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We address the information–disturbance tradeoff for state measurements on continuous variable Gaussian
systems and suggest minimal schemes for implementations. In our schemes, the symbols from a given alphabet
are encoded in a set of Gaussian signals which are coupled to a probe excited in a known state. After the
interaction the probe is measured, in order to infer the transmitted state, while the conditional state of the signal
is left for the subsequent user. The schemes are minimal, i.e., involve a single additional probe, and allow for
the nondemolitive transmission of a continuous real alphabet over a quantum channel. The tradeoff between
information gain and state disturbance is quantified by fidelities and, after optimization with respect to the
measurement, analyzed in terms of the energy carried by the signal and the probe. We found that transmission
fidelity only depends on the energy of the signal and the probe, whereas estimation fidelity also depends on the
alphabet size and the measurement gain. Increasing the probe energy does not necessarily lead to a better
tradeoff, the most relevant parameter being the ratio between the alphabet size and the signal width, which in
turn determine the allocation of the signal energy.
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I. INTRODUCTION

In a multiuser transmission line each user should decode
the transmitted symbol and leave the carrier for the subse-
quent user. Therefore, some device is needed that, at each
use of the channel, permits the retrieval of information with-
out the destruction of the carrier. In a quantum channel sym-
bols are encoded in states of a physical system and therefore
the ultimate bounds on the channel performances are posed
by quantum mechanics. Indeed, any measurement aimed to
extract information on a quantum state alters the state itself,
i.e., produces a disturbance �1�. Quantum information, in
fact, cannot be perfectly copied, neither locally �2� nor at
distance �3�. Overall, there is an information–disturbance
tradeoff which unavoidably limits the accuracy indepen-
dently on the coding scheme �4�.

Several approaches have been proposed to face this prob-
lem, either based on measuring �destructively� and partially
recreating the signal �5,6�, sharing entanglement over large
distances �7–10� or pairing coding �11�. The above schemes
are referred to as quantum repeaters.

In this paper we address devices which, besides extracting
information, preserves, at least in part, the entire quantum
state of the signal, i.e., the statistics of all possible observ-
ables. Our device thus conveys characteristics of both quan-
tum nondemolition �QND� measurements of a given observ-
able, and classical repeaters, whose goal is to preserve the
global information carried by a signal. Since the main feature
of our scheme is the tunability of the information–
disturbance tradeoff �12�, without any specific focus on the
measurement, we do not refer to them as QND schemes,
whose goal is limited to preserve the statistics of a specific
observable.

The tradeoff between information gain and quantum state
disturbance can be quantified in different ways �13�; here we

use fidelities, which may be defined as follows. Suppose one
wants to transmit the symbol a, chosen from the alphabet A
according to the probability density p�a�. To this aim a quan-
tum system is prepared in the pure state ��a�, chosen from a
given set, and then transmitted along a given channel. In
order to share the information among several users one needs
a device which couples the signal to one or more probe sys-
tems in order to produce two outputs. One of the two outputs
is sent to a user, who measures a predetermined observable
to infer the transmitted state, whereas the �conditional� state
of the second output is left to the subsequent user and thus
should contain an approximate copy of the input signal. If
the outcome b is observed after the device, then the esti-
mated signal state is given by ��b� �a natural inference rule
being b→ ��b� with ��b� given by the set of eigenstates of the
measured observable�, whereas the conditional state ��b� is
left for the subsequent user. The amount of disturbance is
quantified by evaluating the overlap of the conditional state
��b� to the initial one ��a�,whereas the amount of information
extracted by the measurement corresponds to the overlap of
the inferred state ��b� to the initial one. The corresponding
fidelities, for a given input signal ��a�, are given by

Fa = �
B

dbq�b����b��a��2, �1�

Ga = �
B

dbq�b����b��a��2, �2�

where we have already performed the average over the dis-
tribution q�b� of the outcomes. The alphabet B of the output
symbols �i.e., the spectrum of the measured observable� is
not necessarily equal to the input one, though this choice is
an optimized one �14�. The relevant quantities to assess the
performances of the scheme are then given by the average
fidelities*Electronic address: matteo.paris@fisica.unimi.it
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F = �
A
�

B
dadbp�a�q�b����b��a��2, �3�

G = �
A
�

B
dadbp�a�q�b����b��a��2, �4�

which are obtained by averaging Fa and Ga over the possible
input states, i.e., over the alphabet A of transmittable sym-
bols. F will be referred to as the transmission fidelity and G
as the estimation fidelity. Of course we have 0�G�1 and
0�F�1 with F=1 corresponding to zero disturbance and
G=1 to complete information.

