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We investigate the violation of noncontextuality by a class of continuous-variable states, including variations
of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the
Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using
effective bidimensional observables implemented through physical operations acting on continuous-variable
states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities
put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state
entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode
state by using pseudospin observables and a generalized quasiprobability function.
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I. INTRODUCTION

Noncontextuality is commonly intended as a property of
mutually compatible observables. Two observables A and B
are said to be compatible when the outcome of a measurement
of A performed on a system does not depend on any
prior or simultaneous measurement of B. A set of mutually
compatible observables defines a context, so that the above
example defines a situation where the measurement of A
does not depend on the context or is noncontextual. Clearly,
noncontextuality is a property inherent in the classical world.
In a maieutic game played by Alice and Bob, if Alice asks a
question, then clearly the answer is not affected by any prior
or simultaneous compatible question asked by Bob.

For quantum observables to assume such a property may at
first seem reasonable. It would be equally reasonable to assume
functional consistency (realism), that is, for the commuting
operators A1, A2, and A3 = f (A1,A2) to assume that the
results of their measurements (even if not performed) would
satisfy the same relation as the operators [e.g., a1, a2, and
f (a1,a2)]. On the other hand, the two assumptions taken
together are incompatible with quantum mechanics.

In fact, the Kochen-Specker (KS) theorem [1–3] states
that no noncontextual hidden-variable (NCHV) theory can
reproduce quantum mechanics. This is complementary to
the well-known Bell theorem [4], which states that no local
hidden-variable theory can reproduce quantum mechanics and
provides an equally viable tool to gaining insight into the
open question as to where exactly the boundary between the
classical and quantum may lie. Kochen and Specker [2] orig-
inally produced a set of 117 observables, associated with the
squares of the components of the angular momentum operator
along 117 different directions to demonstrate a contradiction
with noncontextuality. Almost twenty-five years later, Peres
found a much simpler counterexample [5] involving only
six Pauli spin operators in the four-dimensional space of
two spin-1/2 particles. Peres’ formulation of the problem,
however, is strictly dependent on the form of the state of the
two particles. Mermin [6] made a further simplification by
extending the example to include three additional operators,
thereby illustrating state independence. The state-independent

nature of the KS theorem is a rather distinctive feature:
Inequalities based on noncontextual hidden-variable theories
(herein dubbed as KS inequalities) might be violated by any
quantum state, regardless of their degree of entanglement.

It should be remarked how the falsification of a KS inequal-
ity faces rather challenging hurdles related to the feasibility of
tests that, while capable of maintaining state independence,
also guarantee that all the necessary observables are measured
in a context-independent way [7]. Cabello [8] has recently
addressed these points by providing inequalities that strictly
meet the criteria mentioned above. One such inequality is built
from the observables used in the proof of the KS theorem for
two-qubit systems proposed by Peres and Mermin [5,6]. In a
seminal experiment, Kirchmair et al. [9] have demonstrated
the violation of such an inequality using trapped ions, were
two energy levels of an ion are selected so as to embody the
single-qubit logical states. The KS inequality was thus tested
using ten different quantum states, ranging from entangled
to separable, from quasi-pure to almost fully mixed states,
hence providing compelling evidence of the state-independent
character of the inequality being probed.

Any experimentally testable state-independent KS inequal-
ity proposed so far deals with states belonging to Hilbert spaces
of finite dimension and dichotomic observables. Plastino
and Cabello [10] have extended the notion of quantum
contextuality to include harmonic oscillators by deriving a
KS inequality involving 18 observables based on position and
momentum. Their conclusion is that it may indeed be possible
to experimentally reveal state-independent quantum contex-
tuality for any quantum system admitting two continuous-
position observables and corresponding canonically conjugate
momenta. However, the required measurements might be quite
demanding to implement in actual experiments using specific
physical systems.

Here, at variance with Plastino and Cabello, we tackle
the falsification of noncontextuality inequalities in unbounded
Hilbert spaces using a different viewpoint. In fact, while we
keep the dichotomic structure of the observable entering the
KS inequalities to test, we explicitly consider systems living
in infinite-dimensional Hilbert spaces. In order to accomplish
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our goal, we take advantage of the well-known possibility to
violate Bell-like inequalities using dichotomic non-Gaussian
observables and continuous-variable (CV) systems prepared
in quantum correlated Gaussian states [11,12] as well as non-
Gaussian states embedding a qubit state [13,14]. In particular,
two-mode entangled coherent states (ECSs) [15] and binned
homodyne detections have been used by Stobińska et al. [16]
to show the violation of a Bell-Clauser-Horne-Shimony-Holt
(Bell-CHSH) inequality up to Tsirelson’s bound (i.e., the
maximum degree of violation allowed by quantum mechanics).
In this case, the observables needed for the Bell-CHSH
inequality are given by effective rotations built from a series
of Kerr nonlinearities, displacement operations, and phase
shifters. This approach to mimic the standard Bell-CHSH
inequality proved to be quite efficient in demonstrating
further the nonlocal properties of highly mixed states close
to classicality [17], nonlocal realism [18,19], and multipartite
nonlocality of a class of multiqubit states [20].

