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Discrimination of Ohmic thermal baths by quantum dephasing probes
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We address the discrimination of structured baths at different temperatures by dephasing quantum probes.
We derive the exact reduced dynamics and evaluate the minimum error probability achievable by three different
kinds of quantum probes, namely, a qubit, a qutrit, and a quantum register made of two qubits. Our results
indicate that dephasing quantum probes are useful in discriminating low values of temperature and that lower
probabilities of error are achieved for intermediate values of the interaction time, where the minimum probability
of error scales as 1/2N , with N the number of energy levels of the probe. A qutrit probe outperforms a qubit one
in the discrimination task, whereas entangled probes show smaller optimal times.
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I. INTRODUCTION

Thermometry is about measuring the thermodynamic
temperature of a system. In classical thermodynamics, ther-
mometry is based on the zeroth principle, i.e., it relies on
the achievable equilibrium between the system and a probe
with a much smaller heat capacity. In quantum mechanics,
temperature is not an observable in a strict sense. Rather, it is
a parameter on which the state of a quantum system may de-
pend. For this very reason, direct measurement of temperature
is not available, and one should resort to indirect measurement
procedures. During the last decade, quantum thermometric
strategies have emerged [1–4], which are mostly based on us-
ing external quantum probes interacting with the system under
investigation, with the assumption that the interaction between
the probe and the system does not change the temperature of
the latter. Those strategies, usually termed quantum probing
schemes, are not based on the zeroth principle, but rather
on the engineering of the interaction Hamiltonian, which is
exploited to imprint the temperature of the system on the
quantum state of the probe. As a matter of fact, quantum prob-
ing exploits the inherent fragility of quantum systems against
decoherence, turning it into a resource to realize highly sensi-
tive metrological schemes.

In recent years, temperature estimation by quantum probes
received much attention [5–14], often using the tools offered
by quantum estimation theory. The optimal sensitivity in
temperature estimation has been studied for N-dimensional
quantum probes [15] and, more recently, the efficiency of
infinite-dimensional quantum probes has been also inves-
tigated [16]. The ultimate quantum limits to thermometric
precision have been addressed [4], and the use of an out-
of-equilibrium quantum thermal machine has been suggested
for temperature estimation [17]. Quantum thermometry by
dephasing has been also addressed in detail and, in particular,

*alessandro.candeloro@unimi.it
†matteo.paris@fisica.unimi.it

the performance of single-qubit probes [18] and of quantum
registers made of two qubits [19] has been explored.

As a matter of fact, less attention has been devoted to
the estimation of a discrete set of temperature values, i.e.,
to temperature discrimination. The problem is that of telling
apart thermal baths with different temperatures, assuming
that the possible values of temperature belong to a discrete
set {T1, T2, . . .} and are known in advance (see Fig. 1 for
a pictorial description of the measurement scheme). Indeed,
in thermometry there are two main tasks. On the one hand,
one may need to estimate the temperature of a sample. On
the other hand, there are situations in which the main goal
is to monitor the temperature of an object, i.e., to sense any
variation of temperature, rather than estimating the temper-
ature itself. In those situations, a sensing device should be
characterized by at least two working regimes, and in turn
two temperatures, which should be discriminated. This is the

FIG. 1. Discrimination of temperatures by quantum probes. A
quantum system prepared in a known state �0 is allowed to interact
with a thermal bath for a time t and then measured in order to
discriminate whether the state is �1(t ) or �2(t ), i.e., to infer whether
the temperature of the bath is T1 or T2. After choosing a suitable
interaction Hamiltonian HI , the scheme may be optimized over the
initial preparation of the probe, and the value of the interaction time
t .
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minimal model we are referring to. Of course, more involved
models involving discrimination between a given temperature
and any other temperature may be devised. In this respect,
our analysis provides ways to assess more general monitoring
schemes.