Our device is local and its action is independent of the
presence of losses along the transmission line. The presence
of losses before the device degrades the signals and, as a
matter of fact, is equivalent to consider a set of mixed states
at the input. The performance of such a device can be ob-
tained from the analysis of the pure state case by averaging
the fidelity over the input probability. The result is an overall
degradation of performances. Since our focus is on exploring
the ultimate bounds imposed by quantum mechanics, we are
not going to take into account the mixing at the input. In the
following, we consider a scheme suitable to transmit a con-
tinuous alphabet A, whose symbols are encoded in a set of
Gaussian pure states of a continuous variable �CV� infinite
dimensional system.

Let us first consider the extreme case: if nothing is done,
the signal is preserved "a and thus F=1. However, at the
same time, our estimation has to be random, and thus
G→0 since we are dealing with an infinite-dimensional sys-
tem. This corresponds to a blind regeneration scheme �15�,
which reprepares any quantum state received at the input,
without gaining any information on it. The opposite case is
when the maximum information is gained on the signal, i.e.,
when the optimal estimation strategy for the parameter of
interest is adopted �16,17�. In this case G�0, but then the
signal after this operation cannot provide any more informa-
tion on the initial state. Our aim is to study intermediate
cases, i.e., quantum measurements providing only partial in-
formation while partially preserving the quantum state of the
signal for subsequent users. These kinds of schemes, which
correspond to feasible quantum measurements, may be also
viewed as universal quantum nondemolition measurements
�18� �i.e., not built for a specific observable�, which have
been widely investigated for CV systems, and recently re-
ceived attention also for qubits �19–21�.

For discrete variable, the tradeoff between information
gain and state disturbance has been explicitly evaluated �4�,
as well as the bound that fidelities should satisfy according to
quantum mechanics. In turn, optimal schemes for finite-
dimensional systems �qudits�, i.e., devices whose fidelity bal-
ance saturates the bound have been suggested �12,24� �in
Ref. �12� those schemes have been referred to as optimal
quantum repeaters�.

As a matter of fact the fidelity bound for finite-
dimensional systems cannot be straightforwardly extended to
infinite dimension, and no analog bound has been derived for
CV systems, except for the case of coherent states in phase-

insensitive devices �22� and non-Gaussian protocol �23�.
Therefore, in order to gain insight on the fidelity balance for
CV systems and to clarify the role of energy allocation, in
this paper we suggest a class of minimal schemes which
involve a single additional probe, and evaluate their perfor-
mances as a function of the channel �signal and probe� en-
ergy, which, in turn, depends on the width of the signal and
the probe wave packets as well as the size of the alphabet.
Indeed energy constraints are the main focus in infinite-
dimensional systems, and may serve to define optimality
�25�.

The paper is structured as follows: In Sec. II we describe
our schemes and evaluate the probability of the outcomes as
well as the corresponding conditional states, whereas in Sec.
III we evaluate fidelities and analyze the information–
disturbance tradeoff in terms of the signal and the probe
energy for different configurations. In Sec. IV we discuss the
optical implementation of our schemes, whereas Sec. V
closes the paper with some concluding remarks.

II. CONTINUOUS VARIABLE INDIRECT
MEASUREMENTS

In this section we suggest a measurement scheme suitable
to infer the information carried by a class of Gaussian CV
states without destroying the signals themselves. The setup is
the generalization to infinite dimension of the optimal
schemes suggested in Ref. �12� for qudits. The setup is mini-
mal because it involves a single additional probe system.

A. Input signals

We consider the transmission of a real alphabet A	R
with symbols a encoded in the set of Gaussian signals

��a��s =� dxga,��x��x�s, �5�

where �x� denotes the standard CV basis, say position eigen-
states, with �x� �x�=��x−x�� and

�ga,��x��2 =
1


2��
exp�−

�x − a�2

2�2 � .