On a parallel line, motivated by feasibility in quantum
optical systems, dichotomic observables based on on (off)
photodetection have been extensively employed to demon-
strate violation of Bell-CHSH inequalities using realistic, not
fully efficient, photodetectors with either qubit-like states or
genuinely continuous-variable ones [21–23]. In this paper, we
take a similar approach to show that a KS inequality can be
violated, in a state-independent manner, using qubit states
encoded into genuinely infinite-dimensional systems. We use
the same inequality as in Ref. [9], which is constructed by
means of the effective bidimensional observables that have
been exploited for Bell-CHSH inequalities mentioned above.
While, on one hand, the number of observables necessary
for our task is strictly the same as for discrete-variable
systems, our proposal may pave the way to a foreseeable
experimental implementation faithful to the constraint of
context independence. We then further our study to test a
KS inequality using a class of states that do not embed an
effective qubit state. This makes the formulation of an analogy
with the discrete-system case quite problematic. The paradigm
for such a situation is embodied by a two-mode squeezed
state. We overcome the difficulties by using the pseudospin
formalism introduced in Ref. [12]. Maximum violation of the
KS inequality proves interesting for this class of states that,
in the limit of infinite squeezing, approximate the original
version of the Einstein-Podolsky-Rosen (EPR) state and thus
strengthen the claim on the nonexistence of a hidden-variable
theory to describe quantum mechanics. We generalize our
approach by proving that it is indeed possible to violate a KS
inequality with any bipartite state of two harmonic oscillators,
such as two modes of the radiation field. To achieve this we
used a generalized P representation to describe any two-mode
state [24]. As we show, the application of pseudospin operators
to construct the KS inequality warrants state independence.

The remainder of this paper is organized as follows. In
Sec. II we briefly review the KS formalism, introduce the
noncontextual inequality that will be tested throughout our
work, and introduce the class of effective two-qubit operations
with which we build up the observables to be used. Section III
assesses the violation of the KS inequality by a CV class
of Werner state, which we build using the ECS form of
entangled states (we defer to an Appendix the more formal

aspects of our study). We show that, regardless of the degree
of entanglement and purity that characterize the states, a large
enough amplitude of the coherent states involved guarantees
the state-independent maximum violation of a KS inequality.
The case of pseudospin operators applied to a test-bed state
embodied by a two-mode squeezed vacuum is discussed in
Sec. IV and then generalized to any two-mode state, toward
full state independence, in Sec. V. Finally, in Sec. VI we
summarize our results and leave some open questions.

II. KOCHEN-SPECKER INEQUALITY AND GENERAL
FORMALISM

A. KS inequality

We briefly introduce and discuss the KS inequality that
has been experimentally tested in Ref. [9] and is assessed
in this paper. The inequality is constructed using nine ob-
servables, along the lines of the arguments put forward by
Peres and Mermin [5,6] to prove the incompatibility between
quantum mechanics and noncontextuality. Such observables
are arranged in a 3 × 3 array Â, known as the Peres-Mermin
square, in such a way that the entries Âij (i,j = 1,2,3) in each
column and row are mutually compatible and have dichotomic
outcomes ν(Âij ) = ±1. Denote the products of rows and
columns as

R̂k = Âk1Âk2Âk3 Ĉk = Â1kÂ2kÂ3k,

respectively: Assuming noncontextuality implies that

ν(R̂k) = ν(Âk1)ν(Âk2)ν(Âk3)

ν(Ĉk) = ν(Â1k)ν(Â2k)ν(Â3k).

Thus the total product becomes "3
k=1ν(Rk)ν(Ck) = 1, since

any ν(Âij ) appears twice in the product. However, this is in
contrast with the predictions of quantum mechanics, where a
Peres-Mermin square can be built out of the dichotomic Pauli
operators

σ̂x =
(

0 1

1 0

)

, σ̂y =
(

0 −i

i 0

)

, σ̂z =
(

1 0

0 −1

)

,

associated with two spin-1/2 systems as

Â =





σ̂ (1)
z ⊗ 1̂(2) 1̂(1) ⊗ σ̂ (2)

z σ̂ (
z1) ⊗ σ̂ (2)

z

1̂(1) ⊗ σ̂ (2)
x σ̂ (1)

x ⊗ 1̂(2) σ̂ (1)
x ⊗ σ̂ (2)

x

σ̂ (1)
z ⊗ σ̂ (2)

x σ̂ (1)
x ⊗ σ̂ (2)

z σ̂ (1)
y ⊗ σ̂ (2)

y



 (1)

In this case, the product of each row and column gives 1,
except those of the last column that give −1. Hence, in this
case we have the additional property of compatibility for
R̂k and Ĉk (k = 1,2,3) and so, assuming noncontextuality,
"3

k=1ν(R̂k)ν(Ĉk) = ν("3
k=1R̂kĈk) = −1. This bears witness

to the contradiction between a noncontextual assumption and
the predictions of quantum mechanics. Such a conflicting
outcome is formalized by the KS-like inequality [8]

〈χ̂KS〉 = 〈R̂1〉 + 〈R̂2〉 + 〈R̂3〉 + 〈Ĉ1〉 + 〈Ĉ2〉 − 〈Ĉ3〉 ! 4.
(2)

In Ref. [8] it has been proven that this inequality is bounded
by 4 for any NCHV theory, while 〈χ̂KS〉 = 6 for any state of
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two spin-1/2 particles. Equation (2) will be used throughout
this paper.

