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Abstract. We analyze a frequency degenerate two-arm seeded downconversion
process in which the seed fields are spatially multimode chaotic fields. We prove
that the output state exhibits a transition from entanglement to separability as far
as the intensities of the seeds increase, whereas it is suitable for a ghost imaging
experiment irrespective of its entanglement properties. Furthermore we present
two experiments of ghost imaging with good visibilty based on parametric down-
conversion seeded on a single arm.

1 Introduction

The techniques of ghost imaging [1] and ghost diffraction [2,3] consist in the retrieval of the
transmitted intensity pattern of an object or of its Fourier transform. These techniques take
advantage of the existence of correlations in propagation directions and in intensities between
a pair of spatially separated fields. The image/diffraction pattern of the object is recovered by
evaluating a fourth-order correlation function at the detection planes between the field that
never interact with the object and the correlated one which is transmitted by the object. A
general ghost-imaging/diffraction scheme contains a source of correlated bipartite fields and
two propagation arms. In the Test-arm we put an object (a transparency) and measure the
light transmitted by it with a bucket (or a point-like) detector. In the Reference-arm we put an
optical setup suitable for reconstructing the image of the object or its Fourier transform and a
position-sensitive detector [4–7].
In recent years it has been demonstrated that ghost imaging/diffraction applications may

be implemented either by using quantum correlated fields, both from spontaneous paramet-
ric downconversion (PDC) [1] and from chaotically seeded parametric downconversion [8], or
by using classically correlated fields obtained by splitting a chaotic field at a beam splitter
[9–11]. The choice of the kind of correlated source to be used implies the choice of the proper
optical scheme needed for image reconstruction. Such a choice is linked to the properties of
the physical phenomenon generating the correlations (nonlinear crystal or beam splitter) but
not to the quantum or classical nature of the correlations themselves, as previously suggested
[12–14]. As a matter of fact, we demonstrated [15] that we can realize a ghost imaging/diffraction
experiment by using a source of bipartite correlated fields that undergoes a transition from
quantum to classical behavior without changing the geometrical setup.
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Fig. 1. Schematic diagram of the nonlinear interaction. T and R are the Test and Reference arms of
the setup.

In this paper, we analyze the properties of the multipartite (pairwise correlated) state
obtained by seeded PDC, either in a single arm or in both of them, focusing on separabil-
ity thresholds as a function of the seed intensities. We also show that the output state is
suitable for a ghost imaging experiment irrespective of its entanglement properties. Further-
more we present two experiments of ghost imaging with good visibilty based on parametric
downconversion seeded on a single arm.

2 Theory

We consider the process of parametric downconversion at frequency degeneracy depicted in
Fig. 1. The evolution of the system is governed by the PDC multimode hamiltonian [16], thus
the corresponding unitary operator is

U = e−
i
!
∫∞
−∞HIdt = ei(

∑
q κqaT,qaR,−q+h.c.) =

⊗

q

ei(κqaT,qaR,−q+h.c.), (1)

where the subscripts R and T refer to Reference- and Test-arm respectively (see Fig. 1), q is the
transverse component of the wavevector and κq is the coupling constant, which is proportional
to the pump field. Having in mind applications to ghost imaging, we consider the case in which
both the Reference- and Test-arms are seeded with multimode chaotic fields

ρin =
⊗

q

ρT,q ⊗ ρR,−q ρj,q =
∞∑

n=0

Pj,q(n) |n〉j,qj,q〈n|, (2)

where j = R, T and |n〉j,q denotes the Fock number basis for the mode q of the j-arm. The
chaotic photon number distribution of the input is given by

Pj,q(n) = µ
n
j,q(1 + µj,q)

−n−1 . (3)

The density matrix at the output, ρout = UρinU†, is

ρout =
⊗

q

∑

nm

PT,q(n) PR,−q(m)

min{m,n}∑

k1,k2=0

∞∑

l1,l2=0

Cq(m,n, k1, l1) Cq(m,n, k2, l2)
∗

×|n− k1 + l1〉T,qT,q〈n− k2 + l2|⊗ |m− k1 + l1〉R,−qR,−q〈m− k2 + l2|, (4)

with

Cq(m,n, k, l) = e
−ηq(n+m−2k+1)

√
n!m!(n− k + l)!(m− k + l)!
k!l!(n− k)!(m− k)! ζlq(−ζ∗q)k,

where ζq = −ie−iϕq tanh(|κq|), ηq = ln[cosh |κq|], and eiϕq = κq/|κq|.
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As expected, the first moments of the photon distribution for each mode are those of a
chaotic statistics