The label s indicates signal quantities throughout the paper.
We assume, without loss of generality, ga,��x� as real, i.e.,
that the signal states ��a��s are Gaussian wave-packets cen-
tered in a, with zero “momentum” and a fixed width �. We
also assume that the a priori probability p�a� of the symbol
a, i.e., the probability to have a signal centered in a, is given
by a Gaussian

p�a� =
1


2��
exp−

a2

2�2�
of zero mean and width �. The width � will be referred to as
the size of the transmitted alphabet. Notice that the class
���a��s� is made by nonorthogonal states, and we have.

�s��b����a��s�2 =
2���

�2 + ��2 exp�−
�a − b�2

2��2 + ��2�� ,

and, in particular,
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�s��b���a��s�2 = exp�−
�a − b�2

4�2 � .

Upon defining the standard dual basis, say momentum eigen-
states, as

�p� =
1


2�
� dxeipx�x� , �6�

one has that the position- and momentumlike observables are
given by

X =� dxx�x��x�, P =� dpp�p��p� ,

whereas the energy operator reads as follows: N= 1
2 �X2+ P2�.

The average energy Ns�a�=s��a� �N ��a��s of the signal is thus
given by

Ns�a� =
1

2
a2 + �2 +

1

4�2� .

Finally, the mean energy sent into the channel per use �from
now on the signal energy� reads as follows:

Ns =� dap�a�Ns�a� =
1

2
�2 + �2 +

1

4�2� .

For each signal ��a��s we have �X2=�2 and �P2= �4�2�−1

that is, the signals ��a��s are minimum uncertainty states. For
�2=1/2 one has equal variances, whereas �2�1/2 corre-
sponds to “squeezing” of the signals. The signal energy is
minimum for �2=1/2; in this case we have Ns= 1

2 �1+�2�.
Notice that transmitted symbols may be viewed as shift

parameters ��a��s=exp�−iPa� ��0��s imposed to the “undis-
placed” basic state ��0��s. This feature will be used in opti-
mizing the measurement at the output.

B. Preparation of the probe state

The setup of the measurement scheme is shown in Fig. 1.
The signal is coupled with a probe system excited in the
�known� state

��	
�p = cos 	� dxg0,
�x��x�p + � sin 	� dpg0,
�p��p�p

=� dx�cos 	g0,
�x� + � sin 	g0,�2
�−1�x���x�p, �7�

where 	� �0,� /2�, and

� =

1 + �2 tan2 	 − 1

� tan 	
, �2 = 
2 +

1

4
2 �8�

is a normalization factor.
The state ��	
�p, in close analogy with the finite-

dimensional case �12�, is built as a tunable superposition of
the almost localized state �up to the width 
� ��0
�p and the
almost delocalized state ��0�2
�−1�p. The probe state depends
on two parameters: 	 and the width 
. This apparent redun-
dancy can be eliminated upon imposing a constraint on the
probe energy Np�
 ,	�= p��	
 �N ��	
�p, whose expression
reads as follows:

Np��,	� =
1

2
��2�cos2 	 + �2 sin2 	� +

�

�3 sin 2	�
=

1

2
��2 +

2 cos2 	��4 − 1�
�4 �1 − 
1 + �2 tan2 	�� .

�9�

At a fixed value of 	 the probe energy is minimum for 
2

=1/2 ��=1�, corresponding to Np�1,	�= 1
2 , whereas at a

fixed value of 
 the probe energy is minimum for

tan2 	

2
= 1 + 2

� − 
2��1 + ��
2 + �

�10�

corresponding to Np���=
1+���−1���2+1�

2�2 .
The two-parameter nature of the probe signal will be used

to analyze the information–disturbance tradeoff in different
configurations, which include regimes at fixed energy as well
as regime with increasing energy.