B. General formalism for CV states and effective bidimensional
dichotomic observables

In this section we introduce the class of CV states of interest
and the effective observables necessary for the falsification of
the KS inequality discussed above. The class of state that will
be used in the first part of our work is built on coherent states
|α〉 (α ∈ C), which are obtained by applying the displacement
operator D̂(α) = exp(αâ†−α∗â) to the vacuum state |0〉 [25].
Here, â (â†) is the annihilation (creation) operator of a bosonic
system. Although two coherent states with opposite phases
|α〉 and |−α〉 are strictly nonorthogonal, we have 〈α| − α〉 =
exp[−2|α|2]→0 in the limit of α ) 1. In such conditions,
{|α〉,|−α〉} form a basis in a two-dimensional Hilbert space.
This reasoning paves the way for extending the KS inequality
in Eq. (2) to deal with CV systems represented in the coherent-
state qubit basis. As it will be clarified in Sec. III, in our
investigation we consider mixed states of two coherent-state
qubits having a variable degree of entanglement between them.

The second important point is embodied by the provision
of appropriate observables able to mimic the Pauli spin-1/2
ones entering Â in Eq. (1). To do this, we take advantage of
the results reported in [16,18], where effective rotations are
introduced in order to run a Bell-CHSH test. Such operations
are generally given by the 2 × 2 transformation matrix acting
on the space spanned by the coherent-state qubit {|α〉,|−α〉}

Ô(θ,φ) =
(

sin θ
2 eiφ cos θ

2

e−iφ cos θ
2 − sin θ

2

)

. (3)

For proper choices of parameters θ ∈ [0,π] and φ ∈ [0,2π ],
any spin-1/2 transformation can be realized. Equation (3) can
be simulated by a sequence of building-block operations given
by displacement operations given by D̂(iη/2α) (for proper
choices of η ∈ C) and the single-mode Kerr-like nonlinearity
ÛNL = exp[−iπ (â†â)2/2] [26]. More precisely, a simulation
of Eq. (3) is provided by

Ô(θ,φ) * D̂(−iφ/4α)ÛNLD̂(iθ/4α)ÛNLD̂(iφ/4α), (4)

where the symbol * is used to emphasize that the approxi-
mation improves as |α| grows. The explicit transformations
experienced by |±α〉 are given by [18]

|α〉 → 1
2

[
e

iθ
4

(∣∣∣∣α + iθ

4α

〉
+ ie

iφ
2

∣∣∣∣−α − iφ

2α
− iθ

4α

〉)

+ ie− iθ
4

(
e

iφ
2

∣∣∣∣−α − iφ

2α
+ iθ

4α

〉
+ i

∣∣∣∣α − iθ

4α

〉)]
,

(5)

|−α〉 → 1
2

[
ie

iθ
4

(
i

∣∣∣∣−α − iθ

4α

〉
+ e

−iφ
2

∣∣∣∣α − iφ

2α
+ iθ

4α

〉)

+ e− iθ
4

(
ie− iφ

2

∣∣∣∣α − iφ

2α
− iθ

4α

〉
+

∣∣∣∣−α + iθ

4α

〉)]
.

Equation (5) is crucial in the construction of 〈χ̂KS〉.

III. VIOLATION OF THE KS INEQUALITY BY A CV
WERNER STATE

Here, we discuss the performance of the KS inequality
when tested using a CV Werner-like class of states. These are
defined as

ρw(a,p) = p|ECS(a)〉〈ECS(a)|
+ 1

4 (1 − p)[|α,α〉〈α,α| + |α,−α〉〈α,−α|
+ |−α,α〉〈−α,α| + |−α,−α〉〈−α,−α|]. (6)

State |ECS(a)〉 denotes a pure ECS reading

|ECS(a)〉 = N (
√

a|α,α〉 +
√

1−a|−α,−α〉),

whose degree of entanglement is parametrized by a ∈ [0,1]
with

N = [1 + 2
√

(1 − a)ae−4|α|2 ]−1/2

being a normalization factor. For a = 0,1 the state is fully
separable, while at a = 1/2 and |α| ) 1 it approximates a
maximally entangled two-qubit Bell state. The parameter p ∈
[0,1] accounts for the degree of mixedness of ρw(a,p), which
is a statistical mixture (a pure ECS) for p = 0 (p = 1). The
combined tuning of a and p gives us access to a broad range
of states that can be used to test the KS inequality for a state-
independent violation.

The KS function 〈χ̂KS〉 for this Werner-like class of states
is built from the correlators 〈R̂i〉, 〈Ĉi〉 (i = 1,2,3) as in
Eq. (2). Given the general transformation matrix defined
by Eq. (3), the Pauli spin-1/2 matrices σ̂x , σ̂y , and σ̂z are
given by Ô(θ = 0,φ = 0), Ô(θ = 0,φ = −π/2), and Ô(θ =
π,φ = 0), respectively. The correlator 〈+̂i〉 (+̂ ∈ {R̂,Ĉ} and
i ∈ {1,2,3}) is written as

〈+̂i〉 = (1 − p)
∑

s1,2=±
〈s1α,s2α|+̂i |s1α,s2α〉/4

+p〈ECS(a)|+̂i |ECS(a)〉, (7)

where

〈ECS(a)|+̂i |ECS(a)〉
= a〈α,α|+̂i |α,α〉 +

√
a(1 − a)(〈α,α|+̂i | − α,−α〉+ H.c.)

