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Abstract. We address continuous variable 1→ 2 telecloning based on three-mode
entangled states of the radiation field. After reviewing existing protocols using
phase-space formalism we suggest a novel scheme which allows telecloning with
optimal fidelity also in the high energy regime. Being not limited by energy con-
straints our scheme is suitable to be implemented with feasible three-mode entan-
glement sources.

1 Introduction

Let us consider a situation where a sender wants to remotely provide an unknown quantum state
of a continuous variable (CV) system to two distant receivers and he/she is not able to directly
transfer neither the original state or the two copies (for the case in which direct transmission
is a possible option see Refs. [1,2]). The most straightforward quantum mechanical strategy to
achieve this goal requires two steps. One may first produce locally two copies of the original
state by means of a cloning protocol. Then, the teleportation of each copy allows to attain the
transfer of information. This strategy has the obvious advantage to use only bipartite entangled
sources. Of course an analogous strategy in which the original state is firstly teleported and
then cloned can be taken into account. However, in both cases and even in the absence of losses,
the receivers are not left with two optimum clones of the original state, due to the non-unitary
fidelity of the teleportation protocol in case of finite energy. This obstacle may be circumvented
by pursuing a one-step strategy consisting of a nonlocal cloning. By this we mean that the
cloning process is supported by a tripartite entangled state which is distributed among all the
involved parties. This procedure is usually referred to as telecloning and represents a natural
(nonlocal) generalization of the teleportation protocol to the many-recipient case [3–7].
CV teleportation is based on the twin-beam state obtained by parametric down-conversion,

which provides the shared entanglement needed to support the protocol and to ensure optimal,
even if non-unitary, fidelity for fixed input energy. Fidelity can be improved by using local
operations and classical communication (LOCC) [8] or by performing conditional measurements
on the twin beams [9,10]. Another optimized protocol for CV teleportation relies on a three-
mode entangled state where one mode conditions the process by means of LOCC [11]. Twin
beams are the coherent states of the group SU(1, 1) and thus, in order to implement a bipartite
version of the teleportation protocol, one is naturally led to consider the coherent states of the
group SU(2, 1). Indeed this has been recently analyzed by showing that telecloning with optimal
fidelity is possible [12,13], at least when the overall energy of the entangled support is smaller
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than a given threshold. Other schemes involving cascading parametric interactions have been
also investigated both theoretically and experimentally [14,15]. The telecloning protocol is a
useful resource to share information among many parties by means of quantum communication
channels [16], especially in the presence of noise [1].
In the following we will analyze in details 1 → 2 telecloning based on SU(2,1) three-mode

entangled states of the radiation field. After reviewing existing protocols using phase-space
formalism, we suggest a novel scheme which allows telecloning with optimal fidelity also in
the high energy regime. Being not limited by energy constraints, this scheme is suitable to be
implemented with current technology.
The three-mode entangled states of SU(2,1) are generated by the interaction Hamiltonian

given by:
Hint = γ1a

†
1a
†
3 + γ2a

†
2a3 +H.c. , (1)

where ak and a
†
k are the annihilation and creation operators of the mode k, respect-

ively, [ak, a
†
h] = δkh. The Hamiltonian (1) describes two interlinked bilinear interactions among

three modes of radiation in a χ(2) nonlinear crystal. The effective couplings constants γ1 and
γ2 of the two parametric processes are proportional to the nonlinear susceptibilities and the
pump intensities [12,17]. Hamiltonian (1) admits the following constant of motion:

Ĉ = N̂1 − (N̂2 + N̂3) , N̂k = a†kak , (2)

and, if we take the vacuum as initial state, then we have 〈Ĉ〉 = 0 and the evolved three-mode
state $123 is a Gaussian state described by the characteristic function

χ(Λ) ≡ χ[$123](Λ) = exp
(
− 12Λ

TΣΛ
)
, (3)

where Λ = (Λ1,Λ2,Λ3)T ∈ R6 is a column vector and the entries of the 6 × 6 covariance
matrix Σ are given by [Σ]hk =

1
2 〈{Rh, Rk}〉 − 〈Rk〉〈Rh〉, with R = (q1, p1, q2, p2, q3, p3)

T ,

qk =
1√
2
(ak + a

†
k), pk =

1
i
√
2
(ak − a†k), and {Rh, Rk} = RhRk +RkRh. If we define the average

number of photons Nk = Tr[$123N̂k], then Σ can be written as follows (k = 1, 2, 3, h = 2, 3):

