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Abstract
We present a detailed report on the decoherence of quantum states of
continuous variable systems under the action of a quantum optical master
equation resulting from the interaction with general Gaussian uncorrelated
environments. The rate of decoherence is quantified by relating it to the
decay rates of various, complementary measures of the quantum nature of a
state, such as the purity, some non-classicality indicators in phase space, and,
for two-mode states, entanglement measures and total correlations between
the modes. Different sets of physically relevant initial configurations are
considered, including one- and two-mode Gaussian states, number states,
and coherent superpositions. Our analysis shows that, generally, the use of
initially squeezed configurations does not help to preserve the coherence of
Gaussian states, whereas it can be effective in protecting coherent
superpositions of both number states and Gaussian wavepackets.

Keywords: decoherence, entanglement, continuous variable systems,
nonclassical states

1. Introduction

Beyond their fundamental interest in the physics of elementary
particles (quantum electrodynamics and its standard-model
generalizations), in quantum optics, and in condensed matter
theory, continuous variable systems are beginning to play an
outstanding role in quantum communication and information
theory [1, 2], as shown by the first spectacular implementations
of deterministic teleportation schemes and quantum key
distribution protocols in quantum optical settings [3, 4].

In all such practical instances the information contained
in a given quantum state of the system, so precious for
the realization of any specific task, is constantly threatened
by the unavoidable interaction with the environment. Such
an interaction entangles the system of interest with the
environment, causing any amount of information to be
scattered and lost in the (infinite) Hilbert space of the
environment. It is important to remark that this information
is irreversibly lost, since the degrees of freedom of the

environment are out of the experimental control. The overall
process, corresponding to a non-unitary evolution of the
system, is commonly referred to as decoherence [5, 6]. It
is thus of crucial importance to develop proper methods to
quantify the rate of decoherence, both for its understanding
and for building optimal strategies to reduce and/or suppress it.

In this work we study the decoherence of generic states
of continuous variable systems whose evolution is ruled by
optical master equations in general Gaussian uncorrelated
environments. The rate of decoherence is quantified by
analysing the evolution of global entropic measures, of non-
classical indicators, and, for two-mode states, of entanglement
and correlations quantified by the mutual information and
by the logarithmic negativity. Several initial states of major
interest are considered.

The plan of the paper is as follows. In section 2 we
introduce the notation and define the systems of interest,
together with the quantities we will adopt to quantify
decoherence. In section 3 we introduce and solve the quantum
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optical master equation and its corresponding phase space
diffusive equations, discussing some general properties of the
non-unitary evolution. In sections 4–7 we provide a detailed
study of the decoherence of single-mode Gaussian states, cat-
like states, number states, and two-mode Gaussian states.
Finally, in section 8 we review and comment on the relevant
results.

2. Notation and basic concepts

The system we address is a canonical infinite dimensional
system constituted by a set of n ‘modes’. Each mode i is
described by a pair of canonical conjugate operators x̂i , p̂i

acting on a denumerable Hilbert space Hi . The space Hi is
spanned by a number basis {|n〉k} of eigenstates of the operator
n̂k ≡ a†

k ak , which represents the Hamiltonian of the non-
interacting mode. In terms of the ladder operators ak and a†

k one
has x̂k = (ak + a†

k )/
√

2 and p̂k = i(a†
k −ak)/

√
2. Let us group

together the canonical operators in the vector of operators R̂ =
(x̂1, p̂1, . . . , x̂n, p̂n). The canonical commutation relations
regulate the commutation properties of the operators:

[R̂k , R̂l] = i�kl ,

where � is the symplectic form

� =
n⊕

i=1

ω, ω =
(

0 1
−1 0

)
. (1)

The canonical operators R̂i may be second-quantized bosonic
field operators or position and momentum operators of a
material harmonic oscillator. The eigenstates of ai constitute
the important set of coherent states, which is overcomplete in
the Hilbert space Hi . Coherent states result from applying to
the vacuum |0〉 the single-mode Weyl displacement operators
Di (α) = eiαa†

i −α∗ai : |α〉i = Di (α)|0〉.
The states of the system are the set of positive trace class

operators {�} on the Hilbert space H = ⊗n
i=1Hi . However,

the complete description of any quantum state � of such an
infinite dimensional system can be provided by one of its s-
ordered characteristic functions [7]

χs(X) = Tr[�DX ]es‖X‖2/2, (2)

with X ∈ R
2n , ‖ · ‖ standing for the Euclidean norm R

2n , and
the n-mode Weyl operator defined as

DX = eiR̂T�X , X ∈ R
2n.

The family of characteristic functions is in turn related,
via complex Fourier transform, to the quasi-probability
distributions Ws , which constitute another set of complete
descriptions of the quantum states

Ws(X) = 1

π2

∫
R2n

d2n Kχs(K )e
iK T�X . (3)

The vector X belongs to the space � = (R2n,�), which
is called phase space in analogy with classical Hamiltonian
dynamics. As is well known, there exist states for which the
function Ws is not a regular probability distribution for any s,

because it can in general be singular or assume negative values.
Note that the value s = −1 corresponds to the Husimi ‘Q-
function’ W−1(X) = 〈X |�|X〉/π , |X〉 being a tensor product
of coherent states satisfying

ai |X〉 = X2i−1 + iX2i√
2

|X〉 ∀i = 1, . . . , n, (4)

and always yields a regular probability distribution. The case
s = 0 corresponds to the so-called Wigner function, which will
be denoted simply by W . Likewise, for the sake of simplicity,χ
will stand for the symmetrically ordered characteristic function
χ0.

As a measure of ‘non-classicality’ of the quantum state
�, the quantity τ�, referred to as the ‘non-classical depth’,
has been proposed in [8] and subsequently employed by many
authors:

τ� = 1 − s̄�
2

, (5)

where s̄� is the supremum of the set of values {s} for which
the quasi-probability function Ws associated with the state �
can be regarded as a (positive semidefinite and non-singular)
probability distribution. We mention that a non-zero non-
classical depth has been shown to be a prerequisite for the
generation of continuous variable entanglement [9] and is
strictly related to the efficiency of teleportation protocols [10].
As one should expect, τ|n〉〈n| = 1 for number states (which are
actually the most deeply quantum and ‘less classical’ ones),
whereas τ|α〉〈α| = 0 for coherent states (which are often referred
to as ‘the most classical’ among the quantum states). We note
that the non-classical depth can be interpreted as the minimum
number of thermal photons which has to be added to a quantum
state in order to erase all the ‘quantum features’ of the state4.
While quite effective, the non-classical depth is not always
easily evaluated for relevant quantum states (with the major
exception of Gaussian states; see the following).

Therefore, it will be convenient to exploit also another
indicator of non-classicality, more recently introduced [11].
By virtue of intuition, one should expect that remarkable
non-classical features should show up for quantum states
whose Wigner functions assume negative values. In fact, for
such states, an equivalent interpretation in terms of classical
probabilities and correlations is denied5. These considerations
have led to the following definition of the quantity ξ , which
we will refer to as the ‘negative part’ of the state �:

ξ =
∫

d2n X |W (X)| − 1, (6)

which simply corresponds the doubled volume of the negative
part of the Wigner function W associated with � (the
normalization of W has been exploited).

This work will be partly focused on Gaussian states,
defined as the states with Gaussian Wigner function or
characteristic function χ . Such states are completely
characterized by first and second moments of the quadrature
operators, respectively embodied by the first-moment vector

4 This heuristic statement can be made more rigorous by assuming that a
given state owns ‘quantum features’ if and only if its P-representation is more
singular than a delta function (which is the case for coherent states) [8].
5 This is why in the search for CV states able to violate Bell inequalities one
is led to consider states with non-positive Wigner functions.
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X̄ and by the covariance matrix (CM) σ, whose entries are,
respectively,

X̄i ≡ 〈R̂i 〉, (7)

σi j ≡ 〈R̂i R̂ j + R̂ j R̂i 〉
2

− 〈R̂i 〉〈R̂ j 〉. (8)

The covariance matrix of a physical state has to satisfy the
following uncertainty relation, reflecting the positivity of the
density matrix [12]:

σ + i
�

2
� 0. (9)

The Wigner function of a Gaussian state can be written as

W (X) = 1

π
√

det σ
e− 1

2 (X−X̄)Tσ−1(X−X̄), ξ ∈ �, (10)

corresponding to the following characteristic function:

χ(X) = e− 1
2 (X−X̄)Tσ(X−X̄)+iX T�X̄ . (11)

A tensor product of coherent states |X̄〉 (simultaneous
eigenstate of all the ai s according to equation (4)) is a Gaussian
state with covariance matrix σ = 1

2 1I and first-moment vector
X̄ . In phase space this amounts to simply displacing the Wigner
function of the vacuum.

A single mode of the radiation of frequency ω at thermal
equilibrium at temperature T is described by a Gaussian
Wigner function as well. Its covariance matrix ν is isotropic:
ν = ν1I2 with ν = [exp(ω/T ) + 1]/[2 exp(ω/T ) − 2] � 1/2
(natural units are understood), while its first moments are null.

The set of operations generated by second-order
polynomials in the quadrature operators are especially relevant
in dealing with Gaussian states. Such operations correspond
to symplectic transformations in phase space, i.e. to linear
transformations preserving the symplectic form � [13].
Formally, a 2n × 2n matrix S corresponds to a symplectic
transformation (on an n-mode phase space) if and only if

ST�S = �.