+ (1 − a)〈−α,−α|+̂i | − α,−α〉. (8)

Each correlator, +̂i , is given more explicitly in Table I written
in terms of the Pauli operators, described by the general
transformation matrix in Eq. (3). The decomposition and
effective realization of the transformation matrices Ô(0,0),
Ô(0,−π/2) and Ô(π,0) are given in Eq. (4), while the result
of their application to | ± α〉 is determined by using Eq. (5).
The corresponding explicit form of the correlators as functions
of α, p, and a are too lengthy to be shown here. However,
the expressions are analytic and allow us to obtain the full
behavior of the KS function 〈χ̂KS〉 against α for any degree of
entanglement and mixedness.

In Figs. 1(a) and 1(b), we show two significant cases of the
quasi-state independence of the KS function 〈χ̂KS〉 achieved in
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TABLE I. Table providing the explicit products of general transformation matrices for each correlator building the KS function 〈χ̂KS 〉.

+̂i Operator products entering the Peres-Mermin square

R̂1 [Ô (1)(π,0) ⊗ 1̂(2)] × [1̂(1) ⊗ Ô (2)(π,0)] × [Ô (1)(π,0) ⊗ Ô (2)(π,0)]
R̂2 [1̂(1) ⊗ Ô (2)(0,0)] × [Ô (1)(0,0) ⊗ 1̂(2)] × [Ô (1)(0,0) ⊗ Ô (2)(0,0)]
R̂3 [Ô (1)(π,0) ⊗ Ô (2)(0,0)] × [Ô (1)(0,0) ⊗ Ô (2)(π,0)] × [Ô (1)(0,−π/2) ⊗ Ô (2)(0,−π/2)]
Ĉ1 [Ô (1)(π,0) ⊗ 1̂(2)] × [1̂(1) ⊗ Ô (2)(0,0)] × [Ô (1)(π,0) ⊗ Ô (2)(0,0)]
Ĉ2 [1̂(1) ⊗ Ô (2)(π,0)] × [Ô (1)(0,0) ⊗ 1̂(2)] × [Ô (1)(0,0) ⊗ Ô (2)(π,0)]
Ĉ3 [Ô (1)(π,0) ⊗ Ô (2)(π,0)] × [Ô (1)(0,0) ⊗ Ô (2)(0,0)] × [Ô (1)(0,−π/2) ⊗ Ô (2)(0,−π/2)]

our model (for simplicity, we have taken α ∈ R). The analytic
expression for each KS function is given, for completeness, in
the Appendix. Here, we focus on the general features of such
functions. Panel 1(a) is for p = 1 and three different values
of the entanglement within the state, from full separability to
maximum entanglement. On the other hand, panel 1(b) studies
the effects that mixedness has on the behavior of 〈χ̂KS〉. We set
a = 0.5, so that the CV Werner state is maximally entangled,
and tune p from a fully pure state to maximum mixedness.
The results are clear: At small amplitudes of the coherent
states involved in ρw(a,p), the KS function is an increasing
function that trespasses the bound imposed by NCHVs in a
narrow region around α ∼ 1. In these conditions, we observe
some minor dependence of the KS function from the various
states being used. Those having larger degrees of entanglement
and purity become larger than 4 for slightly smaller values of
α. The situation changes as the amplitude grows, nullifying
the differences highlighted above and delivering a truly state-
independent KS function that quickly reaches 6, the value that
is known to be achieved by 〈χ̂KS〉 in the discrete-variable case
and regardless of the state being used. Although Figs. 1(a) and
1(b) address only a few significant cases, we have checked that
the description provided here is valid for any other choice of
a and p.

It is also interesting to compare the predictions for non-
classicality given by the violation of a KS inequality to those
regarding the violation of a local realism [3,4]. By following
the approach described and used in Refs. [16–18], one can

easily build up the Bell-CHSH function B̂CHSH associated with
state ρw(a,p) in Eq. (6) by means of local rotations realized
through the operator Ô(θ,φ) and dichotomized homodyne
projections onto quadrature eigenstates. In the qubit case,
the violation of the Bell-CHSH inequality requires rotations
performed only on the equatorial plane of the Bloch sphere
and this feature is carried over to the case at hand here. We
thus have to consider the set of transformations in Eq. (5)
obtained by setting φ = 0. Moreover, we can restrict the study
to projections onto the eigenstates |x〉 of the position-like
quadrature (â + â†)/

√
2 of a bosonic system [25]. Using the

general formula for the projection of a coherent state |α〉 (with
α = αr + iαi) over a position-like quadrature eigenstates |x〉