〈nT,q〉 = µT,q + nPDC,q(1 + µT,q + µR,−q)
〈nR,−q〉 = µR,−q + nPDC,q(1 + µT,q + µR,−q)
〈(∆nT,q)2〉 = 〈nT,q〉(〈nT,q〉+ 1)
〈(∆nR,−q)2〉 = 〈nR,−q〉(〈nR,−q〉+ 1)

(5)

where 〈O〉 = Tr[Oρout] = Tr[U†OUρin], ∆O = O − 〈O〉 and nPDC,q = sinh2 |κq| is the average
number of photons due to spontaneous PDC. Notice that the case of vacuum inputs, ρin =
|0〉〈0|T ⊗ |0〉〈0|R, corresponds to spontaneous downconversion, i.e. to the generation of twin-
beam.
We calculated the mode-operators after the interaction in the crystal by exploiting Heisen-

berg description [15] and find bj,q = U†aj,qU , i.e.

bj,q = Uqaj,q + eiϕqVqa†j′,−q (j, j′ = R, T, j &= j′) (6)

where Uq = cosh |κq| and Vq = sinh |κq| (and obviously Uq = U−q, Vq = V−q, and ϕq = ϕ−q).
Entanglement, the most peculiar characteristic of quantum systems, is a central resource

to all branches of the emerging field of quantum information [17,18] and is supposed to play a
central role in many other fields connected with imaging capability, such as ghost-imaging and
quantum lithography. Recently a debate has started on entanglement as a necessary resource to
implement such imaging tasks [4,19]. It is hence worthwhile to investigate whether the bipartite
state ρout displays entanglement, that is it is inseparable.
We apply the Peres-Horodecki-Simon [20–22] criterion for checking the separability of bipar-

tite states. This criterion gives a necessary and sufficient condition for separability in the case of
bipartite gaussian state, and hence applies to our state, being it Gaussian [23]. The separability
criterion can be rewritten as the requirement of the positivity of the covariance matrix under
any partial transposition operation (PPT criterion). For our system this inequality becomes [15]

µT,qµR,−q − nPDC,q(1 + µT,q + µR,−q) ≥ 0. (7)

We observe that spontaneous PDC corresponds to the situation with µT,q′ = µR,−q′ = 0, a
case in which ρout is entangled. Also the case of PDC seeded only on one arm with a multimode
chaotic field [8,24], (µT,q = 0 or µR,−q = 0) the output is always entangled. On the contrary, in
the case of multimode seeded PDC on both arms, the inequality (7) introduces a threshold that
depends on the relative weight of the number of photons involved in the process. For instance,
at fixed values of the coupling coefficient, i.e. at fixed values of nPDC,q, a simple increase in the
intensity of one of the seeding fields induces a transition from inseparability to separability.
In spite of the existence of a threshold, the system does not show any different requirement as

to the implementation of ghost imaging protocols. We demonstrate this property by considering
the experimental setup described in Fig. 2. An object, described by its transmission function
t(xT ), is inserted in the Test-arm on the plane xT and a bucket detector measures the total
light, IT , transmitted by the object. The Reference-arm contains an optical setup suitable for
reconstructing the image of the object and a position-sensitive detector that measures the local
IR(xR).
The procedure for reconstructing the ghost image of the object consists of calculating the

correlation function between the light detected in the two arms of the setup, that is:

G(2)(xR) =
∫
dxT G

(2)(xR,xT ) =

∫
dxT (Tr[IR(xR)IT (xT )ρin]− Tr[IR(xR)ρin]Tr[IT (xT )ρin])

= Tr[IR(xR)IT ρin]− Tr[IR(xR)ρin]Tr[IT ρin], (8)

or its normalized version

g(2)(xR) =
G(2)(xR)√

Tr[(∆IR(xR))2ρin]Tr[(∆IT )2ρin]
, (9)



108 The European Physical Journal Special Topics

CLN

t(xt ) xT

xR

(a)

C
C

D
 s

en
so

r
C

C
D

 s
en

so
r

CLN

xT

xR

(b)
Pump

Pump

t(xt )

Fig. 2. Experimental setups for ghost imaging: t(xT), object transmission function. (a) experimental
configuration with the multi-thermal seed on the T-arm. (b) experimental configuration with the multi-
thermal seed on the R-arm.

where the action of the bucket detector is expressed by the integration over xT . Note that
Ij(xi) = c