Simplectic transformations act linearly on first moments and
by congruence on covariance matrices: σ 
→ STσS. Ideal
beam splitters and squeezers are described by simplectic
transformations. In fact single-and two-mode squeezings

are described by the operators Si j,r,ϕ = e
1
2 (εa†

i a†
j −ε∗ai a j ) with

ε = rei2ϕ , resulting in single-mode squeezing of mode i
for i = j . Beam splitters are described by the operator

Oi j,θ = eθa†
i a j −θai a

†
j , corresponding to simplectic rotations in

phase space.
A theorem of Williamson [14] ensures that any n-mode

CM σ can be written as

σ = STνS, (12)

where S is a (non-unique) simplectic transformation and

ν =
n⊕

i=1

(
νi 0
0 νi

)
. (13)

The Gaussian state with null first moments and CM ν is a
tensor product6 of thermal states with average photon numbers
νi − 1/2 and density matrices ρνi :

ρνi = 2

2νi + 1

∞∑
k=0

(
νi − 1

2

νi + 1
2

)k

|k〉〈k|. (14)

The set {νi} is referred to as the simplectic spectrum of σ, the
quantities νi s being the symplectic eigenvalues, which are just
the eigenvalues of the matrix |i�σ|. The uncertainty relation
(inequality (9)) can be simply written in terms of the symplectic
eigenvalues

νi � 1
2 ∀ i = 1, . . . , n. (15)

As a last remark about Gaussian states, we briefly address
their non-classicality. Of course, for the negative part of a
Gaussian state one has ξ = 0. Remarkably, such an indicator
does not detect squeezed states as non-classical. We point
out that this fact is not detrimental to the indicator ξ . As a
matter of fact any Gaussian state can be reproduced in classical
stochastic systems described by probability distribution, where
even an uncertainty relation analogous to inequality (9) has
to be introduced. On the other hand, the non-classical depth
of a n-mode Gaussian state � depends only on the smallest
(orthogonal, not symplectic) eigenvalue u of the CM σ, which
is usually referred to as the ‘generalized squeeze variance’ [15].
The indicator τ detects a Gaussian state as a non-classical
one (for which τ > 0) if a canonical quadrature (possibly
resulting from the linear combination of the quadratures of
the separate modes) exists whose variance is below 1/2. The
explicit expression for the non-classical depth of a Gaussian
state � with CM σ reads

τ� = max

[
1 − 2u

2
, 0

]
. (16)

As we have already remarked, coherent states have null non-
classical depth. One has to squeeze the covariances to achieve
non-classical features, like sub-Poissonian photon number
distributions. Regardless of the amount of squeezing, no
Gaussian state can go beyond the threshold of τ� = 1/2.

In general, the degree of mixedness of a quantum state
� of a system with a d-dimensional Hilbert space can be
characterized by means of the so-called purity µ = Tr �2,
taking the value 1 on pure states (for which �2 = �) and going
to 1/d (that is 0 in infinite dimensional Hilbert spaces) for
‘maximally mixed’ states. The purity is a simple function of
the linear entropy SL = (1 − µ)d/(d − 1) and of the Renyi
‘2-entropy’ S2 = − lnµ, which is endowed with the agreeable
feature of being additive on tensor product states. While
other entropic measures, like the Von Neumann entropy, could
have been taken into account, the purity has the remarkable
advantage of being easily computable in terms of the Wigner
function W (X). Moreover, the global and marginal purities
(i.e. the purities of the state of the whole system and of the
reduced states of the subsystems) have been shown to provide
essential information about the quantum correlations of both
two-mode Gaussian states [16, 17] and multipartite, multimode
Gaussian states [18–20]. We also remark that strategies have

6 As can be promptly seen from the definition of the characteristic functions,
tensor products in Hilbert spaces correspond to direct sums in phase spaces.
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been proposed to directly measure such a quantity, either by
quantum networks [21] or by schemes based on single-photon
detections [22].

Exploiting the basic properties of the Wigner representa-
tion, one has simply

µ = π

∫
W 2(X) d2n X = 1

2π

∫
R2n

|χ(X)|2 d2n X. (17)

For Gaussian states this integral is straightforwardly evaluated,
giving

µ = 1

2n
√

det σ
. (18)

The same result could have been achieved by exploiting
Williamson theorem and the unitary invariance of µ. This
is indeed the way to compute general entropic measures of
Gaussian states [17]. In particular, the von Neumann entropy
SV = − Tr[� ln �] of the Gaussian state � is easily expressed
in terms of the n symplectic νi s of the 2n × 2n covariance
matrix σ [23, 24]:

SV =
n∑

i=1

f (νi ), (19)

with the bosonic entropic function f (x) defined by

f (x) = (x + 1
2 ) ln(x + 1

2 )− (x − 1
2 ) ln(x − 1

2 ).

This formula will be useful in quantifying the total (quantum
plus classical) correlations between different modes in two-
mode Gaussian states, which will be addressed in the
following. In general, the total correlations belonging to a
bipartite quantum state � may be quantified by its mutual
information I , defined as I = SV(�1) + SV(�2) − SV(�),
where �i refers to the reduced state obtained by tracing over
the variables of the party j = i [25].

Finally, we introduce the definition of logarithmic
negativity for bipartite quantum states, which will be exploited
in the following in quantifying the entanglement (i.e. the
amount of quantum correlations) of two-mode Gaussian states.
For such states separability is equivalent to positivity of the
partial transpose �̃ (PPT criterion) [26, 27]7. The negativity
N (�) of the state � is defined as [28, 29]

N (�) = ‖�̃‖1 − 1

2
, (20)

where ‖ô‖ = Tr
√

ô†ô stands for the trace norm of operator
ô. The quantity N (�), being the modulus of the sum of the
negative eigenvalues of �̃, quantifies the extent to which �̃
fails to be positive. The logarithmic negativity EN is then
just defined as EN = ln ‖�̃‖1. From an operational point of
view, the logarithmic negativity constitutes an upper bound to
the distillable entanglement [28] and is directly related to the
entanglement cost under PPT preserving operations [30].

7 The partial transpose �̃ is obtained by the bipartite state � by transposing
the Hilbert space of only one of the two parties.

3. Dissipative evolution in Gaussian environments

We will consider the dissipative evolution of the infinite di-
mensional n-mode bosonic system coupled to an environment
modelled by a continuum of oscillators. The couplings and
the baths interacting with different modes will be uncorrelated
and generally different, each bath being made up by a differ-
ent continuum of oscillators. The bath associated with mode i
will be labelled by the subscript i . The dynamics of the system
and of the reservoirs is described by the following interaction
Hamiltonian:

Hint =
n∑

i=1

∫
[wi(ω)a

†
i bi (ω) + wi (ω)

∗ai b
†
i (ω)] dω, (21)

where bi(ω) stands for the annihilation operator of the i th bath
mode labelled by the variable ω, whereas wi(ω) represents
the coupling of such a mode to the mode i of the system
(taking into account the density of environmental modes).
The state of the bath is assumed to be stationary. Under the
Markovian approximation, such a coupling gives rise to a time
evolution ruled by the following master equation (in interaction
picture) [31]:

�̇ =
n∑

i=1

γi

2

(
Ni L[a†

i ]� + (Ni + 1)L[ai ]�

− M∗
i D[ai ]� + Mi D[a†

i ]�
)
, (22)

where the dot stands for time derivative, the Lindblad
superoperators are defined as L[ô]� ≡ 2ô�ô† − ô†ô� − �ô†ô
and D[ô]� ≡ 2ô�ô − ôô� − �ôô, the couplings are γi =
2πw2

i (0), whereas the coefficients Ni and Mi are defined in
terms of the correlation functions 〈b†

i (0)bi (ω)〉 = Niδ(ω)

and 〈bi (0)bi (ω)〉 = Miδ(ω), where averages are computed
over the state of the bath. The requirement of positivity of
the density matrix at any given time imposes the constraint
|Mi |2 � Ni (Ni + 1). At thermal equilibrium, i.e. for Mi = 0,
Ni coincides with the average number of thermal photons in the
bath. If Mi = 0 then the bath i is said to be ‘squeezed’, or phase
sensitive, entailing reduced fluctuations in one field quadrature.
A squeezed reservoir may be modelled as the interaction with
a bath of oscillators excited in squeezed thermal states [32];
several effective realizations of such reservoirs have been
proposed in recent years [33, 34]. In particular, in [33] the
authors show that a squeezed environment can be obtained,
for a mode of the radiation field, by means of feedback
schemes relying on QND ‘intracavity’ measurements, capable
of affecting the master equation of the system [35]. More
specifically, an effective squeezed reservoir is shown to be
the result of a continuous homodyne monitoring of a field
quadrature, with the addition of a feedback driving term,
coupling the homodyne output current with another field
quadrature of the mode.

