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Abstract
We suggest a scheme to reconstruct the covariance matrix of a two-mode
state using a single homodyne detector plus a polarizing beam splitter and a
polarization rotator. It can be used to fully characterize bipartite Gaussian
states and to extract relevant information on generic states.
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1. Introduction

Bipartite (entangled) states of two modes of the radiation field
are the basic tool of quantum information processing with
continuous variables [1–3].

Bipartite states can be produced by different schemes,
mostly based on parametric processes in active nonlinear
optical media. Generation schemes are either Hamiltonian
two-mode processes, like parametric downconversion [4] or
mixing of squeezed states [5], or conditional schemes based
on the generation of multipartite states followed by conditional
measurements [6].

Besides mean values of the field operators, the most
relevant quantity needed to characterize a bipartite state is
its covariance matrix. For Gaussian states, a class that
encompasses most of the states actually realized in quantum
optical laboratories, the first two moments fully characterize
the quantum state [7, 8]. Once the covariance matrix is known
then the entanglement of the state can be evaluated and, in
turn, the performances of the state itself in serving as a support
for quantum information protocols like teleportation or dense
coding.

Entanglement is generally corrupted by the interaction
with the environment. Therefore, entangled states that are
available for experiments are usually mixed states, and it
becomes crucial to establish whether or not entanglement has
survived the environmental noise. As a consequence, besides
being of fundamental interest, a simple characterization
technique for bipartite states is needed to experimentally check
the accessible entanglement in a noisy channel [9–13], as well
as the corresponding state purity and nonclassicality [14, 15].

In this paper we suggest a scheme to measure the first
two moments of a bipartite state using repeated measurements

of single-mode quadratures made with a single homodyne
detector. This is an improvement compared to the scheme
of [13], where two homodyne detectors have been employed.
The scheme involves 14 quadratures pertaining to five different
field modes. It can be used to fully characterize bipartite
Gaussian states or to extract relevant information on a generic
state.

In the next section we introduce the notation and describe
how to obtain the mean values and the covariance matrix
starting from the statistics of suitably chosen field quadratures.
In section 3 a possible experimental realization is described
in detail. Section 4 closes the paper with some concluding
remarks.

2. Bipartite Gaussian states and reconstruction of
the covariance matrix

Our scheme is aimed to reconstruct the first two moments
of a bipartite state. This represents a relevant piece of
information on any quantum state of two modes and provides
the full characterization of the quantum state in the case of
Gaussian signals. Gaussian states, i.e. states with a Gaussian
characteristic function, are at the heart of quantum information
processing with continuous variables. The basic reason is
that the vacuum state of quantum electrodynamics is itself
a Gaussian state. This observation, in combination with
the fact that the quantum evolutions achievable with current
technology are described by Hamiltonian operators at most
bilinear in the quantum fields, accounts for the fact that the
states commonly produced in laboratories are Gaussian. In
fact, bilinear evolutions preserve the Gaussian character of the
vacuum state [16]. Furthermore, recall that the operation of
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tracing out a mode from a multipartite Gaussian state preserves
the Gaussian character too, and the same observation is valid
when the evolution of a state in a standard noisy channel is
considered.

We denote the two modes under investigation by a and b.
In the following we assume that a and b have equal frequencies
and different polarizations. The Cartesian operators qk and pk ,
k = a, b, can be expressed in terms of the mode operators as
follows:

qa = 1√
2
(a† + a), pa = i√

2
(a† − a), (1)

and analogously for qb and pb. The covariance matrix of a
two-mode state is a real symmetric positive matrix defined as
follows:

σ =



�q2
a �qa pa �qaqb �qa pb

�paqa �p2
a �paqb �pa pb

�qbqa �qb pa �q2
b �qb pb

�pbqa �pb pa �pbqb �p2
b


 , (2)

where �X2 = 〈X2〉−〈X〉2 and �XY = 1
2 〈[X, Y ]+〉−〈X〉〈Y 〉

denote the variance of the observable X and the mutual
correlations between the observables X and Y respectively.
[X, Y ]+ = XY + Y X denotes the anticommutator between the
operators X and Y . Throughout the paper 〈X〉 will denote the
ensemble average 〈X〉 = Tr[R X], R being the density matrix
describing the two-mode state. The characteristic function
of a quantum state R is defined as the expectation values
χ(λ1, λ2) = 〈D(λ1) ⊗ D(λ2)〉 where λ j ∈ C, j = 1, 2
and D(λ) = exp{λa† − λ∗a} is the displacement operator.
The most general bipartite Gaussian state corresponds to a
characteristic function of the form

