splitter and the sum of those exiting the
second one can be expressed as follows

εBS,1,2+3 =
N

2 +N
=

N1
1 +N1

=
N1→∞−→ 1 (12)

where N represents the mean number of photons of the input thermal state and N1 is the
output at the first beam-splitter. Analogously, by supposing that the detectors placed at each
output port of the beam-splitters are characterized by the same quantum efficiency η, Eq. (12)
can be rewritten as

εmBS,1,2+3 =
ηN

2 + ηN
=

ηN1
1 + ηN1

=
N1→∞−→ 1 (13)

for the detected photons.
A good marker of non-classicality can be obtained by considering the difference photocurrent

D̂ = m̂i−m̂j , beingmj = ηjnj the number of detected photons on field aj [28]. In particular, to
prove the quantum nature of our tripartite state, we have to study the difference d between the
photocurrent relative to field a1 and the photocurrents relative to the sum of fields a2 and a3.
In an experiment in which η1 = η2 = η3, if the variance of the difference photocurrent σ2(d =
m1 − (m2 +m3)) is smaller than the sum of the photons detected in the three fields, namely

σ2(m1 − (m2 +m3)) < 〈m1 + (m2 +m3)〉, (14)

the generated state is endowed with non-classical properties. Note that, in general, this
demonstration of the quantum nature of a state does not, in general, imply entanglement. In
fact, to prove entanglement it would be necessary to reconstruct the entire statistics [29] of
the state by means of quantum tomography or to realize a true tripartite quantum protocol
[12]. Nevertheless, for states generated by the Hamiltonian in Eq. (1), the existence of sub-shot
noise (nonclassical) photon-number correlations is a sufficient condition for entanglement,
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Fig. 2. Scheme of the phase-matched interlinked interactions: (x, y)-plane coincides with the crystal
entrance face; α, tuning angle; βj’s, angles to (y, z)-plane; ϑj’s, angles on the (y, z)-plane; ϕ, angle to
the optical axis (OA).

i.e. the condition of negative partial transpose is subsumed by the condition of sub-shot noise
correlations [11]. We define, as the noise reduction R, the ratio of the left- to right-members of
the inequality in Eq. (14). Notice that we must not expect the same behavior for the difference
photocurrents between only two of the three fields: in particular, it is possible to demonstrate
that we never have a value of R < 1 for the pair of fields 2 and 3, while in the other two cases
there are strong conditions to be satisfied [30]. Namely, for the pair 1 and 2, we have R < 1
if and only if N3 <

√
2N2 and, for the pair 1 and 3, if and only if N2 <

√
2N3. It is interesting

to point out that these two conditions are simultaneously satisfied for very small values of the
mean photon numbers, that is for both N2 and N3 definitely smaller than 2.

3 Experiments

3.1 Experimental setup

To generate the three-mode entangled state in Eq. (4), we realized the two interlinked interac-
tions in a negative uniaxial crystal in a type-I non-collinear phase-matching geometry. The two
processes must simultaneously satisfy energy-matching (ω4 = ω1+ω3, ω2 = ω3+ω5) and phase-
matching conditions (ke4 = k

o
1 + k

o
3, k

e
2 = k

o
3 + k

o
5), where ωj are the angular frequencies, kj

are the wavevectors and suffixes o, e indicate ordinary and extraordinary field polarizations. We
note that it is possible to satisfy these conditions with a number of different sets of frequencies
and interaction angles depending on the choice of the nonlinear medium. To simplify calcula-
tions, it is convenient to assume that the wavevector k4 of the pump field a4 is normal to the
crystal entrance face and propagate along the z axis of the medium. With reference to Fig. 2,
we assume that the wavevector k5 of the other pump field a5 lies in the plane (y, z) formed by
the optical axis (OA) of the crystal and the wavevector k4. We indicate as ϑj the angles in the
plane (y, z) formed by each wavevector with k4 and as βj the angles of each wavevector with
respect to this plane. Under these hypotheses, we have β4 = ϑ4 = 0 and β5 = 0. In order to
calculate a set of angles suitable for the realization of the process, it is convenient to write the
projection of the phase-matching conditions along the three cartesian axes (x, y, z). We thus
obtain two systems, each formed by three equations, i.e.