C. Interaction

The signal and the probe are then coupled by a Csum
=exp�−iXs � Pp� gate �denoted by C in Fig. 1�, which acts on
the standard basis of the signal-probe system as follows:

Csum�x�s�y�p = �x�s�x + y�p,

i.e., represents the generalization to the continuous variable
of the Cnot gate. �26�. The global �entangled� signal-probe
state ��out��sp after the interaction is given by

��out�sp = C��a��s � ��	
�p

= cos 	� � dxdyg
,0�x�ga,��y��y�s � �x + y�p

+
� sin 	


2�
� � � dpdx�dyg0,
�p�ga,��y�eipx��y�s

� �x� + y�p

FIG. 1. �Color online� Schematic diagram of an indirect mea-
surement scheme for continuous variable systems. The symbols
from the input alphabet A are encoded in a set of Gaussian signals
��a��s with real amplitude a and fixed width �. The a priori prob-
ability of the transmitted symbols is a Gaussian with zero mean and
width �. The signal is coupled, by a Csum gate, to a probe excited in
the known state ��	
�p. After the interaction the probe is measured
in order to infer the transmitted state, while the signal is left for the
subsequent user. The measurement is described by the operator-
valued measure �b�, which is optimized in order to maximize the
estimation fidelity. The output signals ��b�s are the conditional
states of the signal after having observed the outcome b.
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=� � dxdyga,��y��cos 	g0,
�x�

+ � sin 	g0,�2
�−1�x���y�s � �x + y�p. �11�

D. Measurement

After the interaction the probe is measured in order to
infer the transmitted state, while the signal is left for the
subsequent user. The measurement is described by the
operator-valued measure P�b�= I � �b�, where �b� is an
operator-valued measure acting on the sole probe Hilbert
space. Since the transmitted symbols are Gaussian distrib-
uted shift parameters we expect the optimal measurement to
be of the form �16�

�b� =
1

�
�b/��pp�b/��

with �b�p being the standard basis states �position eigenstates�
and � a real constant, hereafter referred to as the measure-
ment gain, chosen to optimize the desired figure of merit
�here the estimation fidelity�. In order to estimate the trans-
mitted state from the outcomes of the measurement we as-
sume the natural inference rule

b → ��b��s,

where ��b��s is of the form �5�, i.e., a signal Gaussian wave
packet centered in b and width �. The probability density
q�b� of obtaining the outcome b, and the expression of the
corresponding conditional state �b for the signal are thus
given by

q�b� = Trsp���out��sp sp���out�I � �b��=s��̃b��̃b�s, �12�

�b =
1

q�b�
Trp���out��sp sp���out�I � �b�

=
1

q�b�
��̃b�ss��̃b� = ��b�ss��b� . �13�

The last equalities in both Eqs. �12� and �13�, which express
the purity of the conditional state, follow from the fact that
the initial states of both the signal and the probe are pure,
and that the measure �b� is pure too. Mixed measurements
may be considered as well, though unavoidably leading to
additional extrinsic noise �16,17�. The unnormalized signal
states ��̃b�s are given by

��̃b�s =
1


�p
�b��out��sp

=
cos 	


�
� � dxdyg
,0�x�ga,��y���b/� − x − y��y�s

+
� sin 	


2��
� � � dpdx�dyg0,
�p�g
,a�y�eipx���b/�

− x� − y��y�s

=� dy

�

ga,��y��cos 	gb/�,
�y� + � sin 	gb/�,�2
�−1�y���y�s

�14�

thus leading to

q�b� =
1

�
� dy�ga,��y��2�cos 	gb/�,
�y� + � sin 	gb/�,�2
�−1�y��2.

�15�

In Eqs. �12�–�14�, for the sake of a simpler notation, we
omitted the explicit dependence of the conditional states on
the signal and probe widths, � and 
.

III. INFORMATION–DISTURBANCE TRADEOFF

We are now in the position of evaluating the fidelities. As
a concern of the transmission fidelity, according to Eq. �1�
we have

Fa =� dbq�b��s��b��a��s�2 =� db�s��̃b��a��s�2.

After lengthy but straightforward calculations one arrives at

Fa =

2
 cos2 	


2
2 + �2

+
4
 cos 	�− 2
 cos 	 + 
1 + 4
4 − �1 − 2
2�2 cos2 	�


�1 + 4
4��1 + 4
4 + 4
2�2�

+
�− 2
 cos 	 + 
1 + 4
4 − �1 − 2
2�2 cos2 	�2

�1 + 4
4�
1 + 2
2�2
. �16�

Notice that Fa does not depend on the amplitude a, nor on
the measurement gain �. Therefore the average fidelity F

F =� dap�a�Fa = Fa,

is equal to the signal fidelity and also does not depend on the
alphabet size �.