†
j(xj)cj(xj) (j = R, T ) is the intensity operator of the j-th beam at the detection

plane and the link between the field operators at the detection planes and those at the output
of the crystal is given by

cj(xi) =

∫
dx′jhj(xj ,x

′
j)bj(x

′
j), (10)

where bj(x′j) are the Reference and Test field operators at the output face of the crystal and
hR(xR,x′R) and hT (xT ,x

′
T ) are the two response functions describing the propagation of the

field in the two arms of the setup [25].
By inserting Eq. (10) into Eq. (8) we get

G(2)(xR,xT ) =

∫
dx′R dx

′′
R dx

′
T dx

′′
T hR(xR,x

′
R) h

∗
R(xR,x

′′
R) hT (xT ,x

′
T ) h

∗
T (xT ,x

′′
T )

×
(
Tr[b†R(x

′′
R)bR(x

′
R)b

†
T (x

′′
T )bT (x

′
T )ρin]− Tr[b

†
R(x

′′
R)bR(x

′
R)ρin]Tr[b

†
T (x

′′
T )bT (x

′
T )ρin]

)
,

(11)

which, upon using the factorization rule for Tr[b†R(x
′′
R)bR(x

′
R)b

†
T (x

′′
T )bT (x

′
T )ρin] obtained in Ref.

[15] and the expressions for bj(x) in Eq. (6) yields

G(2)(xR,xT ) =

∣∣∣∣∣
∑

q

h̃R(xR,−q)h̃T (xT ,q)Cq

∣∣∣∣∣

2

(12)

where Cq =
√
nPDC(nPDC + 1)(µT,q + µR,−q + 1) [15] and h̃j(xj ,q) =

∫
dx′je

iq·x′jhj(xj ,x′j).
We now write the propagation functions describing the optical setup in Fig. 2, in which the

detection plane in the Test-arm coincides with the plane of the transparency: we have a simple
free propagation over a distance d1 that can be written as

h̃T (xT ,q) ∝ e−i
λd1
4π q

2

e−iqxT t(xT ). (13)
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In the Reference-arm we have the action of a lens:

h̃R(xR,−q) ∝
∫
dx′Re

−iq·x′R
∫
dxl,Re

i πλd2
(xl,R−x′R)

2

e
−i π

λfR
x2l,Rei

π
λd3
(xl,R−xR)2

∝ e−i
λd2
4π q

2

∫
dxl,Re

−i
(
2π
λd3
xR+q

)
·xl,Re

iπλ

(
1
d3
− 1
fR

)
x2l,R ,

(14)

which, if fR &= d3, can be written as

h̃R(xR,−q) ∝ e
−i λ4π

(
d2+ 1

1/d3−1/fR

)
q2
e
− i
d3

1
1/d3−1/fR

q·xR . (15)

Substituting Eqs. (13) and (15) into Eq. (12) returns the expression

G(2)(xR,xT ) ∝ |t(xT )|2
∣∣∣∣∣
∑

q

Cqe
−iq·

(
xT+ 1

d3
1

1/d3−1/fR
xR
)

e
−i λ2π

d1+d2
1/d3−1/fR

(
1

d1+d2
+ 1
d3
− 1
fR

)
q2
∣∣∣∣∣

2

) |t(xT )|2 |Cq|2 δ
(
xT +

xR
M

)
, (16)

which, once integrated over the bucket detector,

G(2)(xR) =
∫
dxTG

(2)(xR,xT ) )
∣∣∣t
(
−xR
M

)∣∣∣
2
|Cq|2 , (17)

gives the image of the object.
In passing from Eq. (12) to Eq. (17) we have made the following assumptions: Cq is almost

independent of q and the distances d1, d2 and d3 satisfy 1/(d1+d2)+1/d3 = 1/fR, which is the
so-called “back-propagating thin lens equation” [26], giving an imaging system with magnifica-
tion factor M = d3/(d1+d2). Note that the result in Eq. (17) holds for several downconversion
regimes, upon simple modification of the expression of Cq: Cq =

√
nPDC(nPDC + 1) for down-

conversion starting from vacuum, Cq =
√
nPDC(nPDC + 1)(µT,q+1), for multimode chaotic seed

on Test-arm and vacuum on Reference-arm and Cq =
√
nPDC(nPDC + 1)(µT,q+µR,−q+1) for

multimode chaotic seed on both Test- and Reference-arms. Note also that the first two cases
produce inseparable bipartite states, while the third one produces a state displaying a transition
from quantum to classical correlations (see Eq. (7)).