Σ =




N 1 A12 A13
AT12 N 2 A23
AT13 AT23 N 3



 ,
N k =

(
Nk +

1
2

)
12, A1h =

√
(N1 + 1)Nh Q (φh),

A23 = −
√
N2N3 P Q (φ3 − φ2)

(4)

where the entries are 2× 2 real matrices, 12 is the 2× 2 identity matrix,

Q (φ) =
(
− cosφ sinφ
sinφ cosφ

)
, (5)

P = Diag(1,−1), and φk are phases coming from the dynamics of the system itself [1,2,18,
19]. It is worth noting that when N3 or N2 vanishes the three-mode state (3) reduces to the
two-mode twin-beam state of radiation.
The entanglement properties of the state (3) have been thoroughly investigated and, in

particular, it has been shown that it is fully inseparable [2,17,19]. Moreover, if one considers
the two-mode counterparts $hk = Trl[$123], with h )= k )= l, one finds that whereas $12 and
$13 are entangled, $23 is separable [19]. As a consequence of the entanglement properties of
the state (3), one can use it to implement 1 → 2 telecloning of an input state $in by jointly
measuring it and mode 1 and acting on the left two modes by a suitable unitary transformation
[12]. On the other hand, as we will see in the following, in this case the optimal fidelity (the
similarity) between the input and the clones is achieved only if N1 = 2N2 = 2N3 = 1, i.e.,
only if the state $123 has a very low intensity: as N1 increases, the fidelity decreases and falls
below the classical limit 1/2. In this paper we show a protocol that allows to implement optimal
fidelity telecloning using high intensity three-mode states generated by (1). This is achieved by
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Fig. 1. General scheme of 1 → 2 telecloning: the single-mode input state !in undergoes a joint
measurement with mode 3 of a three-mode entangled state. The result of the measurement is used to
perform two unitary operations onto the remaining two modes, which become two clones of the input
state.
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Fig. 2. Schemes of 1→ 2 telecloning: (a) the joint measurement is performed on mode 1; (b) the joint
measurement is performed on mode 3. See the text for details.

tracing over one mode of the initial state and splitting one of the others by means of a beam
splitter.
The paper is structured as follows. In section 2, by using the characteristic functions

approach, we review the CV telecloning process addressing two possible measurement involving
different modes of the shared state. Section 3 describes how to transform a state generated by
the Hamiltonian (1) in a new three-mode state that allows optimal fidelity telecloning, also in
regimes with N1 > 1. The purity of the new state as well as its entanglement properties are
also thoroughly investigated in this section. Section 4 closes the paper drawing some concluding
remarks.

2 Continuous variable telecloning

In this section we review the telecloning process involving the state (3) as shared state. As
depicted in Fig. 1, the input state $in and the mode 3 of the three-mode entangled state $123
undergo a joint measurement, whose result is used as classical information to perform two uni-
tary operations onto the remaining two modes, which are then converted into two clones of the
input state. In the actual realization of the cloning protocol the joint measurement is achieved
by means of double homodyne detection, whereas the unitary operations are displacement, thus
the protocol can be recast as follows: one of the three modes of the shared state $123 is mixed
with $in at a balanced beam splitter (BS) and then a double homodyne detection is performed
on the two emerging modes, getting, as outcome, a complex number z which is used to displace
the remaining two modes of the shared state.
In Fig. 2 are sketched two possible schemes to implement the 1 → 2 telecloning protocol

staring from the shared state $123: the only difference between the schemes is that in Fig. 2(a)
the joint measurement is performed onto the mode 1, in Fig. 2(b) onto the mode 3 (the latter
scheme is totally equivalent to perform the measurement onto mode 2).
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2.1 Measurement involving mode 1

Let us focus our attention on the scheme of Fig. 2(a). If we assume that the input state is a
Gaussian state with characteristic function

χin(Λ0) = exp
(
− 12Λ

T
0 σinΛ0 − iΛT0X

)
, (6)

then the positive operator-valued measure (POVM) of the double homodyne detection is given
by [17]:

Π(z) = π−1D(z)$TinD
†(z) , (7)

corresponding to the characteristic function (A.2) given in the Appendix A with:

σM = PσinP , X = PX +Z , (8)

where Z =
√
2(Re[z], Im[z])T . The characteristic function χ′(Λ̃) of the state $′23(z) of modes 2

and 3 conditioned to the outcome z is given by Eq. (A.12) with Λ̃ = (Λ2,Λ3) in Appendix A:

A =N 1, B =

(
N 2 A23
AT23 N 3

)
, C =

(
A12 A13

)
, (9)

and the probability p(Z) of the outcome z follows from Eq. (A.6). After the measurement we
have to displace the conditioned state, i.e.,

$′23 → $̃′23(z) ≡ Uz$′23(z)U†z , (10)

with Uz = DT (z)⊗DT (z); the corresponding characteristic function χ̃′(Λ̃) reads

χ̃′(Λ̃) = χ′(Λ̃) exp
(
iΛ̃TJTPZ

)
, (11)

with J = (12,12). The two mode output state is obtained averaging Eq. (11) over z, i.e.,

χ′out(Λ̃) =

∫

R 2

d2Z

2
p(Z) χ̃′(Λ̃) (12)

= exp
[
− 12Λ̃

T
(
JTσinJ+B + JTPAPJ− JTPC −CTPJ

)
Λ̃− iΛ̃TJTX

]
, (13)

where we used Eqs. (8). The state of mode h = 2, 3 is then described by the characteristic
function

χh(Λh) =

∫

R 2

d2Λh
2π

χ′out(Λ1,Λ2) (2π)δ
(2)(Λk), (14)

with k = 2, 3, k )= h, i.e., the clones are Gaussian states with mean value vector X and
covariance matrices given by:

σh = σin + PN 1P +N h − PA1h −AT1hP . (15)

As usual, the clone fidelity, i.e., the similarity between the input state and the clone corre-
sponding to mode h, is defined as:

F1h =

∫

R 2

d2Λh
2π

χh(Λh)χin(−Λh) = {Det[σh + σin]}−1/2 (16)

=
[
2 +N1 +Nh + 2

√
Nh(1 +N1) cosφh

]−1
, (17)

which reaches the maximum for φh = π.
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Fig. 3. (a) Plots of the cloning fidelities F12 (solid line), F13 = F31 (dashed line) and F32 (dot-dashed
line) as functions of the parameter β with N1 = 1 (see the text for details). (b) Plot of the cloning
fidelity in the case of symmetric cloning, i.e., β = 1/2, as a function N1. The dotted lines refer to
F = 1/2 and F = 2/3. We set φ2 = φ3 = π.

2.2 Measurement involving mode 3

Let us now turn our attention on Fig. 2(b). Now we have that the characteristic function χ′′(Λ̃)
of the state $′′12(z) of modes 1 and 2 conditioned to the outcome z is given by Eq. (A.23) with
Λ̃ = (Λ1,Λ2) in Appendix A:

B =N 3, A =

(
N 1 A12
AT12 N 2

)
, CT =

(
AT13 BT23

)
, (18)

and the probability p(Z) follows from Eq. (A.17). Mutatis mutandis, after the displacements
and the averaging over z one gets

χ′′out(Λ̃) = exp
[
− 12Λ̃

T (
JTσinJ+A+ JTPBPJ− JTPCT −CPJ

)
Λ̃− iΛ̃TJTX

]
, (19)

and the clones are still Gaussian states with mean value vector X and covariance matrices
given by

σk = σin + PN 3P +N k − PATk3 −Ak3P , (20)

with k = 1, 2. Finally, the cloning fidelities F3k, k = 1, 2, read as follows:

F31 =
[
2 +N1 +N3 + 2

√
N3(1 +N1) cosφ3

]−1
, (21)

F32 =
[
(2 +N2 +N3)

2 − 4N2N3
]−1/2

. (22)

As in the previous case, F31 reaches the maximum for φ3 = π, whereas F32 ≤ 1/2: this is due to
the fact that the two-mode state $23 = Tr1[$123] is a separable state [19]. Note that F13 = F31.