k1 sinβ1 + k3 sinβ3 = 0, k1 cosβ1 sinϑ1 + k3 cosβ3 sinϑ3 = 0,

k1 cosβ1 cosϑ1 + k3 cosβ3 cosϑ3 = k4
(15)

for the SPDC, and

k2 sinβ2 = k3 sinβ3, k2 cosβ2 sinϑ2 = k3 cosβ3 sinϑ3 + k5 sinϑ5,

k2 cosβ2 cosϑ2 = k3 cosβ3 cosϑ3 + k5 cosϑ5
(16)
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Fig. 3. Colour picture, on a white screen located beyond the nonlinear crystal, of the fields generated
by the interlinked interactions taken with a digital camera.
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Fig. 4. Scheme of the experimental setup: BBO, nonlinear crystal; NF, variable neutral-density filter;
P1−3, pin-holes; f1−5,5′ , lenses; D1−3, p-i-n photodiodes; M, Aluminummirrors; PRE+AMPL, low-noise
charge-sensitive pre-amplifiers followed by amplifiers; SGI, synchronous gated-integrator; ADC+PC,
computer integrated digitizer.

for the other interaction, to which we have to add the following definitions

k2(α,ϑ2,β2)=
ω2
c
n2(α,ϑ2,β2)=

ω2
c

(
cos2(α− ϑ2) cos2(β2)

n2o(ω2)
+
1− cos2(α− ϑ2) cos2(β2)

n2e(ω2)

)−1/2

k4(α)=
ω4
c
n4(α)=

ω4
c

(
cos2 α

n2o(ω4)
+
sin2 α

n2e(ω4)

)−1/2
. (17)

As we have 8 variables and only 6 equations, we can solve the two systems for example by
fixing ϑ5 and α [31]. To experimentally realize the two interactions, we adopted a tuning angle
α = 38.4 deg and we chose to send the pump field a5 at an external angle ϑ5,ext = −24.47 deg
with respect to the other pump field. For the sake of clarity, in Fig. 3 we show a colour picture
of the outputs of the crystal taken with a non-professional digital camera for λ4 = 349 nm and
λ5 = 1047 nm. In particular, it is possible to see both the tunable brilliant downconversion
cones and the two polychromatic half-moon-shaped states generated by the upconversion
process [31]. To perform our measurements we decided to consider the solutions of Eq. (15)
and (16) in the plane (y, z), horizontal in the experiment, for λ1 = 632.8 nm, λ2 = 446.4 nm
and λ3 = 778.2 nm, thus obtaining the following external interaction angles with respect to
the pump field a4: ϑ1,ext = −9.78 deg, ϑ2,ext = −3.25 deg and ϑ3,ext = +12.06 deg.
The pump fields were provided by the outputs of a continuous-wave mode-locked Nd:YLF

laser regeneratively amplified at the repetition rate of 500Hz (High Q Laser Production,
Austria): in particular, the third-harmonic pulse (∼4.45 ps pulse-duration) was used as field
a4 in order to generate the downconversion process, whereas the fundamental pulse (∼7.7 ps
pulse-duration) as field a5 in order to generate the upconversion process. As depicted in Fig. 4,
both pumps were strongly focused (typical intensity values were ∼5GW/cm2 for field a4 and
∼2GW/cm2 for field a5) into a β-BaB2O4 crystal (BBO, Fujian Castech Crystals, China,
10mm × 10mm cross section, 4mm thickness) cut for type-I interaction (ϑcut = 38.4 deg).
The required superposition of the two pumps in time was obtained with a variable delay line.
Moreover, for alignment purposes, we also exploited the light of a cw He:Ne laser (Melles-Griot,
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(a) (b)

(c) (d)

Fig. 5. (a) Histogram of the intensity distribution of the beam at λ1 = 632.8 nm together with the
multithermal fit. (b) Histogram of the intensity distribution of the beam at λ3 = 778.2 nm together
with the multithermal fit. (c) Histogram of the intensity distribution of the beam at λ2 = 446.4 nm
together with the multithermal fit. (d) Histogram of the intensity distribution of the sum a2 + a3
together with the multithermal fit.