Using Eqs. �2� and �15� one evaluates the estimation fi-
delity Ga as follows:

Ga =� dbq�b��s��b���a��s�2. �17�

The signal fidelity Ga depends on the amplitude a of the
signal, by averaging over the a priori signal probability p�a�
we arrive at the estimation fidelity G,
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G =� dap�a�Ga =

2� cos2 	


�2�� − 1�2 + 2�2 + �2�
2 + �2�
−


2� cos2 	�8
2 − 4

4
2 + �1 + 4
4�tan2 	�

�1 + 4
4���2�� − 1�2�1 + 4
4� + 2�1 + 4
4��2 + �2�2
2 + �2 + 4
4�2��

+

2� cos2 	�16
3 + 2�
 + 4
5�tan2 	 − 8
2
4
2 + �1 + 4
4�tan2 	�

�1 + 4
4�
4
2��2 + 2�2� + �2�1 + 4�2
2 + 4
2�2� − 8��2
2
, �18�

which, besides the signal and probe widths, depends on the
alphabet size � and the measurement gain �.

By inspecting Eqs. �16� and �18� the superposition nature
of the probe state ��	
�p can be clearly seen; at fixed values
of the parameters � and � the fidelities oscillate as a function
of the tuning parameter 	 �see Fig. 2�. As it is apparent from
the plots for 
2�1/2 the transmission �estimation� fidelity F
�G� is maximized �minimized� at 	=� /2 and is minimized
�maximized� at 	=0, whereas for 
2�1/2 the situation is
the opposite. By varying the values of � and � the shape of
the curves slightly change, while the overall behavior is the
same.

In order to derive a proper information–disturbance
tradeoff we first have to optimize �maximize� the estimation
fidelity with respect to the measurement gain �. The general
solution of the optimization equation is rather involved and
does not offer a clear picture. Therefore, in order to gain
insight on the general behavior, we now proceed to analyze
the optimization and the corresponding tradeoffs for relevant
configurations.

A. Probe in the high-energy limit

In order to compare the optimal scheme for qudit to the
present CV scheme we start by considering the probe in the
state

��	0� = cos 	�0�p +
sin 	


2�
� dx�x�p, �19�

which is the plain analog of the probe used in the optimal
scheme for the qudit �12�. We obtain this configuration by
taking the limit 
→0 in �7�. Of course this is an ideal case,
since it corresponds to a probe state with divergent energy.
As it concerns the optimization of the measurement we
obtain

�opt =
�2

�2 + �2 �20�

which corresponds to fidelities

F = sin2 	 , �21�

G = cos2 	
 1 +
�2

�2

1 +
3

2

�2

�2

�22�

and to the parametric function F=FA�G ,y�,

FA�G,y� = 1 − G

1 +

3

2
y

1 + y
, y =

�2

�2 , �23�

which depends on the ratio y between the alphabet size and
the signal width. We have a linear dependence between the
two fidelities and for each curve one can explore the tradeoff
by varying the parameter 	; one moves along the curve from
right to left by increasing 	. Different curves for different
values of the ratio y are depicted in Fig. 3. We see that the
high-fidelity region �both F and G close to unity� is excluded
and that the tradeoff is better for small values of the ratio y,
i.e., for “small alphabets.” For increasing y, i.e., for increas-
ing the size of the alphabet, the slope of the curve FA�G ,y�
decreases. The function FA�G ,y� intercepts the G axis at
G=
�1+y� / �1+ 3

2 y�.

B. Probe in the undisplaced state

Here we analyze the case of undisplaced probe state
��0
�p which, in the limit 
→0 approaches the localized
state �0�p. We can obtain this configuration by setting 	=0 in
Eq. �7�. Maximizing the estimation fidelity with respect to
the measurement gain we arrive at

�opt =
�2

�2 + �2 + 
2

and, correspondingly, to the fidelities

F =
 2z

1 + 2z
, z =


2

�2 , �24�

G =
 1 + z + y

1 + z +
y

2
�3 + z�

, �25�

which, besides the ratio y, also depend on the ratio z between
the probe and the signal widths.