2.3 Discussion

In Fig. 3(a) we plot F12, F13 = F31 and F32 as functions of the parameter β ∈ [0, 1] such that

N2 = (1− β)N1, N3 = βN1, (23)

with N1 = 1: in this case, when β = 1/2 we achieve the optimal symmetric cloning fidelity, i.e.,
F12 = F13 = 2/3. As mentioned above, F32 is always less than 1/2, whereas, varying β, one
can increase the fidelity of one clone with respect to the other one. In the case of symmetric
cloning, i.e., β = 1/2, we have

F12 = F13 ≡ F (N1) =
[
2 +
3

2
N1 −

√
2N1(1 +N1)

]−1
, (24)

which is plotted in Fig. 3(b): we can see that the maximum is achieved for N1 = 1, whereas
the fidelity falls below the classical value F = 1/2 for N1 ≥ 8.
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Fig. 4. Scheme to implement 1→ 2 optimal telecloning with high intensity beams.

3 Telecloning with bright beams

As pointed out in the previous section, when the three-mode entangled state shared between
the three parties is the Gaussian state (3) with covariance matrix (4), the optimal symmetric
cloning fidelity, i.e., F = 2/3, is achieved only if N1 = 1 (and N2 = N3 = 1/2). Moreover, if
N1 ≥ 8 then F ≤ 1/2: this states that high intensity beams described by Eq. (3) cannot be
used to implement telecloning. Nonetheless, in this section we show how it is possible to obtain
optimal telecloning with three-mode states with N1 > 1 by eliminating one of mode 2 or 3 and
by dividing mode 1 into two beams by means of a BS. The protocol is depicted in Fig. 4. The
mode 2 of the shared state $123 is absorbed, whereas mode 1 is mixed with the vacuum state
$0 of mode 4 in a BS with transmissivity τ : this generates a new three-mode state and, then,
the telecloning protocol proceeds as in Fig. 2(b) and described in section 2.
The characteristic function of the state $13 = Tr2[$123] is still a Gaussian function which

reads as follows

χ[$13](Λ1,Λ3) =

∫

R 2

d2Λ2
2π

χ(Λ) (2π)δ(2)(−Λ2) , (25)

where Λ = (Λ1,Λ2,Λ3) and χ(Λ) is given in Eq. (3). Now, the characteristic function of
the states $134 = $13 ⊗ $0, $0 being the vacuum state of mode 4, can be written as χ̄(Λ̄) =

exp
(
− 12Λ̄

T
Σ̄ Λ̄
)
where Λ̄ = (Λ1,Λ4,Λ3), the subscripts referring to the corresponding mode,

and

Σ̄ =




N 1 0 A13
0 σ0 0
AT13 0 N 3



 , (26)

σ0 =
1
212 being the covariance matrix of the vacuum state. In the covariance matrix (26) we

rearranged the order of the modes in such a way that, formally, mode 4 replaces mode 2 in
Eq. (3): this choice allows us to use the results obtained in section 2. The next step of the
protocol is to mix mode 1 and 4 at a BS with transmissivity τ (see Fig. 4). Since we are dealing
with a Gaussian state, this operation onto mode 1 and 4 reduces to a transformation of the
covariance matrix (26) as follows (the transformed state is still Gaussian):

Σ̄ → Θ = STτ Σ̄ Sτ , (27)

where

Sτ =

(
SBS(τ) 0
0 12

)
, SBS(τ) =

( √
τ12

√
1− τ12

−
√
1− τ12

√
τ12

)
. (28)

Analogously to Eq. (4), we write the explicit form of the covariance matrix Θ as

Θ =




M1 B14 B13
BT14 M4 B43
BT13 BT43 M3



 , (29)
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Fig. 5. Plots of the minimum eigenvalue λk of Θ− i
2Ω(k), k = 1, 3, 4, as a function of β and different

values of N1 (from top to bottom in each plot: N1 = 0.1, 1 and 10) and τ : the solid lines refer to
τ = 0.25, the dashed lines to τ = 0.5 (λ3 does not depend on τ).

where the entries are 2× 2 real matrices given by:

M1 =
(
N1τ +

1
2

)
12, M4 =

[
N1(1− τ) + 12

]
12, M3 =N 3 =

(
βN1 +

1
2

)
12, (30a)

B14 = N1
√
1− τ2 Q (φ3), B13 =

√
τβN1(N1 + 1)Q (φ3), (30b)

B43 =
√
(1− τ)βN1(N1 + 1)Q (φ3), (30c)

and we used Eqs. (23).