In general, the real parameters Ni and the complex
parameters Mi allow for the description of the most general
single-mode Gaussian reservoir, fully characterized by its
covariance matrix σi∞, given by

σi∞ =
( 1

2 + Ni + Re Mi Im Mi

Im Mi
1
2 + Ni + Re Mi

)
. (23)
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The non-unitary evolution of the single-mode system
interacting with the reservoir i can be seen as a quantum
channel acting on the original state. The Gaussian state with
null first moments and second moments given by equation (23)
constitutes the asymptotic state of such a channel irrespective
of the initial condition and, together with the coupling γi ,
completely characterizes the channel. Now, because of
Williamson theorem, any centred single-mode Gaussian state
� referring to mode i can be written as

� = S†
ri ,ϕi

�νi Sri ,ϕi , (24)

where Sri ,ϕi will denote, from now on, the single-mode
squeezing operator Sii,ri ,ϕi . This fact promptly provides a more
suitable parametrization of the asymptotic (or ‘environmental’)
state (which is indeed a centred single-mode Gaussian state),
given by the following equations [36]:

µi∞ = 1√
(2Ni + 1)2 − 4|Mi |2

, (25)

cosh(2ri ) =
√

1 + 4µ2
i∞|Mi |2, (26)

tan(2ϕi ) = − tan(ArgMi). (27)

The quantities µi∞, ri , and ϕi are, respectively, the purity, the
squeezing parameter, and the squeezing angle of the squeezed
thermal state of the bath. The quantity µi∞ is determined, in
terms of the parameters of equation (24), by µi∞ = 1/(2νi ):
the purity of a Gaussian state is fully determined by the
broadness of the thermal state providing its normal mode
decomposition.

Equation (22) is equivalent to the following diffusion
equation for the characteristic function χ in terms of the
quadrature variables xi and pi of mode i [7]:

χ̇(X, t) = −
n∑

i=1

γi

2

[
(xi pi )

(
∂xi

∂pi

)
+ (xi pi )σi∞

(
xi

pi

)]

× χ(X, t). (28)

It is easy to verify that, for any initial condition χ0(X), the
following expression solves equation (28):

χ(X, t) = χ0(�(t)X)e− 1
2 X Tσ∞(t)X (29)

with the 2n × 2n real matrices � and σ∞(t) defined as

�(t) =
⊗

i

e− γi
2 t 1I2,

σ∞(t) = ⊕iσi∞(1 − e−γi t).

We mention that equation (22) can be equivalently recast as
a Fokker–Planck equation for the Wigner function [7], as
follows:

Ẇ (X, t) =
n∑

i=1

γi

2

[
(∂xi ∂pi )

(
xi

pi

)
+ (∂xi ∂pi )σi∞

(
∂xi

∂pi

)]

× W (X, t). (30)

Let us now consider an n-mode Gaussian state with CM
σ0 and first moments X0 as the initial condition in the Gaussian
noisy channel. Inserting equation (11) in (29) shows that the
evolving state maintains its Gaussian character and is therefore

characterized by the action of dissipation on the first and second
moments. At time t one has

X (t) = �(t)X0, (31)

σ(t) = �(t)σ0�(t) + σ∞(t). (32)

In particular, focusing on second moments, equation (32) is, at
any given time t , a relevant example of Gaussian completely
positive map. Actually, in a more general framework, it can
be shown that any evolution resulting from the reduction of a
symplectic evolution on a larger Hilbert space can be described,
in terms of second moments, by

σ → XTσX + Y, (33)

where X and Y are 2n × 2n real matrices fulfilling Y + i� −
iXT�X � 0 [37, 38]. Vice versa, any evolution of this kind
may be interpreted as the reduction of a larger symplectic
evolution.

As a last remark about the dissipative evolution under
the master equation (22), we point out an interesting
general feature concerning a single-mode non-squeezed bath,
characterized by its asymptotic purity µ∞. Let us consider the
evolution in such a channel of an initial pure non-Gaussian state
(whose Wigner function necessarily takes negative values).
It can be shown by a beautiful geometric argument [39] that
the instant tnc at which the state’s Wigner function gets non-
negative, so that the non-classicality of the state quantified by
its negative part ξ becomes null, does not depend on the chosen
state at all. Such a time (that is also referred to as ‘positive
time’) reads

tnc = 1

γ
ln(1 + µ∞). (34)

In section 6 we will provide a simple proof of this result for an
initial number state.

4. Single-mode Gaussian states

The set of single-mode Gaussian states can be regarded as
the simplest continuous variable arena in which the decay
of quantum coherence can be examined. The evolution of
single-mode Gaussian states in thermal reservoirs has been
extensively addressed in [40], while [36] contains many of the
results which will be reviewed here for phase-sensitive baths.
Both the purity and the non-classical depth of Gaussian states
are completely determined by their CM σ, on which we will
thus focus. Exploiting equation (24) again, we parametrize the
2 × 2 CM σ through the parameters µ, r and ϕ, according to

σ11 = 1

2µ
[cosh(2r) − sinh(2r) cos(2ϕ)],

σ22 = 1

2µ
[cosh(2r) + sinh(2r) cos(2ϕ)],

σ12 = 1

2µ
sinh(2r) sin(2ϕ).

(35)

Notice that the purity µ characterizes the CM according to
equation (18). The evolution in a channel characterized
by γ , µ∞, r∞, and ϕ∞ of an initial state parametrized by
µ0, r0, and ϕ0 is provided by the single-mode (n = 1)
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instance of equation (32). Such an equation, together with the
parametrization of equation (35), can be exploited to promptly
achieve the time evolution of the parameters µ, r and ϕ,
yielding

µ(t) = µ0

[
µ2

0

µ2∞
(1 − e−γ t)2 + e−2γ t

+ 2
µ0

µ∞
(cosh(2r∞) cosh(2r0) + sinh(2r∞) sinh(2r0)

× (cos(2ϕ∞ − 2ϕ0)))(1 − e−γ t)e−γ t

]− 1
2

, (36)

cosh[2r(t)]

µ(t)
= cosh(2r0)

µ0
e−γ t +

cosh(2r∞)
µ∞

(1 − e−γ t), (37)

tan[2ϕ(t)] =
[

sinh(2r0) sin(2ϕ0)e
−γ t − sin(2ϕ∞)

× µ0

µ∞
(1 − e−γ t)

][
sinh(2r0) cos(2ϕ0)e

−γ t − cos(2ϕ∞)

× µ0

µ∞
(1 − e−γ t)

]−1

. (38)

First of all, according to intuition, the purity µ(t) is an
increasing function of the input purity µ0: this is consistent
with a general fact about output purities of channels, which
are maximized by pure states, due to their convexity [38].
Moreover, it is immediate from equation (36) that in a non-
squeezed thermal bath (i.e. for r∞ = 0), the purity is maximum
at any given time t for r0 = 0: the output purity of such a
channel is maximized for r0 = 0, that is for a coherent input
state8. In the theory of measurement, the fact that coherent
states yield the minimal entropic production—under non-
unitary evolution in thermal reservoirs—is well known and
selects such states as privileged ‘pointer states’ in measurement
processes [42, 43]9.

For a phase-sensitive bath, with r∞, ϕ∞ = 0, the purity
µ(t) is maximized for r0 = r∞ and ϕ0 = ϕ∞ + π/2. This
should be expected: in fact, in terms of the single-mode
squeezing operator Sr,ϕ entering equation (24), this means
that the optimal input state is counter-squeezed with respect
to the bath, since Sr,ϕ+ π

2
= S−1

r,ϕ . Indeed, since the purity is
invariant under unitary transformation, such a result is just
a consequence of the fact that the evolution in non-squeezed
baths is optimized by coherent inputs10. The optimal evolution
of purity, plotted in figure 1, is simply obtained by inserting
r0 = r∞ = 0 in equation (36).

For an initial squeezed input with squeezing parameter r0

in a thermal bath with r∞ = 0 (or, more generally, for an initial
state with relative squeezing r0 − r∞ = 0) the purity µ(t)may
display a local minimum. The condition for the appearance

8 This is a particular instance of a more general result concerning the output
purity of Gaussian bosonic channels of the form of equation (33) [38, 41].
9 Notice that the couplings to the bath of oscillators typically considered in
these cases are not symmetric under the exchange of the two quadratures: this
is why, at very small times, some squeezing provides greater purity in such
models [42]. On the other hand, the coupling we consider in equation (21) is
manifestly symmetric in x̂i and p̂i .
10 More formally, one can exploit the invariance of the purity under Sp(2,R)
and bring the CM σ∞ of the bath into Williamson standard form: in these
canonical bases of phase space the channel is non-squeezed and coherent
states (with CM σ0 = 1I2/2) maximize the purity. To go back to the original
canonical basis one has to apply the inverse symplectic transformation: this
explains the previous result about optimization.
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Figure 1. Evolution of the purity of various Gaussian states in a
channel with µ∞ = 0.5 and r∞ = 0. The continuous curve relates to
an initial pure coherent state (µ0 = 1, r0 = 0), the dashed curve
relates to a squeezed vacuum (µ0 = 1, r0 = 1.5), while the dotted
curve relates to a thermal state with µ0 = 0.05 and r0 = 0.

of such a minimum can be simply derived by differentiating
equation (36) and turns out to be r0 > max[µ0/µ∞, µ∞/µ0];
the time tmin at which the minimum is attained can be exactly
determined as

tmin = − 1

γ
ln

[ µ0

µ∞ − cosh(2r0)

µ0

µ∞
+ µ∞

µ0
− 2 cosh(2r0)

]
. (39)

The time tmin provides a good characterization of the
decoherence time of the squeezed state: during the initial
steep fall of the purity the coherence and the information
contained in the initial state are irreversibly spread in the
environmental modes. The subsequent revival of the purity
is just a result of the driving of the state of the system towards
the (asymptotically reached) environmental one.