Upon inverting Eq. �25� we arrive at the parametric func-
tion F=FB�G ,y�, which depends only on the ratio y,

FB�G,y� =
 G2�4 + 6y� − 4�1 + y�

G2�2 + 5y� − 41

2
+ y� . �26�

In Fig. 4 we show the tradeoff for different values of y.
As it is apparent from the plot, this configuration allows

us to achieve the high-fidelity region. The tradeoff is worse
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for larger values of the ratio between the alphabet size and
the signal width. Therefore, in order to get superior perfor-
mances, it is preferable to have a small alphabet rather than a
class of narrow signals. For fixed width of the signals this is
intuitively expected; the larger the alphabet the worse the
tradeoff. On the other hand, for a fixed alphabet size, this
means that the larger the signals the better the tradeoff. One
moves along each curve by tuning the probe width 
; from
right to left by increasing 
.

C. Probe in the minimum energy state

As we have already seen, at fixed 	 we have minimum
energy for 
2=1/2. In this case we also lose the dependency
on 	 and the probe state is given by

��	2−1/2�p =� dxg0,2−1/2�x��x�p.

The optimal � is given by

FIG. 2. �Color online� Left: Transmission fidelity F�
 ,	� for �=1 and for different values of �; from top to bottom �=0.4,1 /
2,2. Right:
Estimation fidelity G�
 ,	� for �=1, �=1/
2 and for different values of �; from top to bottom �=0.4,1
2,2.
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�opt =
2�2

1 + 2�2 + 2�2 , �27�

which corresponds to fidelities

F =
 1

1 + �2 , �28�

G = �
 2�1 + 2�2 + 2�2�
4�4 + �2 + 2�2�1 + 3�2�

, �29�

and to the parametric function

FC�G,�� =
3 − 2�2 + 3G2��2 − 1� − 
�1 + 2�2�2 − 2G2�1 + 3�2 + 6�4� + G4�1 + 2�2 + 9�4�
2 − 4�2 + G2�5�2 − 2�

. �30�

The tradeoff FC�G ,��, which depends only on the alphabet
size �, is shown for different values of � in Fig. 5.

Also this configuration permits to access the high-fidelity
region. The curves corresponding to smaller values of � are

the upper ones, i.e., the tradeoff is worse for larger alphabets.
One moves along the curves by tuning the signal width �;
from left to right by increasing �. For narrower signal we
have less disturbances, though we get less information too.
In the limit for �→0 we have FC�G ,0�=1, in particular, up
to the second order in � �see Fig. 5, upper curve� we have

FC�G,�� = 1 +
G2

4�G2 − 1�
�2 + O��4� . �31�

For uniform alphabets, i.e., in the limit �→�, Eq. �30� re-
writes as

F =
4 − 6G2

4 − 5G2 . �32�

We may assume Eq. �32� as the CV bound for signals chosen
from a flat distribution in the Hilbert space. This should be
compared with the rigorous bound derived in Ref. �4� for
random qudits, i.e., for signals uniformly distributed in a
d-dimensional Hilbert space

FIG. 5. Information–disturbance tradeoff FC�G ,�� for the probe
with minimum energy and for different values of the alphabet width
�. From darker to lighter gray: the tradeoff for �=0.1,0.2,2 ,5 ,�.
The tradeoff gets worse for increasing values of �. For �→� the
function FC�G ,�� intercepts the G axis at G=
2/3. One moves
along the curves from left to right by increasing �.

FIG. 3. Information–disturbance tradeoff FA�G ,y� in the high
energy limit for the probe, for different values of the width
ratio y=�2 /�2. From darker to lighter gray we plot the tradeoff
for y=0.5,3 ,7 ,10 000. The tradeoff gets worse for increasing
values of y. For y�1 the function FA�G ,y� intercepts the axis
F=0 for G=
2/3. One moves along the curve, from right to left, by
increasing 	.

FIG. 4. Information–disturbance tradeoff FB�G ,y� for the
probe in the undisplaced state ��0
�p and for different values of
the ratio y=�2 /�2. From darker to lighter gray: the tradeoff for
y=0.1,1 ,3 ,7 ,10 000. The tradeoff gets worse for increasing
values of y. For y�1 the function FB�G ,y� intercepts the G axis
at G=
2/3. One moves along the curves from right to left by
increasing 
.
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F =
1

d + 1
+ 
G −

1

d + 1
+
�d − 1� 2

d + 1
− G��2

.