3.1 State characterization

The three-mode Gaussian state $134 is fully characterized by its covariance matrix Θ. The first
quantity we are interested in is the purity µ = (64

√
Det[Θ])−1, that is:

µ(Etot, β) =
1 + β

1 + β + 2Etot(1− β)
, (31)

where we defined the total energy Etot = N1(1 + β). As one may expect the purity becomes
smaller as Etot increases and β < 1 (if β = 1 then µ = 1, since mode 2 was in the vacuum
state).
Let us now focus our attention on the separability. Since we are dealing with a Gaussian

state, its separability can be investigated by means of the positivity of the partial transpose
(PPT) [20]. For a three-mode state the only partially separable forms are those with a bipartite
splitting of 1× 2 modes, thus the PPT with respect to mode k = 1, 3, 4, can be written as

Θ +
i

2
Ω(k) ≥ 0, with Ω(k) =




f1,k ω 0 0
0 f4,k ω 0
0 0 f3,k ω



 , ω =
(
0 1
−1 0

)
. (32)

where fh,k = 1− 2δh,k. In Fig. 5 we plot the minimum eigenvalue λk of Θ+
i
2Ω(k), k = 1, 3, 4,

as a function of β and different values of N1 and τ : since λk < 0 ∀k, we conclude that $134
is fully inseparable. The state becomes separable only if β = 0, i.e., mode 3 is initially in the
vacuum state.
In the following, we investigate the separability of the two-mode states obtained from $134

tracing over one of the three modes. Since the characteristic function of the state $134, i.e.,

χ[$134](Λ̄) = exp(− 12Λ̄
T
Θ̄ Λ̄), is Gaussian, when we trace over one mode, the resulting two-

mode state is still Gaussian, and its separability can be investigated by means of the PPT
criterion that, now, reads as follows [20]:

Θhk +
i

2
Ω̃ ≥ 0, Ω̃ =

(
ω 0
0 −ω

)
, (33)

where Θhk is the 4 × 4 covariance matrix of the two-mode state obtained tracing over mode
l )= h, k. When the inequality in (33) is verified, then mode h and k are separable. In Fig. 6 we
plot the minimum eigenvalue γhk of the left hand side of the inequality in (33) as a function
of β and different values of N1 and τ : as one may expect, modes 1 and 4 are always separable,
whereas the subsystems 1–3 and 3–4 are entangled.
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Fig. 7. Plot of the cloning fidelity G = G31 = G34 in the case of symmetric cloning, i.e., τ = 0.5,
in the two regimes (a) 0 ≤ N1 ≤ 1 and (b) N1 > 1 as a function of β and different values of N1: (a)
N1 = 0.01 (dot-dashed line), 0.1 (dashed line) and 1 (solid line), (b) and N1 = 1000 (dot-dashed line),
100 (dashed line) and 10 (solid line). The dotted lines refer to G = 1/2 and G = 2/3. We set φ3 = π.

3.2 Telecloning

Since mode 1 and 4 are not entangled, here we address the telecloning process from mode 3
to mode 1 and 4. The calculation is similar to that of section 2.2, but, now, the two Gaussian
clones, i.e., $1 and $4 (see Fig. 4), have the following covariance matrix θk, k = 1, 4:

θk = σin + PM3P +Mk − PBTk3 −Bk3P . (34)

Now, the cloning fidelities G3k = {Det[
√
σin + θk]}−1, k = 1, 4, are given by:

G31 =
[
2 +N1(τ + β) + 2

√
βτN1(1 +N1) cosφ3

]−1
, (35)

G34 =
[
2 +N1(1− τ + β) + 2

√
β(1− τ)N1(1 +N1) cosφ3

]−1
, (36)

where we used N1 = βN1. Note that the fidelities are maxima for φ3 = π, as in the previous
cases (see section 2).
In the following we focus the attention on the symmetric cloning setup, i.e., τ = 0.5: in this

case mode 1 and 4 of the state $134 have the same energy and G31 = G34 = G. As one can see
in Fig. 7, we can distinguish two regimes with respect to the value of N1: (a) 0 ≤ N1 ≤ 1 and
(b) N1 > 1. In regime (a) the optimal symmetric cloning G = 2/3 is achieved only for β = 1
and N1 = 1. In regime (b) G always reaches the maximum value 2/3 for β = (1 +N1)/(2N1).
In both the regimes, G > 1/2 if:

2 +N1 − 2
√
1 +N1

2N1
< β < Min

[
1,
2 +N1 + 2

√
1 +N1

2N1

]
. (37)