3 Experiment

In this section we present the results of the ghost imaging experiments we performed with a
multimode pseudo-thermal seed on a single arm. Even if these experiments are of interest by
themselves [8,24], from the point of view of the connection between entanglement and ghost
imaging they appear to be necessary preliminary steps in order to perform the experiment with
multimode pseudo-thermal seeds on both arms. As discussed in the previous section the state
produced by a multimode pseudo-thermal seed on a single arm is always entangled, while, if the
seeds are on both arm it is possible to observe transition between entanglement and separability.
As our theory predicts that the system satisfies the “back-propagating” thin-lens equation, as
much as for spontaneous PDC, even when the state produced becomes separable, the realization
of our experiment would definitely substantiate our claim that the “back-propagating” thin-lens
equation is not a signature of entanglement.
The experimental setups are shown in Fig. 2. The multimodal PDC is generated in a

β-BaB2O4 (BBO, cut angle 22.8 deg, 10mm× 10mm× 3mm, Fujian Castech Crystals, China)
pumped at the tuning angle α ) 25 deg with the second harmonic output (λP = 532 nm) of an
amplified Q-switched Nd:YAG laser (GCR-4,10Hz repetition rate, 7 ns pulse duration of the
fundamental pulse, Spectra-Physics, USA).
The typical intensity of the pumping beam, collimated to a diameter of 6mm, was IP ∼

60 MW/cm2, so that we had less than 0.5 photons/mode from spontaneous PDC.



110 The European Physical Journal Special Topics

The multimode pseudo-thermal field seeding the process, was obtained by passing the fun-
damental output of the same laser through two independently rotating ground glass plates, P1
and P2, so that the photon number statistics was chaotic [27]. According to Fig. 2 in setup (a)
the seed was on the T-arm while, while in setup (b) it was on the R-arm.
In the case of setup (a), the multimode pseudo-thermal seed was reduced in spread by means

of an iris 6 mm diameter located at a distance 10 cm before the nonlinear crystal, while in the
case of setup (b) no iris was necessary.
The seed field contained more than 1011 photons/mode, in the case of setup (a), and about

108 photons/mode in the case of setup (b).
The object we imaged in case (a) was a hole of 1.6mm diameter crossed by a straight wire

of 0.5mm caliber, in case (b) was a double slit of 250µm opening and 640µm separation. The
coherence areas of the speckles illuminating the object were in both cases about 25 times smaller
than the object.
As the DT and DR detectors, we used the same CCD camera (CA-D1-256T, 16µm× 16µm

pixel area, 12 bit resolution, Dalsa, Canada), whose sensor in one half recorded the single-shot
intensity Maps in the Reference-arm, IR(xR), and in the second half realized the bucket detector
of the Test-arm. The distances in the setups were: d1 = 10 cm, d2 = 50 cm, and d3 = 30 cm in
order to satisfy the thin lens equation with a magnification factor M = 0.5.
To reconstruct the ghost image, i.e. to compute the normalized second order correlation

function in Eq. (9), we acquired several CCD frames, each one containing both single shot map
in the R-arm IR(xR) and the corresponding bucket value in the T -arm IT .
For a sample of N frames containing data {IR,i(xR), IT,i} with i = 1, . . . , N we estimate the

normalized second order correlation function in Eq. (9) by means of the Pearson’s correlation
coefficient rN (xR)

rN (xR) =
N
∑N
i=1 IR,i(xR)IT,i −

∑N
i=1 IR,i(xR)

∑N
j=1 IT,j√[

N
∑N
i=1 IR,i(xR)2 − (

∑N
i=1 IR,i(xR))2

][
N
∑N
i=1 I2T,i −

(∑N
i=1 IT,i

)2] . (18)

In Fig. 3 we show the experimental results obtained in the case of setup (a) and (b) obtained
by calculating Eq. (18) over N = 10000 records, which shows recovered images with the correct
size, as compared to the object, beingM = 0.5. The lower panels in Fig. 3 contain the transverse
horizontal sections of the images averaged along the height of the objects (vertical direction).
It is interesting to establish a criterion for the choice of the minimum N , if it exists, that is

needed to reconstruct the image in a satisfactory way. We define the local visibility [5,8]

V(xR) =
g(2)(xR)

√
Tr[(∆IR(xR))2ρin]Tr[(∆IT )2ρin]