Concerning the non-classical depth, the smallest
eigenvalue u of a single-mode Gaussian state is simply found
in terms of µ, r and ϕ as u = e−2r/(2µ). Inserting such a
result into equation (16) gives the following equation for the
non-classical depth τ of a single-mode Gaussian state:

τ = max

[1 − e−2r

µ

2
, 0

]
. (40)

Let us define the quantity κ(t) as

κ(t) = cosh(2r0)

µ0
e−γ t +

cosh(2r∞)
µ∞

(1 − e−γ t).

Notice that κ is an increasing function of r0 and a decreasing
function of µ0. After some algebra, equations (37) and (40)
yield the following result for the exact time evolution of the
non-classicality of a single-mode Gaussian state:

τ(t) =
1 − κ(t) +

√
κ(t)2 − 1

µ(t)2

2
. (41)

Such a function increases with both µ(t) and κ(t). The choice
of the input phase of the squeezing which maximizes τ(t) at
any time is again ϕ0 = ϕ∞ + π/2, maximizing the purity. The
maximization of τ(t) in terms of the other parameters of the
initial state is the result of the competition of two different
effects. Let us consider r0: on the one hand, a squeezing
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Figure 2. Evolution of the non-classicality τ in various channels
with µ∞ = 0.5. The dotted and the continuous lines relate to an
initial squeezed vacuum (µ0 = 1, r0 = 1) evolving, respectively, in
a non-squeezed channel (dotted line) and in a channel with r∞ = 0.2
(continuous curve). The dotted line relates to an initial state with
µ0 = 0.7 and r0 = 1 and the dot–dashed line to an initial state with
µ0 = 1 and r0 = 0.5.

parameter r0 matching the squeezing r∞ maximizes the purity
thus delaying the decrease of τ(t); on the other hand, a bigger
value of r0 obviously yields a greater initial τ(0). However the
numerical analysis, summarized in figure 2, unambiguously
shows that, in non-squeezed baths, the non-classical depth
increases with increasing squeezing r0 and purity µ0, as one
should expect.

5. Schrödinger cats

We consider now the following coherent normalized
superposition of single-mode displaced squeezed states:

|β0, θ〉 ≡ |β0〉 + eiθ |−β0〉√
2 + 2 cos(θ)e−2‖X0‖2

, (42)

where |β0〉 = Sr0,0 DX0 |0〉, and address its evolution under the
master equation (22). The choice of a null phase in the operator
Sr0,0 is just a reference choice for phase space rotations.

This state is a relevant instance of cat-like state,
i.e. of coherent superposition of pure quantum states, whose
macroscopic extension has been invoked by Schrödinger to
illustrate some of the counter-intuitive features of quantum
mechanics [44]. More recently, the seminal proposal by Yurke
and Stoler [45], besides spurring a great amount of theoretical
work aimed at optimizing the generation of cat-like states [46],
led to the experimental realization of mesoscopic (‖X0‖ � 10)
superposition of Gaussian states of the radiation field in cavity
QED [47]. The realization of superpositions of Gaussian
motional states of trapped particles has been demonstrated as
well [48], together with the experimental investigation of their
rates of decoherence [49]. On the theoretical side, many efforts
have been made to understand and, possibly, suggest methods
to control the decoherence of such superpositions [50–54].
Furthermore, we mention that an accurate analysis, under
the ‘quantum jump’ approach, of the decoherence of non-
classical quantum optical states (encompassing both cat-like
and number states) can be found in [55], where it is also shown
how non-classical states may be the result of proper dissipative
evolutions. Most of the results here reviewed can be found
in [54].

Let us define the matrices R = diag (er0 , e−r0 )

(corresponding to the action of Sr0,0 on the two-dimensional
phase space), and σ0 = 1/2R2. The Wigner function
associated with the state |β0〉 reads

Wβ0,θ (X) = 1

4π(1 + cos(θ)e−‖X0‖2
)
√

det σ0

×
[
e− 1

2 (X
T−X T

0 R)σ−1
0 (X−RX0) + e− 1

2 (X
T+X T

0 R)σ−1
0 (X+RX0)

+ e−‖X0‖2
(

e− 1
2 (X

T−iX T
0 ωR)σ−1

0 (X+iRωX0)+iθ + c.c.
)]
, (43)

consisting of the two Gaussian peaks at the phase space
points X0 and −X0, linked in phase space by the oscillating
interference terms. Obviously, this Wigner function is non-
positive. However, formally, such a function is just the sum of
four displaced Gaussian terms. The linearity of the dissipative
evolution considered permits one to simply solve the evolution
of the cat state, by following the evolution of its four Gaussian
terms according to equations (31), (32). One gets

Wβ0,θ (X) = 1

4π(1 + cos(θ)e−‖X0‖2
)
√

det σ(t)

×
[
e− 1

2 (X
T−e− γ

2 t X T
0 R)σ(t)−1(X−e− γ

2 t RX0)

+ e− 1
2 (X

T+e− γ
2 t X T

0 R)σ(t)−1(X+e− γ2 t RX0)

+ e−‖X0‖2
(e− 1

2 (X
T−ie− γ

2 t X T
0ωR)σ(t)−1(X+ie− γ

2 t RωX0)+iθ

+ c.c.)
]
, (44)

where σ(t) is given by equation (31) with σ0 defined above.
Figure 3 provides a relevant example of dissipation of a

cat state in a thermal environment, isotropic in phase space.
The negative part ξ of the Wigner function reaches the value
0 at a time tnc � 0.4γ −1, in agreement with equation (34). As
already mentioned, this time is feature of the bath and does not
depend on the initial pure (non-Gaussian) state.

The exact analytical expression of the purity of the
evolving superposition is easily determined by Gaussian
integrations, according to equation (17):

µβ0,θ (t) =
(

8(1 + cos(θ)e−‖X0‖2
)2

√
det σ(t)

)−1

×
[
2(1 + e−e−γ t X T

0 S(t)X0) + 2e−2‖X0‖2

× (cos(2θ) + ee−γ t X T
0 T(t)X0)

+ 4e−‖X0‖2
cos(θ)(e−e−γ t X T

0 JX0 Tr[JS(t)]∗/4 + c.c.)
]
, (45)

with

S(t) ≡ Rσ(t)−1R, T(t) ≡ (det σ)−1S(t)−1,

J ≡
(

1 i
i −1

)
.

(46)

Equation (45) shows that the decoherence rate increases with
the ‘dimension’ of the cat, quantified by ‖X0‖; in the limiting
instance X0 = 0, equation (45) reduces to equation (36) for an
initial squeezed vacuum, which decoheres more slowly than
the equally squeezed cat-like states. Moreover, in general,
the terms depending on the coherent phase θ are suppressed
by exponential terms of the form exp(−‖X0‖2), so that
the decoherence rate in terms of the purity is only slightly
influenced by the choice of θ . Examples of decoherence of cat
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Figure 3. Evolution in phase space of the Wigner function of an initial non-squeezed cat-like state with X T
0 = (1 1) and θ = 0 in a thermal

channel with µ∞ = 0.5 at times t = 0 (a), t = γ −1/2 (b), t = γ −1 (c) and t = 4γ −1 (d). Darker shades stand for lower values; the scale of
each plot is normalized. The negative lobes (in which the Wigner function takes negative values) evident in (a) have already disappeared in
(b). Actually, the positive time tnc of such a reservoir is tnc � 0.4γ −1 (see equation (34)).

states can be seen in figure 4. In all the instances the purity
displays a fast initial fall, during which all the coherence and
the information of the pure cat-like state are lost. The typical
timescale in which the minimum of the purity is attained is in
good agreement with the estimate tdec = γ −1/2‖X0‖2, holding
for the decoherence time of a cat state in a thermal bath [49]. As
can be shown analytically [54], the phase space direction of the
cat, determined by the angle ξ0 = arctan(x0/p0), providing the
maximal delay of decoherence at short times (i.e. for γ t � 1)
is given by ξ0 = ϕ0 +π/2 for a squeezed cat in a non-squeezed
bath or, equivalently, by ξ0 = ϕ∞ for a non-squeezed cat in
a squeezed bath. These two instances are, as already noted,
unitarily equivalent. In general, the evolution of the purity
of an initial state in a squeezed reservoir is identical to that
of the counter-squeezed initial state in a thermal reservoir.
Therefore, the same protection against decoherence granted by
squeezing the bath can be achieved by orthogonally squeezing
the initial state. Indeed, with the optimal, previously discussed,
locking of the optical phase, an optimal value of the squeezing
r0 maximizing the purity in non-squeezed baths does exist. As
illustrated by figure 5, squeezing the initial cat (or the bath)
can provide a significant delay of the complete decoherence of
the cat state, better preserving the interference fringes in phase
space.
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Figure 4. Evolution of the purity of initial cat-like states. The
asymptotic purity of the channel is µ∞ = 0.5. The dotted curve
relates to a cat state with X T

0 = (1, 1) in a non-squeezed channel.
The dashed and the continuous curves relate to an initial
non-squeezed cat with X T

0 = (100, 100) evolving in a
non-squeezed channel and in a channel with r∞ � 0.88 and
ϕ∞ = −π/8. The dot–dashed curve relates to an initial state with
X T

0 = (10, 10) and r0 = 2 evolving in a non-squeezed channel.