χ(λ) = exp
{− 1

2 λTσλ − iλTX
}
, (3)

where λ = (Re[λ1], Im[λ1], Re[λ2], Im[λ2])T and (· · ·)T de-
notes transposition. The vector X = (〈qa〉, 〈pa〉, 〈qb〉, 〈qb〉)T

contains the mean value of the Cartesian mode operators. The
characteristic function fully specifies a quantum state, i.e. any
expectation value may be obtained as a phase space integral.
Since for a Gaussian state the first two moments specify the
characteristic function, their knowledge fully characterizes a
bipartite Gaussian state.

2.1. Covariance matrix from quadrature measurement

For the sake of simplicity, we rewrite the covariance matrix as
follows:

σ = V − M (4)

where the variance V and the mean M matrices may be written
as

V =




〈q2
a 〉 1

2 〈[pa, qa]+〉 〈qaqb〉 〈qa pb〉
1
2 〈[pa, qa]+〉 〈p2

a〉 〈paqb〉 〈pa pb〉
〈qbqa〉 〈qbqa〉 〈q2

b 〉 1
2 〈[qb, pb]+〉

〈pbqa〉 〈pb pa〉 1
2 〈[pb, qb]+〉 〈p2

b〉


 ,

(5)

and

M =




〈qa〉2 〈pa〉〈qa〉 〈qa〉〈qb〉 〈qa〉〈pb〉
〈pa〉〈qa〉 〈pa〉2 〈pa〉〈qb〉 〈pa〉〈pb〉
〈qb〉〈qa〉 〈qb〉〈qa〉 〈qb〉2 〈qb〉〈pb〉
〈pb〉〈qa〉 〈pb〉〈pa〉 〈pb〉〈qb〉 〈pb〉2


 . (6)

Once we have defined the quadrature operator of mode k,
namely

xk,φ = k† eiφ + k e−iφ

√
2

, (7)

we use the following conventions:

xk ≡ xk,0, yk ≡ xk,π/2, (8a)

zk ≡ xk,π/4, tk ≡ xk,−π/4. (8b)

The matrix M only contains the first moments and can be
reconstructed by measuring the four quadratures xk and yk ,
k = a, b. We have

〈qk〉 = 〈xk〉, 〈pk〉 = 〈yk〉. (9)

In order to reconstruct the variance matrix V more quadratures
are needed. Let us introduce the additional modes

c = a + b√
2

, d = a − b√
2

,

e = ia + b√
2

, f = ia − b√
2

.

(10)

If a and b correspond to vertical and horizontal polarizations,
then c and d are rotated polarization modes at ±π/4,
whereas e and f correspond to left- and right-handed circular
polarizations. After tedious but straightforward calculations,
we have

V = 1
2




2〈x2
a〉 〈z2

a〉 − 〈t2
a 〉 〈x2

c 〉 − 〈x2
d〉 〈y2

e 〉 − 〈y2
f 〉

〈z2
a〉 − 〈t2

a 〉 2〈y2
a〉 〈x2

f 〉 − 〈x2
e 〉 〈y2

c 〉 − 〈y2
d〉

〈x2
c 〉 − 〈x2

d 〉 〈x2
f 〉 − 〈x2

e 〉 2〈x2
b 〉 〈z2

b〉 − 〈t2
b 〉

〈y2
e 〉 − 〈y2

f 〉 〈y2
c 〉 − 〈y2

d〉 〈z2
b〉 − 〈t2

b 〉 2〈y2
b〉


 .