Tr[IR(xR)IT ρin]
(19)

and we estimated its value by exploiting Eq. (18) and averaging over different numbers of
records. Figure 4 displays V(xR) in the case of the setup (a) for N = 10000 on a linear grey scale
that covers the whole range from minimum (V = 0.62× 10−3) to maximum (V = 7.03× 10−3).
The smaller panels show contour plots of the same V(xR) at selected levels and the point at
which V(xR,Max) = 7.03 × 10−3. The full dots of the upper curve in Fig. 5, in which the
visibility is plotted as a function of N , show that already for N = 7000 the visibility has
roughly achieved such a value. We further investigated the behavior of V(xR) on increasing
N at a number of positions located next to the contours in Fig. 4. The positions on the three
contours and their number for each contour were chosen by setting the tolerance values reported
on the right-hand side of Fig. 5. We obtained the three sets of data that are plotted in Fig. 5 by
increasing N in steps of 500. The figure shows that the values of V(xR) calculated at positions
virtually belonging to a level contour of the “best averaged” visibility map (N = 10000) in all
cases are similar to the final values for N ∼ 5000. Thus, not only the local visibility evaluated
at the point, xR,Max, where it is maximum, but also that evaluated at any position is a measure
of the ghost-image quality that can be obtained from a statistical ensemble of data of given
size N .
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Fig. 3. (a) Image of the object recovered by evaluating g(2)(xR) over 10000 laser shots for the experi-
ment with setup (a) (upper panel), section of the image averaged along yR (lower panel); (b) same as
(a) for setup (b).

A tradeoff between visibility and resolution of the reconstructed image has been reported
[5] that depends on the number of spatial modes (coherence areas, AC) that illuminate an
object of area AO. In both our case AO/AC ) 25. This number being rather low, we observe a
quite poor image resolution and a quite high visibility. To confirm our results we calculated the
number of spatial and temporal modes, involved in the interaction [8]. We start by studying
the statistical distributions of the beam intensities detected either in a single pixel xR or by the
bucket detector in the T-arm. The experimental data are fitted by convolving the theoretical
multithermal distribution [16,28]

PM(I) =
e−MI/Tr[Iρin]

(Tr[Iρin]/M)M
IM−1
(M− 1)! . (20)

(b)

xR (µ )m xR (µ )m

0.62

7.03

4.5

2.5
3.84

y R
(µ

m
)

(V x)R×10 3

y R
(µ

m
)

(a)

Fig. 4. Plot of the local visibility, V(xR), on a linear grey scale for N = 10000 and of contours at the
marked levels obtained in the setup (a).
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Fig. 5. Local visibility, V(xR), as a function of N calculated at points xR on the level contours of
Fig. 4, see the values V(xR) ± tolerances for N = 10000.

with the experimental response to the dark. HereM is the number of modes, I indicates the
single-shot values of either IR(xR) or IT , whose mean values and variances obviously coincide
with those of the operators IR(xR) and IT . From the fit on the experimental data we obtained
MR = 1, independently of the position xR we tested, andMT = 35. We interpretMR as the
number of temporal modes in the field [16,28]. On the other hand, we can interpretMT as the
product of the number of temporal modes times that of the spatial modes in the area covered
by the 110×110 pixels of DT . AsMR ) 1 we conclude that we have a number of spatial modes
in the bucket, 35, greater than the number, 25, of those illuminating the object (see above):
this is to be expected as the bucket integration covered an area wider than AO. From Eq. (20)
we get that the variance of I is equal to Tr[Iρin]2/M, which allows linking the visibility of
Eq. (19) to the number of thermal modes in the incoherent T- and R-beams. By using Eq. (9)
we can rewrite Eq. (19) as

V(xR) =
g(2)(xR)√

MRMT + g(2)(xR)
(21)

and make an independent estimation of
√
MRMT as a function of the experimental values of

correlation coefficients and visibility. By this method we find
√
MRMT ) 6.8. As from the fits

of our multithermal distributions we found the value
√
MRMT ) 5.9, the experimental results

are self-consistent.

4 Conclusion

In conclusion, we have demonstrated that parametric downconversion seeded with multimode
chaotic fields on both the Test- and Reference-arms provides a bipartite field highly corre-
lated in direction and intensity that can be exploited for ghost imaging applications. We also
demonstrated that the geometrical scheme reconstructing the ghost image remains the same for
the three possible situations of no seeding field, of a single seeding field and a double seeding
field. The last situation, by contrary, presents a transition from entangled to separable state
depending on the seeding fields intensity.
Finally, we realized two ghost-imaging experiments using the state generated by seeding

the process on one arm only, and demonstrated that a good visibility can be achieved with
a limited number of chaotic maps. These experiments are the necessary preliminary steps to
realize the ghost imaging experiment with multimode thermal seeded PDC source in order to
show that the same optical configuration allows of image retrieval irrespective of the entangled
or separable nature of the light produced by the source. This will definitely substantiate our
claim that the “back-propagating” thin-lens equation is not a signature of entanglement.
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