6. Number states

As a last example of single-mode state we quantify
the decoherence of number states |n〉〈n|. Such states
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Figure 5. Comparison between the evolution at short times (i.e. for
γ tdec � 1) of the purity of an initial non-squeezed cat (continuous
curve) and that of squeezed cats with optimal choice of the optical
phase. In all instances X T

0 = (4, 4), µ∞ = 0.5, and θ = 0. The
dashed curve relates to a cat state with r0 = 1, whereas the dotted
curve relates to a state with r0 = 1.5. The decoherence time of such
cats can be estimated as tdec � 0.03γ −1, in good agreement with the
decrease of purity of the non-squeezed cat. The remarkable delay of
decoherence induced by squeezing the cat can be appreciated,
especially at t � tdec.

can be considered as probes of fundamental quantum
mechanical features and are also required in several quantum
communications tasks [56, 57]. Different methods for
the generation of Fock states have been proposed, both
for travelling-wave and cavity fields. For travelling-wave
fields, these methods are principally based on tailored
non-linear interactions [58], conditional measurements [59],
state filtering [60], or state engineering [61]. A further
possibility for generating number states with high fidelities
by atom–field interactions in high-Q cavities has been
suggested recently [62]. The actual experimental generation
in quantum optical settings seems to be at hand—by both
deterministic [63, 64] and probabilistic (‘post-selective’)
schemes [65] (and the techniques for realizing such states
for motional degrees of freedom are well mastered [66]),
even if the numerical analysis suggests that environmental
decoherence could still hamper the very possibility of
generating pure number states [67]. These factors motivated
an accurate investigation of the decoherence rate of number
states, carried out in [68]. We review such results, adding the
analysis of the non-classicality of the evolving states.

The characteristic function χn associated with the state
|n〉〈n| is promptly found and reads [7]

χn(X) = 〈n|Dα|n〉 = e− ‖X‖2

2 Ln(‖X‖2), (47)

where Ln is the Laguerre polynomial of order n: Ln(x) =∑n
m=0

(−x)m

m!

(n
m

)
. So that, exploiting equation (29), one at once

finds the evolution of such an initial state in the channel

χn(t) = Ln

(‖X‖2

2
e−γ t

)
e− 1

2 X Tσ(t)X , (48)

with

σ(t) = 1I

2
e−γ t + σ∞(1 − e−γ t). (49)

According to equation (17) one can then determine the purity
µn(t) of the evolving number state [69]:

µn(t) = eγ t
∫ ∞

0
e−ξ s Ln(s)I0

( |sinh(2r∞)|
2µ∞

(eγ t − 1)s

)
ds,

(50)

where I0(x) = J0(ix) = ∑∞
k=0

x2k

(2kk!)2 is the zero-order
modified Bessel function of the first kind and

ξ = eγ t + µ∞ − 1

µ∞
.

For a thermal channel, with r∞ = 0, such an expression can
be further simplified to achieve an exact analytical expression
for the purity, yielding [69]

µn(t) = eγ t (ξ − 2)2

ξ n+1
Pn

(
1 +

2

ξ 2 − 2ξ

)
, (51)

where Pn is the Legendre polynomial of order n: Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n . Again, we point out that the squeezing
of the bath has the same effect on the purity as the counter-
squeezing of the initial number state, amounting to considering
a ‘squeezed number state’. The numerical analysis of
equation (50) at short times (for γ t � 1) shows that µn(t)
is a decreasing function of r∞: the squeezing of the bath does
not help to preserve the coherence of number states. Also, the
purity at any given time is a decreasing function of n: number
states of higher order are more fragile and decohere faster.

Let us now deal with the evolution of the negative
part ξ of a number state |n〉, quantifying the decoherence
effect on the non-classical features of the state. The initial
value of such a quantity increases with increasing n (higher
order number states are regarded as ‘less classical’ with this
indicator). Subsequently, during the dissipation in the bath,
the negative part ξ decreases up to a time tnc—determined
by equation (34)—at which it reaches the values 0 and the
non-classical features of the state related to ξ are erased.
Interestingly, a direct determination of the time tnc can be easily
provided for the relevant instance of number states evolving in
non-squeezed thermal baths (with r∞ = 0). In such a case, the
spherically symmetric characteristic function of equation (48)
for r∞ = 0 can be Fourier transformed to get the Wigner
function Wn(t):

Wn(t) = η(t)n

πζ(t)n+1
e− ‖X‖2

ζ(t) Ln

[−2e−γ t‖X‖2

ζ(t)η(t)

]
, (52)

with

ζ(t) = 1

µ∞

[
1 − (1 − µ∞)e−γ t

]
and

η(t) = 1

µ∞

[
1 − (1 + µ∞)e−γ t

]
.

Since Laguerre polynomials of any order have positive roots
and are always positive for negative arguments, equation (52)
implies that the time tnc is determined by the condition η(tnc ) =
0, yielding tnc = γ −1 ln(1 + µ∞). This result is just a specific
instance of equation (34), which can be applied at any pure
non-Gaussian initial state. It can also be found in [70], where
the remarkable independence of the time tnc of the order n of
the number state had already been stressed. The evolution
in phase space of the Wigner function of equation (52) is
shown in figure 6. Figure 7 shows the time dependence of
the negative part ξ , numerically integrated for the first four
number states in a thermal reservoir. Even though the initial
negative part increases with increasing n, the quantity ξ(t) is
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Figure 6. Evolution in phase space of the Wigner function of the initial number state |2〉 in a thermal channel with µ∞ = 0.5 at times t = 0
(a), t = γ −1/4 (b), t = γ −1 (c), and t = 1.5γ −1 (d). Darker shades stand for lower values; the scale of each plot is normalized. The time tnc

at which the Wigner function of this state gets positive is tnc � 0.4γ −1. As can be seen, at t = γ −1, the central minimum deriving from the
initial negative zone is still evident, but takes only positive values.
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Figure 7. Time evolution of the negative part ξ of the number states
|1〉 (dotted curve), |2〉 (dot–dashed curve), |3〉 (dashed curve), and
|4〉 (continuous curve), in a thermal reservoir with µ∞ = 0.5. For
such a reservoir, the Wigner function gets positive at tnc � 0.4γ −1.

not increasing with n at any time: indeed, lower order states
better preserve such non-classical features when approaching
the time tnc (which, we recall once again, does not depend on
the initial pure non-Gaussian state).

A relevant instance for exemplifying the decoherence
of number states is provided by the coherent normalized
superposition |ψ01〉 = (|0〉 + eiϑ |1〉)/√2, constituting a

microscopic Schrödinger cat. The characteristic function χ01

of this state is simply found [7]:

χ01(α) = e− |α|2
2

2
[2 − e−γ t |α|2 − e− γ t

2 (α∗e−iϑ − αeiϑ )]. (53)

Inserting χ01 as the initial condition in equation (29) and
performing the integration of equation (17) yields, for the
purity of the initial cat-like state evolving in the channel,

µ01(t, r) = 4ν − e−2γ t ν2

2µ∞

(
µ∞ + (eγ t − 1)(cosh(2r)

+ cos(2ϑ − 2ϕ) sinh(2r))
)

+ e−4γ t ν5

2µ2∞

(
4µ2

∞ + 8(eγ t − 1)µ∞ cosh(2r)

+ (eγ t − 1)2(3 cosh(4r) + 1)
)

(54)

where

ν =
[

1

µ2∞

(
1 − e−γ t

)2
+ e−2γ t + 2

1

µ∞
cosh(2r)

]−1/2

(55)

is the purity of an initial vacuum in the channel, found in
section 4. Equation (54) shows that the evolution of the
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Figure 8. The relative increase in purity, defined by
�µ/µ = (µ01(t, r)− µ01(t, 0))/µ01(t, 0), as a function of time
during the evolution of the superposition |ψ01〉 in Gaussian
channels. The optimal condition ϑ = ϕ + π/2 is always assumed,
while µ∞ = 0.25. The solid curve relates to a bath with r = 0.28,
close to the optimal value; the dotted curve relates to a bath with
r = 0.4 and the dot–dashed curve relates to a bath with r = 0.1.

coherent superposition is sensitive to the phase ϕ of the bath.
It is straightforward to see that the optimal choice maximizing
purity at any given time is provided by ϑ = ϕ + π/2. Fixing
such a choice, we have numerically analysed the dependence
of µ01 on the squeezing parameter r∞. For small r∞ the purity
µ01 increases with r . The optimal choice for r∞ depends
on time; for γ t = 0.5 it turns out to be r � 0.28. The
relative increase in purity for several choices of the squeezing
parameter r∞ is plotted in figure 8 as a function of time. It is
interesting to compare this analysis of decoherence with the
one previously carried out for Gaussian catlike states. Indeed,
notwithstanding the deeply quantum nature of a superposition
of number states, its decoherence rate is comparatively slow.
Actually, the purity of the superposition considered in a thermal
channel reaches the asymptotic value of the channel, after the
initial decrease, in a time t � 0.5γ −1. Such a time length
corresponds to the decoherence time tdec of a superposition
of two Gaussian terms displaced in the phase space of only
one coherent photon (in opposite directions with respect to the
origin, i.e. with ‖X0‖2 = 1 in the notation of the previous
section). Despite the relevant intrinsic differences between
these two kinds of Schrödinger cat states, their decoherence is
basically driven by the same process, due to the entanglement
of the system with the environmental degrees of freedom.