5mW max output power) to seed the process at the wavelength λ1 = 632.8 nm. The beam
was collimated and sent to the BBO in the plane containing the pumps at the external angle
ϑ1,ext = −9.78 deg with respect to a4. The seeded interactions produced two new fields: a3
(λ3 = 778.2 nm, ϑ3,ext = 12.06 deg) generated as the difference-frequency of a4 and a1, and
a2 (λ2 = 446.4 nm, ϑ2,ext = −3.25 deg) generated as the sum-frequency of a3 and a5. On the
path of the three fields generated by the seeded interactions, we positioned three pin-holes
having suitable sizes in order to collect an entangled triplet of single coherence areas produced
by operating the system from vacuum (i.e. in the absence of any seed fields). In particular, as
the size of the coherence areas depends on the pump intensity [26], we optimized the collection
of the light by fixing distances and sizes of the pin-holes and by varying the intensity of pump
field a4. In particular, at distances d1 = 60 cm and d3 = 49 cm from the BBO two pin-holes of
30µm diameter were placed so as to be centered with the amplified signal beam at 632.8 nm
and with the idler beam at 778.2 nm, respectively. The difference in the value of the distances
compensates the different divergence of the two fields due to their different wavelengths. More-
over, as the beam at 446.4 nm has a divergence smaller than those of the other two fields, we
selected it by means of a 50µm diameter pin-hole placed at a longer distance from the crystal,
that is d2 = 141.5 cm. The light, suitably filtered by means of bandpass filters located in front
of each pin-hole, was focused on each detector by a lens (f1 = f3 = 25mm, f2 = 10mm). Since
we decided to perform our measurements in the macroscopic regime (more than 1000 photons
per mode), we used three p-i-n photodiodes (two, D1,2 in Fig. 4, S5973-02 and one, D3, S3883,
Hamamatsu, Japan) as the detectors. In order to obtain the same overall detection efficiency
(bandpass filter + detector) on the three arms, we added two adjustable neutral-density filters
in the directions of a2 and a3, thus obtaining the same value η = 0.45 on the three arms.
The current output of the detectors was amplified by means of low-noise charge-sensitive
pre-amplifiers (CR-110, Cremat, Watertown, MA) followed by amplifiers (CR-200-4µs,
Cremat). Being mainly interested in the evaluation of the photon-number correlation between
n1 and the sum n2 + n3, we connected the detectors D2 and D3 to the same amplifier device
by means of a BNC T Adapter. The two amplified outputs were integrated by synchronous
gated-integrators (SGI in Fig. 4) operating in external trigger modality (SR250, Stanford
Research Systems, Palo Alto, CA). The voltage outputs were then sampled, digitized by a
12-bit converter (AT-MIO-16E-1, DAQ National Instruments) and recorded by a computer.
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Fig. 6. Distribution of the difference photocurrent, measured over 50000 subsequent laser shots. Note
that the distribution was obtained by suitably binning the data in such a way that a single column
represents three adjacent channels in the ADC device.