(11)
Furthermore, since

V14 = V41 = 1
2

(〈y2
e 〉 − 〈y2

f 〉
) = 〈y2

e 〉 − 1
2

(〈x2
a 〉 + 〈y2

b〉
)
,

(12a)
V23 = V32 = 1

2

(〈x2
f 〉 − 〈x2

e 〉) = 1
2

(〈x2
b 〉 + 〈y2

a〉
) − 〈x2

e 〉,
(12b)

the measurement of the quadratures pertaining to mode f
is not essential. Overall, in our scheme, the reconstruction
of the covariance matrix requires the measurement of
at least 14 quadratures, e.g. the following ones (of
course measuring also the f -quadratures, being additional
independent measurements, would improve the accuracy of
the reconstruction):

xa, ya, za, ta,
xb, yb, zb, tb,
xc, yc, xd , yd,

xe, ye.

Notice that the number of parameters needed to characterize a
bipartite Gaussian state is also equal to 14.
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Figure 1. Scheme of possible apparatus to measure the covariance
matrix of the bipartite (entangled) state generated by a DOPA. The
two modes, a (vertical polarization) and b (horizontal polarization),
pass through a (removable) λ/4 waveplate and a rotator of
polarization Rϑ ; finally, a PBS reflects the vertically polarized
component of its input toward a homodyne detector, which
measures the xk,φ quadrature. See the text for details.

3. Experimental implementations

In section 2 we have proved that it is possible to fully
reconstruct the covariance matrix σ by measuring 14 different
quadratures of five field modes obtained as linear combination
of the initial pair. Here we consider an implementation
based on the bright continuous-wave beams generated by
a seeded degenerate optical parametric amplifier (DOPA)
below threshold based on a type-II nonlinear crystal [17].
The two collinear beams (a and b) exiting the DOPA are
orthogonally polarized and excited in a continuous variable
bipartite entangled state. In the following we assume a as
vertically polarized and b as horizontally polarized.

Since mode f is not necessary to reconstruct the
covariance matrix, we do not consider its selection, focusing
our attention on modes a, b, c, d, and e. The mode under
scrutiny is selected by inserting suitable components on the
optical path of fields a and b, before the homodyne detector.
Modes a, b, c, and d are obtained by means of a rotator of
polarization Rϑ (namely a λ/2 waveplate) and a polarizing
beam splitter (PBS), which reflects toward the detector the
vertically polarized component of the impinging beam. The
action of the rotator Rϑ on the basis {|V 〉, |H〉} is given by

Rϑ |V 〉 = cos ϑ |V 〉 − sin ϑ |H〉, (13a)

Rϑ |H〉 = sin ϑ |V 〉 + cos ϑ |H〉. (13b)

In order to select mode e a λ/4 waveplate should be
inserted just before the rotator Rϑ (see figure 1). The λ/4
waveplate produces a π/2 shift between horizontal and vertical
polarization components, thus turning the polarization from
linear into circular.

Table 1 summarizes the settings needed to select the five
modes. Overall, the vertically polarized mode k arriving at
the detector can be expressed in terms of the initial modes as
follows:

k = exp{iϕ} cos ϑa + sin ϑb, (14)

where ϕ = π/2 when the λ/4 waveplate is inserted, ϕ = 0
otherwise.

Once mode k has been selected, a homodyne detector
is used to measure the generic quadrature xk,φ . This relies
on the controlled interference between the quantum beam
(signal) to be analysed and a strong ‘classical’ local oscillator

Table 1. Setting to select the different modes. The table refers to
the elements depicted in figure 1. Mode a is assumed to be
vertically polarized and mode b horizontally polarized.

Mode λ/4 Rϑ

a No 0
b No +π/2
c No +π/4
d No −π/4
e Yes +π/4

(LO) beam of phase φ. Indeed, to access xk,φ one has to
suitably tune the phase φ. The optimization of the efficiency
is provided by matching the LO mode to mode k. The mode
matching requires precise control of the LO frequency, spatial
and polarization properties. Remarkably, the detected mode is
always vertically polarized, thus avoiding any need of tuning
the LO polarization.

4. Conclusions

A simple scheme has been suggested to reconstruct the
covariance matrix of two-mode states of light using a
single homodyne detector plus a polarizing beam splitter
and a polarization rotator. Our scheme requires the local
measurements of 14 different quadratures pertaining to five
field modes. It can be used to fully characterize bipartite
Gaussian states and to extract relevant information on generic
states. Finally, we notice that an efficient source of polarization
squeezing has recently been realized [18], which might
be considered as a preliminary stage for the experimental
realization of the present characterization scheme.
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