We remark that the time of decoherence can be
much shorter than the time characterizing the energy
relaxation [31, 49], which constitutes however a strict upper
bound on the former. This fact is a manifestation of a general
feature of quantum mechanics. Non-classical superpositions
decohere on a timescale of the photon lifetime in the channel,
regardless of the other parameters: once a single photon is
added or lost, all the information contained in the original
state leaks out to the environment. This can be understood,
heuristically, by considering the action of the annihilation
operators a which, in general, modifies the coherent phase
of the superposition. Therefore, as soon as the probability of
losing a photon reaches 0.5, the original superposition turns
into an incoherent mixture of states with different phases,
whose interference terms cancel each other out [55, 71]. No
coherent behaviour can survive such a dissipative process and
be afterwards revealed by interferometry.

7. Two-mode Gaussian states

Two-mode Gaussian states are the simplest example of
continuous variable bipartite states. Their decoherence
under the quantum optical master equation can be therefore
characterized also by investigating the evolution of the
correlations between the two modes of the systems. In
particular, the decay of quantum correlations, i.e. of the
entanglement, quantified by the logarithmic negativity, may
be adopted as an indicator of decoherence. Due to their clear
interest, concerning both applications in quantum information
and the study of fundamental features of entanglement, the
behaviour of two-mode Gaussian states under non-unitary
evolutions has attracted remarkable theoretical interest in
recent years [72–78]. We review here the results of [78];
moreover, we consider the instance of different couplings to the
bath and provide a detailed study of the evolving non-classical
depth.

Before addressing the analysis of their decoherence in
detail, let us recall some basic facts about two-mode Gaussian
states. The 4 × 4 covariance matrix σ will be conveniently
written in terms of the three 2 × 2 submatrices α, β, γ:

σ ≡
(

α γ

γT β

)
. (56)

The CM σ can be put into the so-called standard form σsf

through a local symplectic operation Sl = S1 ⊕ S2:

ST
l σSl = σsf ≡




a 0 c1 0
0 a 0 c2

c1 0 b 0
0 c2 0 b


 . (57)

In what follows, let us suppose |c2| � |c1|. States whose
standard form fulfils a = b are said to be symmetric. Let us
recall that any pure state is symmetric and fulfils c1 = −c2 =√

a2 − 1/4. The correlations a, b, c1, and c2 are determined by
the four local symplectic invariants det σ = (ab−c2

1)(ab−c2
2),

det α = a2, det β = b2, det γ = c1c2. Therefore, the standard
form corresponding to any covariance matrix is unique (up to
a common sign flip in the ci s).

The Sp(4,R) invariants det σ and �(σ) = det α + det β +
2 det γ permit one to explicitly express inequality (9) in terms
of second moments:

�(σ) � 1
4 + 4 det σ (58)

and determine the symplectic spectrum {ν∓} of σ, according
to [24]

2ν2
∓ = �(σ)∓

√
�(σ)2 − 4 det σ.

A relevant subclass of Gaussian states we will make use
of is constituted by the two-mode squeezed thermal states. Let
Sr = S12,r,0 be the two-mode squeezing operator between the
modes 1 and 2 with real squeezing parameter r and let νµ be
the tensor product of identical thermal states of global purity
µ, with CM νµ = 1/(2

√
µ)1I. Then, for a two-mode squeezed

thermal state ξµ,r we can write ξµ,r = SrνµS†
r . The CM ξµ,r

of ξµ,r is a symmetric standard form satisfying

a = cosh 2r

2
√
µ
, c1 = −c2 = sinh 2r

2
√
µ
. (59)
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In the instance µ = 1 one recovers the pure two-
mode squeezed vacuum states. Two-mode squeezed
states are endowed with remarkable properties related to
entanglement [79]; in particular they are the maximally
entangled states for given marginal and global purities [16, 17].

We recall that the necessary and sufficient separability
criterion for two-mode Gaussian states is positivity of the
partially transposed density matrix (‘PPT criterion’) [26]. It
can be easily seen from the definition of W (X) that the action
of partial transposition amounts, in phase space, to a mirror
reflection of one of the four canonical variables. In terms
of the Sp4,R invariants, this results in changing the invariant
�(σ) into �̃(σ) = �(σ̃) = det α + det β − 2 det γ. Now,
the symplectic eigenvalues ν̃∓ of the partially transposed CM
σ̃ read

ν̃∓ =

√√√√�̃(σ)∓
√
�̃(σ)2 − 4 det σ

2
. (60)

The PPT criterion then reduces to a simple inequality that must
be satisfied by the smallest symplectic eigenvalue ν̃− of the
partially transposed state

ν̃− � 1
2 , (61)

which is equivalent to

�̃(σ) � 4 det σ + 1
4 . (62)

The above inequalities imply det γ = c1c2 < 0 as a necessary
condition for a two-mode Gaussian state to be entangled. The
quantity ν̃− encodes all the qualitative characterization of the
entanglement for arbitrary (pure or mixed) two-mode Gaussian
states. Note that ν̃− takes a particularly simple form for
entangled symmetric states, whose standard form has a = b:

ν̃− = √
(a − |c1|)(a − |c2|). (63)

The logarithmic negativity EN of two-mode Gaussian states
is a simple function of ν̃−, which is thus itself an (increasing)
entanglement monotone; one has in fact [17]

EN (σ) = max{0,− ln 2ν̃−}. (64)

This is a decreasing function of the smallest partially
transposed symplectic eigenvalue ν̃−, quantifying the amount
by which inequality (61) is violated. Thus, for our aims, the
eigenvalue ν̃− completely qualifies and quantifies the quantum
entanglement of a two-mode Gaussian state σ.

The smallest eigenvalue u of σsf (which determines the
non-classical depth τ according to equation (16)) is easily
determined:

2u = a + b −
√
(a − b)2 + 4c2

2, (65)

reducing to u = a − |c2| for symmetric states and to u =
e−2r/(2

√
µ) for two-mode squeezed thermal states.

The evolution of two-mode Gaussian states in the noisy
channel is described by equation (32) with n = 2. The channel
is completely determined by the quantities µi∞, ri∞, ϕi∞, and
γi , for i = 1, 2. Notice that, if γ1 = γ2, then a change in
the values of the couplings to the bath γi s does not reduce to
a rescaling of time and may significantly affect the evolution

of the relevant quantities in the channel. For the study of
the entropic measures and of correlations, we will restrict to
initial states in the standard form of equation (57), with no
loss of generality since all such quantities are invariant under
local unitary operations. On the other hand, the non-classical
depth τ is not invariant under such operations. Determining
the evolution of such a quantity in the general instance is
slightly more involved. For the sake of simplicity, we will
study such evolution in relevant instances, which can be
conveniently handled and illustrate the general behaviour of
the non-classical indicator. Henceforth, we will set ϕ1∞ = 0
as a reference choice for phase space rotations.

Exploiting the results we have just reviewed, together
with the general definitions of section 2, we can determine
the exact evolution in the channel of the entropic measures µ
and SV, and of the quantum and total correlations, respectively
quantified by EN and I . In the appendix we provide the
explicit expression for the time dependent terms, allowing one
to compute such evolutions, in the instance of equal couplings:
γ1 = γ2 = γ .

As for the evolution of the purity µ and of the
von Neumann entropy SV—whose decrease quantifies the
information which the composite two-mode state ‘as a whole’
loses by interacting with the environment—some analytical
statements can be made. It can be shown by means of a
variational approach [38] that the purity of a given channel
of the form of equation (32) is maximized by an uncorrelated
state (with c1 = c2 = 0 in our notation). Its maximization
is therefore achieved by the (obviously separable) product
of two ‘counter-squeezed’ states, which, as we have seen
in section 4, maximizes the local purity relative to the two
single-mode channels11. The optimal purity evolution reduces
therefore to the square of the optimal purity evolution for
single-mode channels, previously studied. This feature holds
for any value of γ1 and γ2. An analogous argument can be
applied to the von Neumann entropy SV which, we recall, is
fully determined by the quantity lim p→0 Tr �p . However, so
far, the fact that the minimal SV at any given time is achieved
by an uncorrelated input has been proved only for γ1 = γ2.
The numerical analysis, summarized in figure 9, remarkably
supports the conjecture of the additivity of the minimal output
von Neumann entropy also for γ1 = γ2.12

We now move to considering the decay of the
entanglement between the two modes of the field, i.e. the
leaking to the environment of the information contained in
quantum correlations between the two modes. Supposing
that the couplings to the two baths are equal (γ1 = γ2 =
γ ) and making use of the separability criterion given by
inequality (62), one finds that an initially entangled state
becomes separable at a certain time t if

ue−4γ t + ve−3γ t + we−2γ t + ye−γ t + z = 0. (66)

The coefficients u, v, w, y, and z are functions of the nine
parameters characterizing the initial state and the channel (see

11 This is a particular instance in which, restricting to the Gaussian setting, the
maximal output purity of a tensor product of channels is ‘multiplicative’ [38].
12 The additivity of the minimal von Neumann entropy corresponds to the
multiplicativity of the maximum of the quantity limp→0 Tr �p .
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Figure 9. Time evolution of the von Neumann entropy in a thermal
channel with γ1 = 1, γ2 = 2, and µ1∞ = µ2∞ = 0.25. The
continuous curve relates to the conjectured optimal evolution,
achieved by a pure separable input state with a = b = 1/2 and
c1 = c2 = 0 in a non-squeezed channel; the dotted curve relates to
an initial pure two-mode squeezed state with r = 0.5 in the same
channel. The dashed and dot–dashed curves relate to a squeezed
channel with r1∞ = r2∞ = 1 and, respectively, to an initial pure
two-mode squeezed state with r = 1 and an initial thermal
two-mode squeezed state with µ = 1/16 (equal to the asymptotic
purity).