Note that as N1 increases the interval (37) becomes smaller and smaller. Figure 8 shows G as
a function of N1 for different values of β. We can see that for 0.5 ≤ β ≤ 1 the fidelity G always
reaches the optimal value 2/3 at N1 = (2β − 1)−1. As one may expect, for 0 ≤ β < 0.5 the
fidelity never reaches 2/3 and the maximum is obtained for N1 = 2β/(1− 2β).
In Fig. 9 the symmetric cloning fidelity G is plotted as a function of the total energy and

the purity of the state $134.
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4 Conclusions

We have addressed continuous variable 1 → 2 telecloning based on three-mode entangled
states of the radiation field. After reviewing existing protocols using phase-space formalism
we have suggested a novel scheme which allows telecloning with optimal fidelity also in the high
energy regime. Our scheme is based on a novel entangled state synthesized by linear optical ele-
ments and absorption starting from the SU(2,1) three-mode state obtained from two interlinked
bilinear interactions in a χ(2) nonlinear crystal. We have analyzed purity and entanglement of
the novel state and evaluated the telecloning fidelity in different regimes, thus showing that
optimal telecloning is possibile also when the average photon number of the shared state is
large. Finally, we notice that being not limited by energy constraints our scheme is suitable to
be implemented with current technology, i.e., by using feasible schemes to generate three-mode
entanglement, based on nonlinear crystals, already demonstrated experimentally [12,13].

This work was supported by MIUR through the project PRIN-2005024254-002 and by the CNR-CNISM
convention.

Appendix

A Conditional measurement onto a n-mode Gaussian state

Let us consider the following Gaussian characteristic function with zero mean value associated
with a n-mode state:

χ(Λ) = exp
(
− 12Λ

TΣΛ
)
, (A.1)
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where Λ = (Λ1,Λ2, . . . ,Λn) ∈ R 2n is a column vector and Σ is the 2n × 2n covariance
matrix [Σ]h,k =

1
2 〈{Rh, Rk}〉 − 〈Rh〉〈Rk〉 with R = (q1, p1, . . . , qn, pn)

T , qk =
1√
2
(ak + a

†
k) and

pk =
1
i
√
2
(ak − a†k), ak being the field operator of mode k, and {Rh, Rk} = RhRk +RkRh.

Measurement on mode 1 — In the following we are interested in performing on mode 1 a
measurement described by the characteristic function

χM(Λ1) = π−1 exp
(
− 12Λ

T
1 σMΛ1 − iΛT1X

)
, (A.2)

where σM is the covariance matrix of the measurement and X the mean values vector. For the
sake of simplicity, we write the vector Λ and the covariance matrix Σ as follows:

Λ = (Λ1,Λ2, . . . ,Λn) = (Λ1, Λ̃), Σ =

(
A C

CT B

)
, (A.3)

where A ∈ R 2 × R 2 and B ∈ R 2 × R 2(n−1) are symmetric, and C ∈ R 2 × R 2(n−1). The
characteristic function of the system after the measurement is given by

χ′(Λ̃) =
1

p(X)

∫

R 2

d2Λ1
2π

χ(Λ1, Λ̃)χM(−Λ1), (A.4)

p(X) being the probability of the outcome X:

p(X) =
1

(2π)n

∫

R 2n
d2Λ1 d

2(n−1)Λ̃χ(Λ1, Λ̃)× χM(−Λ1) (2π)2(n−1)δ(−Λ̃) (A.5)

=

∫

R 2

d2Λ1
2π2

exp
[
− 12Λ

T
1 (A+ σM)Λ1 + iΛ

T
1X
]
=
exp
[
− 12X

T (A+ σM)−1X
]

π
√
Det[A+ σM]

,

(A.6)

where δ(−Λ̃) =
∏n
k=2 δ(2)(−Λk) is the product of Kronecker deltas in R 2. Note that

χ(Λ1, Λ̃)χM(−Λ1) = π−1 exp
[
− 12 (Λ1, Λ̃)

Tσ (Λ1, Λ̃) + iΛ
T
1X
]
, (A.7)

where

σ =

(
A+ σM C
CT B

)
. (A.8)

In order to perform the integral (A.4) we observe that σ can be rewritten as follows:

σ =MT

(
A+ σM 0
0 B −CT (A+ σM)−1C

)
M , M =

(
12 (A+ σM)−1C
0 12(n−1)