�33�

A continuous-variable system thus appears to offer the
possibility of a superior tradeoff at the price of increasing the
energy impinged into the device. Notice, however, that in-
creasing the probe energy does not necessarily lead to better
tradeoff, e.g., compare Eq. �23� to Eqs. �26� and �30�. On the
other hand, the tradeoff strongly depends on the ratio be-
tween the alphabet size and the signal width, which in turn
determine the allocation of the signal energy.

D. Comparison between different probe configurations

Here we compare the tradeoffs achievable by setting the
probe in the undisplaced state ��0
�p �configuration B� and in
the minimum energy state ��	2−1/2�p �configuration C�, re-
spectively. Since �26� depends on the ratio � /� and �30�
depends only on � we compare the two configurations by
fixing the signal width. The value �2=1/2 has been chosen in
order to have signals with minimum energy. The trade-off
FB�G ,y� rewrites as

F = FB�G,2�2� =
2�G2�3�2 − 1� + 1 − 2�2�
G2�5�2 + 1� − 4�2 − 1

.

In Fig. 6 the tradeoffs are compared for different values of �.
For alphabet sizes larger than a threshold ���th the

curves are very similar, approximately leading to the same
tradeoff. On the other hand, for ���th configuration B fa-
vors the information fidelity whereas configuration C privi-
leges the estimation fidelity. For �2=1/2 we have roughly
�th�3.

IV. OPTICAL IMPLEMENTATION

In this section we briefly mention how the building blocks
of our scheme can be implemented in a quantum optical
scenario. The main goal is to show that the present scheme
may be implemented with currently technology, rather than
describing a specific measurement scheme.

The measurement in the standard basis corresponds to ho-
modyne detection, whereas the signals ��a�� are Gaussian
wave packets with amplitude a and width �. They correspond
to squeezed-coherent states of the form D�a /
2�S�r� �0�
where �0� is the em vacuum, D���=exp��a†− �̄a� is the dis-

placement operator and S�r�=exp� 1
2 ��a†2− �̄a2�� is the

squeezing operator. In order to obtain the signals ��a��, the
relation sinh2 r= 1

2
��2+ 1

4�2 � must hold. As it concerns the in-
teraction, the C-sum gate Csum=exp�−iXs � Pp� expressed in
terms of the mode operators reads as follows: Csum

=exp� 1
2 �a†b†+ab†−ab−a†b�� and may be implemented by

parametric interactions in a second order ��2� nonlinear crys-
tals. Alternatively, conditional schemes involving both linear
and nonlinear interactions have been also proposed �27,28�.
As a matter of fact, Csum interaction between light pulses has
been investigated in several previous experiments �29�. In
addition, it has been experimentally observed between the
polarization of light pulses and collective spin of huge
atomic samples �30�.

V. CONCLUSIONS

We have suggested a class of indirect measurement
schemes to estimate the state of a continuous variable Gauss-
ian system without destroying the state itself. The schemes
involve a single additional probe and allow for the nondem-
olitive transmission of a continuous real alphabet over a
quantum channel. The tradeoff between information gain and
state disturbance has been quantified by fidelities and opti-
mized with respect to the measurement performed after the
signal-probe interaction. Different configurations have been
analyzed in terms of the energy carried by the signal and the
probe. A bound for a class of randomly distributed CV sig-
nals has been derived, which may be compared with the
analogous �general� bound derived for qudits �4�. We found
that a continuous-variable system generally offers the possi-
bility of a better tradeoff at the price of increasing the overall
energy introduced into the device. Notice, however, that in-
creasing the probe energy does not necessarily lead to a bet-
ter tradeoff, the most relevant parameter being the ratio be-
tween the alphabet size and the signal width, which in turn
determines the allocation of the signal energy.
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FIG. 6. Information–disturbance tradeoffs FB�G ,2�2� and
FC�G ,�� �dashed lines� for different values of �. From darker to
lighter gray: the tradeoffs for �=0.2,1 ,2 ,5 ,100. For ��3 the two
configurations lead to similar results. For ��3 configuration B
favors the information fidelity whereas configuration C privileges
the estimation fidelity.
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