the appendix)13. Equation (66) is an algebraic equation of
fourth degree in the unknown k = e−γ t . The solution kent of
such an equation closest to one, and satisfying kent � 1, can
be found for any given initial entangled state. Its knowledge
promptly leads to the determination of the ‘entanglement time’
tent of the initial state in the channel, defined as the time interval
after which the initial entangled state becomes separable:

tent = − 1

γ
ln kent. (67)

The entanglement time tent can be easily estimated for
symmetric states (for which a = b) evolving in equal thermal
baths (i.e. with γ1 = γ2 = γ and µ1∞ = µ2∞ = √

µ∞). In
such a case the initially entangled state maintains its symmetric
standard form during the time evolution. Recalling that |c1| �
|c2|, we have that equations (61) and (63) provide the following
bounds for the entanglement time:

ln

(
1 +

√
µ∞

2|c1| − 2a + 1

1 − √
µ∞

)
� γ tent

� ln

(
1 +

√
µ∞

2|c2| − 2a + 1

1 − √
µ∞

)
. (68)

Note that µ∞ is the global purity of the asymptotic two-
mode state. Imposing the additional property c1 = −c2

amounts to considering standard forms which can be written
as squeezed thermal states (see equation (59)). For such states,
inequality (68) reduces to

tent = 1

γ
ln

(
1 +

√
µ∞

1 − e−2r√
µ

1 − √
µ∞

)
. (69)

13 Clearly, in the general instance of different couplings (γ1 = γ2),
equation (66) would turn in a system of fourth degree in the two unknown
e−γ1t and e−γ2t . Such a situation does not pose any conceptual problem and
can be treated in much the same way as the one described here, by explicitly
determining the coefficients of the system.
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Figure 10. Time evolution of the logarithmic negativity of an initial
two-mode squeezed thermal state with µ = 0.8 and r = 1 in several
channels with γ1 = γ2 = γ . The continuous curve relates to a
non-squeezed bath with µ1∞ = µ2∞ = 0.5 (corresponding to 0.5
thermal photons); the dotted curve corresponds to a thermal bath
with µ1∞ = 0.25 and µ2∞ = 1 (with a global asymptotic purity
equal to the previous one); the dashed and dot–dashed curves relate
to a bath with µ1∞ = µ2∞ = 0.5, r1∞ = r2∞ = 1, and ϕ2∞ = 0
(ϕ2∞ = π/4) for the dashed (dot–dashed) curve.
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Figure 11. Time evolution of the logarithmic negativity of an initial
entangled non-symmetric state, obtained from the squeezed thermal
one considered in figure 10 by adding 0.2 to the element a of the
standard form (added noise on mode 1 quadratures.) The solid curve
relates to a bath with γ1 = γ2 = µ1∞ = µ2∞ = 1; the dotted curve
relates to a channel with γ1 = 0.5, γ2 = 1.5, and µ1∞ = µ2∞ = 1;
the dashed (dot–dashed) curve relates to a bath with γ1 = γ2 = 1,
µ1∞ = 1/9 (µ1∞ = 1), and µ2∞ = 1 (µ2∞ = 1/9). The label γ is
defined by γ = (γ1 + γ2)/2.

In particular, for µ = 1, one recovers the entanglement
time of a two-mode squeezed vacuum state in a thermal
channel [27, 75, 77]. We point out that two-mode squeezed
vacuum states encompass all the possible standard forms of
pure Gaussian states.

The results of the numerical analysis of the evolution
of the logarithmic negativity for several initial states are
reported in figures 10 and 11. In general, one can see that
a less mixed environment better preserves entanglement by
prolonging the entanglement time. More remarkably, figure 10
shows that a local squeezing of the two uncorrelated channels
does not help to preserve the quantum correlations between
the evolving modes. Moreover, as can be seen from figure 11,
states with greater uncertainties on, say, mode 1 (a > b)
better preserve entanglement if bath 1 is more mixed than
bath 2 (µ1∞ < µ2∞). Figure 11 also shows that, even
for initial non-symmetric states, unbalancing the couplings to
the two single-mode reservoirs (while leaving their average
unchanged: γ = (γ1+γ2)/2) only slightly affects the evolution
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Figure 12. Time evolution of the mutual information of Gaussian
states in an environment with γ1 = γ2 = γ and µ1 = µ2 = 1/3.
The continuous curve relates to an entangled state with a = 2,
b = c1 = −c2 = 1 in a non-squeezed environment; the dotted curve
relates to the same state in an environment with r1 = r2 = 1; the
dashed curve relates to a non-entangled state with a = b = 2,
c1 = −c2 = 1.5 in a non-squeezed environment; the dot–dashed
curve relates to the same state in a squeezed environment with
r1 = r2 = 1. The squeezing angle ϕ2 was always set to 0.

of the entanglement in the channel; an accurate numerical
analysis shows that a greater coupling to the more mixed initial
mode (e.g., γ1 > γ2 if a > b) enhances the preservation of
the initial quantum correlations. Also, for symmetric states
evolving in squeezed baths, one can see that the entanglement
of the initial state is better preserved if the squeezing of the
two channels is balanced.

An interesting feature concerns the evolution of the mutual
information I , illustrated in figure 12 for some relevant cases:
at long times, such a quantity is better preserved in squeezed
channels. This property has been thoroughly tested both on
non-entangled states, featuring only classical correlations, and
on highly entangled states, and seems to hold generally.

The instance of a standard form state in a tensor product
of two thermal channels (parametrized by γi and µi∞, for
i = 1, 2) is especially relevant, since it gives a basic
description of dissipation in most experimental settings, like
fibre-mediated communication protocols. A simple analysis
straightforwardly shows that in this instance both the purity
and the logarithmic negativity (that is, the entanglement) of
the evolving state are increasing functions of the asymptotic
purities and decreasing functions of the couplings to the baths.
This should be expected, recalling the well understood synergy
of entanglement and purity for general quantum states: the
ideal vacuum environment, whose decoherent action is entirely
due to losses, is the one which better preserves both the global
information of a state and its correlations.

As we have seen, two-mode squeezed thermal states
constitute a relevant class of Gaussian states, parametrized by
their purity µ and by the squeezing parameter r according
to equations (59). In particular, two-mode squeezed vacuum
states (or twin beams), which can be defined as squeezed
thermal states withµ = 1, correspond to maximally entangled
symmetric states for fixed marginal purities [17]. Therefore,
they constitute a crucial resource for quantum information
processing in the continuous variable scenario. For squeezed
thermal states (chosen as initial conditions in the channel),
it can be shown analytically that the partially transposed
symplectic eigenvalue ν̃− is at any time an increasing function

of the bath squeezing angle ϕ2: ‘parallel’ squeezing in the two
channels optimizes the preservation of entanglement. Both in
the instance of two equal squeezed baths (i.e. with r1 = r2 = r )
and that of a thermal bath joined to a squeezed one (i.e. r1 = r
and r2 = 0), it can be shown that ν̃− is an increasing function of
r [78]. Such analytical considerations, supported by a broader
numerical analysis, clearly show that a local squeezing of
the environment degrades the entanglement of the initial state
faster. The same behaviour occurs for purity.

In order to illustrate the behaviour of the non-classical
depth τ in the noisy channel, let us consider standard form
states evolving in thermal environments. For simplicity, let
us assume γ1 = γ2 = γ . According to equations (16)
and (65), one has, for the evolving non-classicality (recalling
that |c2| � |c1|),
τ(t) = 1

2
− 1

2
(a + b)e−γ t − µ1∞ + µ2∞

4µ1∞µ2∞
(1 − e−γ t)

+
1

2

√(
(a − b)e−γ t +

µ1∞ − µ2∞
2µ1∞µ2∞

(1 − e−γ t)

)2

+ 4c2
2e−2γ t .

(70)

This function is a decreasing function of the parameters
µi∞: the thermal noise contributes to destruction of the non-
classical features of the initial state. To study the effect of the
squeezing of the bath on the non-classical depth, we specialize
to the instance of two-mode squeezed thermal states, which
are an archetypical class of non-classical two-mode states,
characterized by squeezing in combined quadratures. In this
case it can be easily shown that, to minimize the smaller
eigenvalue of σ (thus maximizing τ ), the choice ϕ2 = 0 is
optimal. We will thus make such a choice in the following.
The non-classical depth of the initial two-mode squeezed state
ξµ,r in a channel with parameters µi∞ and ri∞, for i = 1, 2,
takes the following form:

τ(t) = 1

2
− cosh(2r)

2
√
µ

e−γ t

− e−2r1∞µ2∞ + e−2r2∞µ1∞
4µ1∞µ2∞

(1 − e−γ t)

+
1

2

[(
e−2r1∞µ2∞ − e−2r2∞µ1∞

2µ1∞µ2∞
(1 − e−γ t)

)2

+
sinh(2r)2

µ
e−2γ t

]1/2

. (71)

Equation (71) reduces to the following simple form for the
evolution in equal baths (with µ1∞ = µ2∞ = √

µ and
r1∞ = r2∞ = r∞):

τ(t) =
1 − e−2r√

µ
e−γ t − e−2r∞√

µ∞ (1 − e−γ t)

2
. (72)

As can be seen in figure 13, the local squeezing of the
baths, reducing the quantum noise in one quadrature of the
multimode system, drastically increases the duration of the
non-classicality of the state and, generally, the value of its
non-classical depth at any given time. This is due to the
symmetry of two-mode squeezed states under mode exchange:
such states can take advantage of reduced fluctuations of any
quadrature of the bath. Interestingly, while the non-classical
depth is enhanced by the local squeezing of a quadrature
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Figure 13. Evolution of the non-classical depth of an initial
two-mode squeezed thermal state with µ = 0.9 and r = 1.5. The
dashed curve relates to the evolution in a non-squeezed bath with
µ1∞ = µ2∞ = 0.5; the dot–dashed curve relates to a non-squeezed
bath with µ1∞ = 0.25 and µ2∞ = 1; the dotted curve relates to a
bath with µ1∞ = µ2∞ = 0.5 and r1 = r2 = 0.2; finally, the
continuous curve relates to a bath with µ1∞ = µ2∞ = 0.5,
r1∞ = 0.6, and r2∞ = 0.