3.2 Experimental results

The distributions of the detected photons collected by the pin-holes are temporally multimode
[32]. In fact, the normalized probability distributions reported in Figs. 5(a)–(c) for the three
generated fields are well fitted by multithermal distributions obtained by the convolution of
µ equally populated thermal modes. These distributions should be characterized by the same
number of modes. Actually, we found 19 temporal modes in the coherence area of fields a1 and
a2 and 14 temporal modes in the coherence area of field a3. For the distribution of the sum
a2 and a3, which is reported in Fig. 5(d), we found 21 temporal modes. Note that in order
to reconstruct the statistics of a2 of panel (c) and a3 of panel (b) separately, we alternatively
blocked the light impinging on detectors D3 and D2, respectively.
At the pump intensity used in the measurements, the average number of detected photons

were: 〈m1〉 = 605, 〈m2 + m3〉 = 702, 〈m2〉 = 170, and 〈m3〉 = 520. The slight disagreement
between m1 and the sum m2 +m3 (see Eq. (3)) is probably due to the non perfect adjustment
of the neutral density filters on the arms of fields a2 and a3. Moreover, as the sum of the partial
numbers of detected photons m2 and m3 is very similar to m2 +m3, we are quite sure that we
realized the same overall quantum efficiency in these two arms.
A preliminary criterion to identify the three modes of the triplet is given by the calculus of

the correlation function, even if, as it was remarked in section 2, it represents a necessary but
not sufficient condition to establish the entangled nature of the three modes.
The function, written in terms of the detected photons and calculated for K = 50000

subsequent laser shots, reads as follows

Γ (j) =

∑K
k=1 [(m1(k)− 〈m1〉) (m2+3(k + j)− 〈m2+3〉)] /K√

σ2(m1)σ2(m2+3)
, (18)

where j and k index the shots, and σ2(m) = 〈m2〉 − 〈m〉2 is the variance. Note that, in the
regime we used to perform our measurements, Eq. (18) must be corrected by taking into account
the presence of noise, both in terms of possible correlation and in terms of increased variance.
In details, we calculated the correlation coefficient between m1 and m2 +m3, thus obtaining
ε1,2+3 = 0.958. By alternatively blocking the light impinging on detectors D2 and D3, we also
calculated the partial correlation coefficients between the photons revealed by one of these two
detectors and those revealed by D1. However, in these cases we did not obtain values as high
as ε1,2+3, namely ε1,2 = 0.714 and ε1,3 = 0.772.
The non-classicality of the state generated by the two interlinked interactions can be tested

by reconstructing the distribution of the difference photocurrent d = m1− (m2+m3), which is
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shown in Fig. 6 for our set of data. In particular, we calculate its variance σ2(d) to express the
noise reduction

R =
σd2

〈m1 +m2 +m3〉
, (19)

where, as in the case of the correlation function, the variance of the difference photocurrent
must be corrected for the electronic noise in the absence of light. As we remarked in Ref. [28], if
(1−η) < R < 1, the state displays nonclassical correlations. In our case, we obtained R = 1.81,
a value not too larger than 1, which marks the boundary between classical and non-classical
behaviors. This result can be improved not only by optimizing the collection of the coherence
areas, but also by adjusting the quantum efficiencies on the arms of a2 and a3 through the
optimization of the neutral density filters.

4 Conclusions

We have analyzed an optical scheme involving two interlinked nonlinear interactions taking
place simultaneously in a χ(2) nonlinear crystal. The three-mode output state is fully insep-
arable and endowed with perfect photon-number correlations among the generated fields. We
realized the experimental scheme in the macroscopic regime (more than 1000 photons per mode)
obtaining some preliminary experimental results. The results could be undoubtedly improved
by slightly adjusting some parameters, such as the collection of the single coherence areas on
the three modes and the balance of the quantum efficiency in the arms of fields a2 and a3. The
optimization of these elements would be useful for increasing the photon-number correlations
on one hand and for lowering the noise reduction on the other one. The regime of continuous
variables in which we operate makes our system particularly promising for several applications:
as an example, it can be used for the production of conditional twin-beam states and also
for the generation of quasi-Fock states with a number of photons greater than 1. In addition,
the scheme is suitable for the realization of imaging protocols, such as image transfer and
ghost-imaging.

This work has been supported by MIUR projects FIRB-RBAU014CLC-002 and PRIN-2005024254-002.
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