〈x|α〉 = 1
4
√

2π
eiααi−(x/2−α)2

(9)

one can evaluate B̂CHSH analytically and then maximize it
numerically over the parameters of the local rotations. The
results are given in Fig. 2, where a comparison is performed
between the Bell-CHSH function and the KS one correspond-
ing to ρw(1/2,p) (we have taken a = 1/2 here simply as a
significant representative of the general behavior observed for
an arbitrary choice of a). While panel 2(a) summarizes the
findings reported in Fig. 1(b) (i.e., the quasi-independence of
〈χ̂KS〉 of the value of p entering the state under scrutiny)
panel 2(b) shows the sensitivity of a Bell-CHSH test to the
degree of mixedness of ρw(1/2,p). This is in line with the idea

(a) (b) (c)
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1
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1.0 2.03.0

4.0

5.0

0 2 4 6 8 10

1
2
3
4
5
6

0.75
0.5

0.75

0.5

FIG. 1. (Color online) (a) Violation of noncontextuality by a CV Werner state at increasing values of the amplitude α ∈ R. We plot three KS
functions, each corresponding to p = 1 in Eq. (6). The three curves correspond to a = 1,0.75,and 0.5. Maximum violation of the noncontextual
KS inequality in Eq. (2) is achieved independently of the degree of entanglement. The inset shows a magnification of the region given by
α ∈ [0.5,2]. In panel (b) we have plotted the KS functions corresponding to a = 0.5, thereby working with maximally entangled coherent
states, for p = 1,0.5, and 0 in a CV Werner state. Maximum violation of the KS inequality is achieved, regardless of the degree of mixedness
within the state. The inset shows a magnification of the region given by α ∈ [0.5,2]. (c) Violation of KS inequality by a two-mode squeezed
state plotted against the squeezing parameter r . The KS inequality is given by Eq. (2), where the Pauli observables within each Âij are replaced
by the corresponding pseudospin operator in Eq. (12). In all the panels, the shaded region corresponds to the constraints imposed by NCHV
theories on the KS function.
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FIG. 2. (Color online) (a) Violation of the KS inequality in Eq. (2)
by a CV Werner state with a = 1/2. We plot 〈χKS 〉 against the
amplitude α and the purity parameter p. As discussed in Fig. 1(b),
the violation of the KS inequality is quasi-insensitive to variations of
p. (b) Violation of Bell-CHSH inequality by a CV Werner state with
a = 1/2, plotted against α and p. As purity grows, 〈B̂CHSH〉 violates
the local realistic bound of 2.

that KS tests are expected to be generally more powerful than
Bell-CHSH ones in revealing the quantumness of a physical
system.

IV. VIOLATION OF THE KS INEQUALITY BY A
CONTINUOUS SUPERPOSITION OF COHERENT

STATES

We would like now to extend the class of systems that we
use for our goals from the discrete superposition of quasi-
orthogonal states that builds up an ECS to a continuous distri-
bution. As the archetypal example of such a case, we consider
the state produced by superimposing a single-mode squeezed
state to a vacuum mode at a 50 : 50 beam splitter [25,27].
The former can be written in the coherent-state basis as the
continuous Gaussian-weighted distribution N

∫
d α G(r,α)|α〉

with

G(r,α) = exp
[
− (1 − tanh r)α2

2 tanh r

]
, (α ∈ R) (10)

where r is the squeezing parameter and N = 1/
√

2π sinh r is
the normalization factor [27]. It is worth stressing that such
a choice of resource state does not limit the validity of the
results to come and is merely due to the experimental-friendly
nature of the state, which can be routinely produced in many
linear-optics labs. Any other choice would be equally valid for
our purposes. After the admixture at the beam splitter, we get
the two-mode state [14]

|ξ 〉 = N
∫

d α G(r,α) |α/
√

2,α/
√

2〉. (11)

For this class of states any attempt to violate the KS inequality
given in Eq. (2) by applying the same set of observables as
done for the Werner state would be meaningless because of
the difficulties in identifying, in |ξ 〉, a bipartite bidimensional
system: Although the series of displacement operators and
Kerr-like nonlinearities introduced above can be used to
sufficiently approximate the Pauli matrices entering each Âij ,
the possibility of relating the state |ξ 〉 to that of a two-qubit
coherent state is undermined by the continuous nature of the
distribution in Eq. (11).

However it is not futile to try to falsify the KS inequality in
Eq. (2) by choosing a different set of observables than those
assessed so far. Our reasoning originates from the results by

Chen et al. [12], whereby a generalization of the Bell-CHSH
inequality for two-qubit systems to a two-mode state obtained
by superimposing a single-mode squeezed vacuum state with
a vacuum state at a balanced beam splitter has been shown
to be possible. In Ref. [12], the Bell-CHSH function for the
two-mode squeezed vacuum state is built from pseudospin
operators having the form

ŝx =
∞∑

n=0

(|2n + 1〉〈2n| + |2n〉〈2n + 1|),

ŝy = i

∞∑

n=0

(|2n〉〈2n + 1| − |2n + 1〉〈2n|), (12)

ŝz =
∞∑

n=0

(|2n + 1〉〈2n + 1| − |2n〉〈2n|).