)
, (A.9)

where 1k is the k× k identity matrix and 0 is a suitable null matrix. The matrix B−CT (A+
σM)−1C is the Schur complement of the matrix σ with respect to A+ σM. Now, since

M(Λ1, Λ̃) =
(
Λ1 + (A+ σM)

−1CΛ̃, Λ̃
)
, (A.10)

Eq. (A.4) becomes

χ′(Λ̃) =
1

p(X)
exp
{
− 12 Λ̃

T
[B −CT (A+ σM)−1C] Λ̃− iΛ̃

T
CT (A+ σM)

−1X
}

×
∫

R 2

d2Λ′

2π2
exp
{
− 12 (Λ

′)T (A+ σM) (Λ
′) + i(Λ′)TX

}
(A.11)

= exp
{
− 12Λ̃

T
[B −CT (A+ σM)−1C] Λ̃− iΛ̃

T
CT (A+ σM)

−1X
}

(A.12)
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where we performed the change of variables Λ′ = Λ1 + (A+σM)−1CΛ̃. The conditional state
χ′(Λ̃) is a (n−1)-mode Gaussian state with covariance matrix B−CT (A+σM)−1C and mean
value vector CT (A+ σM)−1X.
Measurement on mode n — Now we focus our attention on mode n and address a measure-

ment described by the characteristic function

χM(Λn) = π−1 exp
(
− 12Λ

T
nσMΛn − iΛTnX

)
, (A.13)

where, again, σM is the covariance matrix of the measurement and X the mean values vector.
We write the vector Λ and the covariance matrix Σ of (A.1) as follows:

Λ = (Λ1,Λ2, . . . ,Λn) = (Λ̃,Λn), Σ =

(
A C

CT B

)
, (A.14)

where, now, A ∈ R 2(n−1) × R 2(n−1) and B ∈ R 2 × R 2 are symmetric, and C ∈ R 2(n−1) × R 2.
The characteristic function of the system after the measurement is given by

χ′′(Λ̃) =
1

p(X)

∫

R 2

d2Λn
2π

χ(Λ̃,Λn)χM(−Λn), (A.15)

and p(X) is

p(X) =
1

(2π)n

∫

R 2n
d2(n−1)Λ̃ d2Λn χ(Λ̃,Λn) (2π)

2(n−1)δ(−Λ̃) × χM(−Λn) (A.16)

=

∫

R 2

d2Λn
2π2

exp
[
− 12Λ

T
n (B + σM)Λn + iΛ

T
nX
]
=
exp
[
− 12X

T (B + σM)−1X
]

π
√
Det[B + σM]

,

(A.17)

where δ(−Λ̃) =
∏n−1
k=1 δ(2)(−Λk) is the product of Kronecker deltas in R 2. We have

χ(Λ̃,Λn)χM(−Λn) = π−1 exp
[
− 12 (Λ̃,Λn)

Tσ (Λ̃,Λn) + iΛ
T
nX
]
, (A.18)

where, now,

σ =

(
A C

CT B + σM

)
. (A.19)

To perform the integral (A.15) we observe that σ can be rewritten as follows:

σ =NT
(
A−C(B + σM)−1CT 0

0 B + σM

)
N , N =

(
12(n−1) 0

(B + σM)−1C
T 12

)
. (A.20)

The matrix A − C(B + σM)−1CT is the Schur complement of the matrix σ with respect to
B + σM. Now, since

N(Λ̃,Λn) =
(
Λ̃, (B + σM)

−1CT Λ̃+Λn
)
, (A.21)

Eq. (A.15) becomes

χ′′(Λ̃) =
1

p(X)
exp
{
− 12Λ̃

T
[A−C(B + σM)−1CT ] Λ̃− iΛ̃

T
C(B + σM)

−1X
}

×
∫

R 2

d2Λ′

2π2
exp
{
− 12 (Λ

′)T (B + σM) (Λ
′) + i(Λ′)TX

}
(A.22)

= exp
{
− 12Λ̃

T
[A−C(B + σM)−1CT ] Λ̃− iΛ̃

T
C(B + σM)

−1X
}

(A.23)

where we performed the change of variables Λ′ = Λ1+(B+σM)−1C
T Λ̃. The conditional state

χ′′(Λ̃) is a (n − 1)-mode Gaussian state with covariance matrix A − C(B + σM)−1CT and
mean value vector C(B + σM)−1X.
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