(thus implying an improved preservation of non-classical
features like sub-Poissonian photon number distributions),
the entanglement is not. This is due to the intrinsically
non-local nature of the entanglement: the advantage which
could be achieved by squeezing a local quadrature is balanced
by the increased fluctuations in the conjugated quadrature,
which usually makes squeezing not favourable to the aim of
preserving entanglement.

8. Concluding remarks

We have carried out a quantitative analysis of decoherence of
continuous variable systems interacting with general Gaussian
environments and reviewed many related results. The method
we have presented for studying the decoherence rate may be
applied to other systems of interest, like qubit systems under
non-unitary evolutions. Several relevant configurations have
been considered and exhaustively analysed, characterizing
their rate of decoherence by keeping track of the decay of the
global degree of purity, of indicators of non-classicality, and,
for two-mode states, of quantum and total correlations.

Quite generally, we have shown that, as long as one
restricts to the Gaussian setting, squeezing the bath (or,
equivalently, the initial state while letting the bath be thermal)
does not help to better preserve either the overall coherence
of the state or its quantum correlations. However, such a
squeezing proves effective in delaying the decoherence of more
deeply non-classical states, like cat-like states resulting from
coherent superpositions of Gaussian states or of number states.
Furthermore, quite interestingly, we have shown that a local
squeezing of the baths may improve the preservation of the
mutual information in two-mode systems.

We remark that our results are of direct interest to recent
developments in experimental quantum optics, especially
those related to quantum information and quantum control.
Indeed, a crucial step towards the development of quantum
information technology is the achievement of a sufficient
quantum control capability, i.e. of the ability of engineering
quantum signals and feedback techniques acting on the

dynamics of a quantum system. In fact, the implementation
of any quantum information protocol relies on maintaining
quantum coherence in the system for a significant period of
time and so requires some kind of mechanism to eliminate
or mitigate the undesirable effects of decoherence. In this
framework, a precise knowledge of the decoherence dynamics
is desirable, especially in the continuous variable regime,
where the field of quantum control originated and has a strong
experimental impact [80, 81].

In order to make this point clearer, let us explicitly consider
the following example. Consider the continuous variable
teleportation of a single-mode coherent state by exploiting a
two-mode squeezed thermal state as an entangled resource (for
a detailed description of the protocol, see [82]). Now, it may be
shown [83] that the optimal teleportation fidelity F (averaged
over the whole complex plane) for such a protocol is given by a
simple function of the smallest partially transposed symplectic
eigenvalue ν̃− of the two-mode squeezed state:

F = 1

1 + 2ν̃−
. (73)

If the two modes which share the entangled state are, say, stored
in two distant cavities, waiting to be used, the decoherence
they experience will gradually corrupt the fidelity of the
teleportation protocol. Our study allows to keep track of
the quantity ν̃− during the dissipative evolution of the state
as a function of various environmental parameters, and thus
to exactly determine the teleportation fidelity achievable as a
function of time. For instance, considering an initially pure
shared two-mode squeezed vacuum with squeezing parameter
r , evolving in two environments with, for simplicity, the same
coupling γ and asymptotic purity µ∞, one gets

F(t) = 1

1 + e−2r−γ t + (1 − e−γ t)/µ∞
. (74)

Notice that such a result takes into account both losses
and thermal noise. In the more general instance, let us
remark that the entanglement time, extensively analysed
in section 7 (see equations (67)–(69)) and which may be
analytically determined following the approach we have
presented, coincides with the time over which quantum
teleportation allows one to beat the classical fidelity, equal to
0.5, as shown by equation (73) (at tentν̃− reaches 1/2 and then
keeps increasing). After such a time the entanglement is gone
because of local decoherence: the shared resource becomes
useless to quantum informational aims.

Appendix. Determination of mixedness and
entanglement of two-mode states

Here we provide explicit expressions which allow us to
determine the exact evolution in uncorrelated channels with
γ1 = γ2 = γ of a generic initial state in standard form. The
relevant quantities EN , µ, SV , I , and τ are all functions of the
four Sp(2,R) ⊕ Sp(2,R) invariants det α, det β det γ, and det σ.
Let us then write these quantities as follows:

det σ =
4∑

k=0

�ke−k�t , (75)
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det α =
2∑

k=0

αke−k�t , (76)

det β =
2∑

k=0

βke−k�t , (77)

det γ = γ2e−2�t , (78)

defining the sets of coefficients �i , αi , βi , γi . One has

�4 = a2b2 +
a2

4µ2
2

+
b2

4µ2
1

− a2b
cosh 2r2

µ2
− ab2 cosh 2r1

µ1

+ ab
cosh 2r1 cosh 2r2

µ1µ2
− a

cosh 2r1

4µ1µ
2
2

− b
cosh 2r2

4µ2
1µ2

+ (c2
1 + c2

2)

(
a

cosh 2r2

2µ2
+

b cosh 2r1

2µ1

− cosh 2r1 cosh 2r2

4µ1µ2
− sinh 2r1 sinh 2r2 cos 2ϕ2

4µ1µ2
− ab

)

+ (c2
1 − c2

2)

(
a

sinh 2r2 cos 2ϕ2

2µ2
+ b

sinh 2r1

2µ1

− sinh 2r1 cosh 2r2

4µ1µ2
− cosh 2r1 sinh 2r2 cos 2ϕ2

4µ1µ2

)

+ c2
1c2

2 +
1

16µ2
1µ

2
2

, (79)

�3 = −2
a2

4µ2
2

− 2
b2

4µ2
1

+ a2b
cosh 2r2

µ2
+ ab2 cosh 2r1

µ1

− 2ab
cosh 2r1 cosh 2r2

µ1µ2
+ 3a

cosh 2r1

4µ1µ
2
2

+ 3b
cosh 2r2

4µ2
1µ2

− (c2
1 − c2

2)

(
a

sinh 2r2 cos 2ϕ2

2µ2
+ b

sinh 2r1

2µ1

− 2
sinh 2r1 cosh 2r2

4µ1µ2
− 2

cosh 2r1 sinh 2r2 cos 2ϕ2

4µ1µ2

)

− (c2
1 + c2

2)

(
a

cosh 2r2

2µ2
+

b cosh 2r1

2µ1

− 2
cosh 2r1 cosh 2r2

4µ1µ2
− 2

sinh 2r1 sinh 2r2 cos 2ϕ2

4µ1µ2

)

− 1

4µ2
1µ

2
2

, (80)

�2 = a2

4µ2
2

+
b2

4µ2
1

+ ab
cosh 2r1 cosh 2r2

µ1µ2
− 3a

cosh 2r1

4µ1µ
2
2

− 3b
cosh 2r2

4µ2
1µ2

− (c2
1 + c2

2)

(
cosh 2r1 cosh 2r2

4µ1µ2

+
sinh 2r1 sinh 2r2 cos 2ϕ2

4µ1µ2

)
− (c2

1 − c2
2)

×
(

sinh 2r1 cosh 2r2

4µ1µ2

+
cosh 2r1 sinh 2r2 cos 2ϕ2

4µ1µ2

)
+

1

16µ2
1µ

2
2

, (81)

�1 = +a
cosh 2r1

4µ1µ
2
2

+ b
cosh 2r2

4µ2
1µ2

− 1

4µ2
1µ

2
2

, (82)

�0 = 1

16µ2
1µ

2
2

, (83)

α2 = a2 − a
cosh 2r1

µ1
+

1

4µ2
1

, (84)

α1 = a
cosh 2r1

µ1
− 2

1

4µ2
1

, (85)

α0 = 1

4µ2
1

, (86)

β2 = b2 − b
cosh 2r2

µ2
+

1

4µ2
2

, (87)

β1 = b
cosh 2r2

µ2
− 2

1

4µ2
2

, (88)

β0 = 1

4µ2
2

, (89)

γ2 = c1c2. (90)

The coefficients of equation (66), whose solution kent

allows one to determine the entanglement time of an arbitrary
two-mode Gaussian state, read

u = �4, (91)

v = �3, (92)

w = �2 − α2 − β2 − |γ2|, (93)

y = �1 − α1 − β1, (94)

z = �0 − α0 − β0 + 1
4 . (95)
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