Here, |n〉 is a Fock state of n excitations. These operators
share identical commutation relations to those of the spin-1/2
systems and for this reason the vector ŝ = (ŝx ,ŝy,ŝz) can be
regarded as the counterpart of the Pauli vector σ̂ = (σ̂x,σ̂y,σ̂z).
It acts upon the parity space of a boson and is for this
reason dubbed as a vector of parity-spin operators. Pseudospin
operators have been used to reveal bipartite and tripartite
nonlocality for quantum states with positive Wigner function
[12,28]. It can be seen as a generalization to continuous
variable systems of the one introduced by Gisin and Peres for
the case of discrete-variable systems [29], hence, for the case
of a pure bipartite system, it is equivalent to an entanglement
test [13].

Our goal here is to prove that the KS function in Eq. (2) can
indeed be tested using ŝ and |ξ 〉. This is straightforwardly done
by replacing each Pauli spin operator σ̂l(l = x,y,z) present in
each Âij with the analogous pseudospin operator ŝl . Each R̂k

and Ĉk is then constructed in the same fashion as in Sec. II.
The expectation value of the operator +̂i over the state |ξ 〉 is
given by

〈ξ |+̂i |ξ 〉 = N 2
∫

dα dβ G(r,α)G(r,β)〈α′,α′|+̂i |β ′,β ′〉, (13)

where γ ′ = γ /
√

2(γ = α,β).
Given that ŝx ŝx = 1̂, ŝzŝz = 1̂, ŝzŝx ŝy = i1̂, ŝx ŝzŝy = −i1̂,

it easily follows that, for +̂i = R̂1,R̂2,R̂3,Ĉ1,Ĉ2, we have

〈ξ | +̂i |ξ 〉 = N 2
∫

dα dβ G(r,α)G(r,β)〈α′|β ′〉2 = 1 (14)

while

〈ξ | Ĉ3 |ξ 〉 = N 2
∫

dα dβ G(r,α)G(r,β)i2〈α′|β ′〉2 = −1. (15)

Fig. 1(c) shows the behavior of the resulting KS function
against the squeezing parameter r . Clearly, the KS inequality is
maximally violated for any degree of squeezing. This result is
by virtue of the perfect dichotomization of the unbound Hilbert
space where |ξ 〉 lives performed by the parity-spin operators.
This is in contrast to what is obtained for the violation of
the Bell-CHSH inequality, which occurs only within a finite
window of squeezing. However, the difference stems from the
explicit state-dependent nature of the nonlocality inequalities,
which is in striking contrast with the state independence typical
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of a KS inequality. Incidentally, we see that the original EPR
state, which is the limiting case of |ξ 〉 for infinite squeezing,
maximally violates the KS inequality.

V. STATE INDEPENDENCE OF THE KS INEQUALITY
WITH PSEUDOSPIN OPERATORS

So far we have successfully shown the violation of the KS
inequalities for important classes of CV systems, including
pure, mixed, entangled, and separable ones. Yet the range
of states that have been used to probe the KS inequality is
still limited and a generalization able to undeniably prove the
claimed state independence will be highly desirable. This is
what we do in this section, where state independence is verified
using the picture given by the generalized quasiprobability
function [24] of a two-mode bosonic state and pseudospin
operators.

The density operator ρ of a single-mode state is given by the
Glauber R representation [24], which is based on a function of
two complex variables R(α∗,β), analytic throughout the finite
α∗ and β planes, and given by

R(α∗,β) = 〈α|ρ|β〉 exp[(|α|2 + |β|2)/2]. (16)

Given the knowledge of R(α∗,β), the density operator is then
written as

ρ = 1
π2

∫
d2α d2β |α〉R(α∗,β)〈β|exp

[
−1

2

(
|α|2 + |β|2

)]

(17)

with the normalization condition π−1
∫

R(β∗,β)exp
(−|β|2)d2β = 1. These expressions are easily generalized to
the case of a two-mode state, where

R(α∗
1 ,α

∗
2 ,β1,β2)

= 〈α1,α2|ρ|β1,β2〉exp



1/2
2∑

j=1

(|αj |2 + |βj |2)





and the density operator

ρ = 1
π2

∫
|α1,α2〉R(α∗

1 ,α
∗
2 ,β1,β2)〈β1,β2|

× exp[−1/2(||α1|2 + |β1|2 + |α2|2

+ |β2|2)]d2α1d
2β1d

2α2d
2β2 (18)

with the normalization

π−1
∫

R(β∗
1 ,β∗

2 ,β1,β2)exp(−|β1|2 − |β2|2)d2β1d
2β2 = 1.

(19)

As we have that

〈β2,β1|+̂i |α1,α2〉 = 1 (20)

for +̂i = R1,R2,R3,C1,C2, while

〈β2,β1|C3|α1,α2〉 = −1, (21)

the KS function, which is given by

〈χ̂KS〉 = Tr{ρR̂1} + Tr{ρR̂2} + Tr{ρR̂3}

+ Tr{ρĈ1} + Tr{ρĈ2} − Tr{ρĈ3}, (22)

equals 〈χKS〉 = 6 for any R function, that is without any
limitation imposed on the details of the state used in order to
calculate the KS function. We can thus conclude that NCHV
models are falsified in a state-independent manner, which
proves our claim.

VI. CONCLUSIONS

We have proposed a means for the violation of the KS
inequality by an ample variety of two-mode CV states. The
first class of states that we have used in order to discuss this
issue is based primarily on mixed ECSs, mimicking the family
of two-mode Werner states. For this case, we have found
that effective bidimensional observables achieved through
a sequence of displacements and nonlinear interactions are
well suited for proving the quasi-state-independent violation
of the KS inequality. The independence from the details of
the state being used becomes rigorous under the limit of
large-amplitude coherent states, when the CV Werner family
mimics in an excellent way the discrete-variable counterpart.

We extended the study to include a more general class of
states, using as a prototypical example the two-mode state
obtained by superimposing a single-mode squeezed state to a
mode prepared in vacuum. In this case, the use of pseudospin
operators in place of the usual Pauli spin operators was proven
adequate for the desired task: The violation of a KS inequality
was proven to be maximum and rigorously state independent.
Such a claim has been strengthened by relying on the Glauber
R representation of any two-mode bosonic system.

Our study should be regarded as an attempt to extend the
domain of applicability of already formalized frameworks
for the violation of NCHV theories in general CV states.
Certainly, some open questions remain to be addressed in a
more extensive way, especially in relation to the experimental
feasibility of compatible measurements to be performed over
the test state. We are currently investigating this point and the
possibility of employing weak measurement for the effective
implementation of the required set of measurements in a non-
intrusive way [30]. We conclude our analysis by commenting
on the existence of at least an experimental setting where the
ingredients required by our protocol for the violation of the KS
inequality by CV Werner-like states are all present (at least one
by one). In particular, we can consider systems consisting of
nanomechanical oscillators coupled to superconducting qubits
operating in the charge regime, which have been the center
of an extensive experimental and theoretical interest in the
last ten years [31]. While the oscillators would embody the
bosonic modes onto which we encode the state of our CV
system, the coupling with the superconducting qubit can be
tuned so as to effectively engineer an ECS of the mechanical
systems and realize both the displacement operation and
nonlinearities of the Kerr-like form, thus potentially providing
the whole toolbox needed in our proposal [32]. Alternatively,
we can use coupled superconducting coplanar resonators or
a bimodal resonator with an embedded charge qubit [33],
which effectively mimic the same sort of situation described
above and have the potential to implement the very same type
of effective interactions. We are currently investigating the
feasibility of a proof-of-principle test to be conducted along
these lines [30].
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APPENDIX: ANALYTIC EXPRESSIONS FOR THE KS FUNCTIONS IN SEC. III

In this Appendix we provide the explicit analytic expressions for the KS functions used in Sec. III. We distinguish each
function by considering the explicit dependence of 〈χ̂KS〉 on parameters p and a. That is, we consider 〈χ̂KS〉 = 〈χ̂KS(p,a)〉. We
have

〈χ̂KS(1,1)〉 = 3 exp
(

− 1024α8 + 96π2α4 + π4

256α6 + 16π2α2

)[
e4α2 + exp

(
32α6

16α4 + π2

)
sin

(
π3

32α4 + 2π2

)
+ exp

(
6π2α2

16α4 + π2

)

− exp
(

6π2α2

16α4 + π2

)
sin

(
8πα4

16α4 + π2

)
+ exp

(
2α2(32α4 + π2)

16α4 + π2

)
sin

(
8πα4

16α4 + π2

)
− e4α2

sin
(

π3

32α4 + 2π2

)

− exp
(

4α2(8α4 + π2)
16α4 + π2

)
sin

(
π3

32α4 + 2π2

)
+ 2e4α2

cos2
(

4πα4

16α4 + π2

)
+ exp

(
64α6 + 6π2α2

16α4 + π2

)

+ 2 exp
(

64α6 + 6π2α2

16α4 + π2

)
sin

(
8πα4

16α4 + π2

)
− 2 exp

(
32α6 + 6π2α2

16α4 + π2

)
sin

(
π3

32α4 + 2π2

)

+ 2 exp
(

1024α8 + 96π2α4 + π4

256α6 + 16π2α2

)
− 4 exp

(
1024α8 + 192π2α4 + π4

512α6 + 32π2α2

)
sin

(
π3

64α4 + 4π2

)

+ 4 exp
(

2048α8 + 192π2α4 + π4

512α6 + 32π2α2

)
cos

(
π3

64α4 + 4π2

)]
(A1)

〈χ̂KS(1,3/4)〉 =
exp

(
− 768α8+96π2α4+π4

128α6+8π2α2

)

4
√√

3e−4α2 + 2

(
4
[

− e2α2 + 2 exp
(

2α2(32α4 + π2)
16α4 + π2

)
+

√
3
]

exp
(

1024α8 + 320π2α4 + 3π4

512α6 + 32π2α2

)

× cos
(

4πα4

16α4 + π2

)
+ exp

(
512α8 + π4

256α6 + 16π2α2

){
4 exp

(
320π2α4 + π4

512α6 + 32π2α2

)

×
[
e2α2 + 2 exp

(
2α2(32α4 + π2)

16α4 + π2

)
+

√
3
]

sin
(

4πα4

16α4 + π2

)
+

√
2
[(

2(
√

3 − 1)exp
(

12π2α2

16α4 + π2

)

+ 2 exp
(

8α2(8α4 + π2)
16α4 + π2

)
− (

√
3 − 4)exp

(
64α6 + 12π2α2

16α4 + π2

)
+

√
3
)

sin
(

8πα4

16α4 + π2

)

− exp
(

32α6 + 6π2α2

16α4 + π2

)(
exp

(
4π2α2

16α4 + π2

)
+ 2 exp

(
6π2α2

16α4 + π2

)
− 1

)
sin

(
π3

32α4 + 2π2

)

+ exp
(

6π2α2

16α4 + π2

)(
4e4α2 + (2 +

√
3)exp

(
6π2α2

16α4 + π2

)
+ (2 +

√
3)exp

(
64α6 + 6π2α2

16α4 + π2

)

+ 2
√

3 exp
(

32π2α4 + π4

256α6 + 16π2α2

)
+ 4 exp

(
1024α8 + 96π2α4 + π4

256α6 + 16π2α2

)
− 2

√
3
)]})

, (A2)

〈χ̂KS(1,1/2)〉 =
exp

(
− 768α8+96π2α4+π4

128α6+8π2α2

)

2
√

e−4α2 + 1

(
2
√

2
[

exp
(

2α2(32α4 + π2)
16α4 + π2

)
+ 1

]
exp

(
1024α8 + 320π2α4 + 3π4

512α6 + 32π2α2

)

× cos
(

4πα4

16α4 + π2

)
+ exp

(
512α8 + π4

256α6 + 16π2α2

){
2
√

2 exp
(

320π2α4 + π4

512α6 + 32π2α2

)[
exp

(
2α2(32α4 + π2)

16α4 + π2

)
+ 1

]

× sin
(

4πα4

16α4 +π2

)
+

(
exp

(
12π2α2

16α4 + π2

)
+ exp

(
8α2(8α4 + π2)

16α4 + π2

)
+ exp

(
64α6 + 12π2α2

16α4 + π2

)
+ 1

)

× sin
(

8πα4

16α4 + π2

)
+ 2 exp

(
6π2α2

16α4 +π2

)[
e4α2 + exp

(
6π2α2

16α4 + π2

)
+ exp

(
64α6 + 6π2α2

16α4 + π2

)

+ exp
(

32π2α4 + π4

256α6 + 16π2α2

)
+ exp

(
1024α8 + 96π2α4 + π4

256α6 + 16π2α2

)
− 1

]})
, (A3)
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〈χ̂KS(1/2,1/2)〉 =
exp

(
− 1024α8+192π2α4+π4

16α6+π2α2

)

8
√

e−4|α|2 + 1

[
exp

(
1024α8 + 192π2α4 + π4

16α6 + π2α2

)]15/16[
exp

(
8α2(8α4 + π2)

16α4 + π2

)√
e−4|α|2 + 1

+ 2 exp
(

64α6 + 10π2α2

16α4 + π2

)√
e−4|α|2 + 1 + 3 exp

(
64α6 + 12π2α2

16α4 + π2

)√
e−4|α|2 + 1 +

[
exp

(
8α2(8α4 + π2)

16α4 + π2

)

× (
√

e−4|α|2 + 1 + 2) + exp
(

64α6 + 12π2α2

16α4 + π2

)
(3

√
e−4|α|2 + 1 + 2) + 2 exp

(
64α6 + 10π2α2

16α4 + π2

)

×
√

e−4|α|2 + 1 + 2 exp
(

12π2α2

16α4 + π2

)
+ 2

]
sin

(
8πα4

16α4 + π2

)
+ 8 exp

(
320π2α4 + π4

512α6 + 32π2α2

)

× (exp
(

2α2(32α4 + π2)
16α4 + π2

(
(
√

e−4|α|2 + 1 + 1) + 1) cos
(

π3

64α4 + 4π2

)

+4 exp
(

1024α8 + 192π2α4 + π4

256α6 + 16π2α2

)√
e−4|α|2 + 1 − 4 exp

(
6π2α2

16α4 + π2

)
+ 4 exp

(
12π2α2

16α4 + π2

)

+ 4 exp
(

64α6 + 10π2α2

16α4 + π2

)
+ 4 exp

(
64α6 + 12π2α2

16α4 + π2

)
+ 4 exp

(
128π2α4 + π4

256α6 + 16π2α2

)

+ 4 exp
(

1024α8 + 192π2α4 + π4

256α6 + 16π2α2

)]
, (A4)

〈χ̂KS(0,1/2)〉 = 1
4

exp
(

− 64π2α4 + π4

256α6 + 16π2α2

)[
2 exp

(
2π2α2

16α4 + π2

)
+ 3 exp

(
4π2α2

16α4 + π2

)
+

(
2 exp

2π2α2

16α4 + π2

)

+ 3 exp
(

4π2α2

16α4 + π2

)
+ 1

)
sin

(
8πα4

16α4 + π2

)
+ 4 exp

(
64π2α4 + π4

256α6 + 16π2α2

)

+ 8 exp
(

128π2α4 + π4

512α6 + 32π2α2

)
cos

(
π3

64α4 + 4π2

)
+ 1

]
. (A5)

These functions are used in order to produce the plots shown in Figs. 1(a) and 1(b).
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