In this framework, a single qubit has been suggested [20]
as an out-of-equilibrium probe to discriminate two thermal
baths and, more recently, the discrimination between baths
with different temperatures or statistical properties has been
addressed [21], assuming that the quantum probe undergoes
Markovian dynamics. In this paper, we extend these studies
to more general quantum probes and taking into account
the spectral structure of the bath. In particular, we assume
a dephasing interaction between the probe and the bath and
derive the exact reduced evolution of the quantum probe.
Then, we study the discrimination performance of our scheme
for different kinds of Ohmic-like environments and different
quantum probes. In order to provide a benchmark, we first
analyze discrimination by quantum probes at equilibrium, and
then address the out-of-equilibrium case, looking for the opti-
mal interaction time, leading to the smallest error probability.
Our results indicate that dephasing quantum probes are useful
in discriminating low values of temperature and that lower
probabilities of error are achieved for intermediate values of
the evolution time, i.e., for out-of-equilibrium quantum probes
[22].

The paper is structured as follows. In the next section, we
review some elements of quantum discrimination theory and
establish notation. In Sec. III, we analyze discrimination of
thermal baths by quantum probes at equilibrium. Besides be-
ing of interest on their own, the results of this section serve as
a benchmark to assess the performance of out-of-equilibrium
quantum probes, which are analyzed in detail in Sec. IV.
Section V closes the paper with some concluding remarks.
Throughout the paper we set h̄ = 1.

II. THE QUANTUM DISCRIMINATION PROBLEM

In several problems of interest in quantum technology, an
observer should discriminate between two or more quantum
states. However, quantum states are not observable and this
operation cannot be carried out directly. Furthermore, distinct
states may have finite overlap, and there is no way to dis-
tinguish them with certainty [23]. The main consequence is
that a correct discrimination among a generic set of quantum
states is not always possible, and an intrinsic error in the
process occurs. Many strategies for optimal discrimination of
quantum states [24–26] have been suggested, each of them
tailored to a specific purpose. In this paper, we are going to use
the minimum error discrimination strategy, which we briefly
review in the following.

Let us consider the problem of binary discrimination be-
tween two quantum states ρ1 and ρ2 which are known in
advance and occur with a priori probability {zk}, k = 1, 2.
Given a positive operator-valued measure (POVM) {�1,�2},
the quantity Tr[� jρ j] represents the probability of correctly
inferring the state ρ j by implementing the POVM. In or-
der to optimize the discrimination, we look for the POVM
minimizing the overall probability of error pe, which can be

written as

pe = 1 −
2∑

j=1

z jTr[� jρ j]. (1)

Since z1 + z2 = 1 and �1 + �2 = I, pe may be rewritten
as pe = z1 + Tr[��1] = z2 − Tr[��2] where the Hermitian
operator � is defined as

� = z2ρ2 − z1ρ1. (2)

Using the spectral decomposition � = ∑
k λk|ψk〉〈ψk|, the

minimum probability of error may be written in terms of the
so-called Helstrom bound [27,28]:

pe = 1

2

(
1 −

∑
k

|λk|
)

= 1

2
(1 − Tr[|�|]). (3)

Using the distance norm [29] we can interpret the re-
sult from a geometrical point of view. Since Tr[|�|] =
Tr[|z2ρ2 − z1ρ1|] = ‖z2ρ2 − z1ρ1‖1, if the occurrence proba-
bilities of ρ1 and ρ2 are the same, we obtain

pe = 1

2
[1 − D(ρ1, ρ2)], (4)

where D(ρ1, ρ2) = 1
2‖ρ2 − ρ1‖1 is the trace distance. This

result confirms our intuition that the less two states are dis-
tant the larger is the probability of error in discriminating
them. We also recall that the optimal POVM, for which the
probability of error is minimized, is given in terms of the
eigenprojectors of the operator �, as �1 = ∑

λk�0 |ψk〉〈ψk|.

III. QUANTUM PROBES AT THERMAL EQUILIBRIUM

Let us now turn to the main problem of the paper, i.e., to
discriminate whether a thermal bath is at temperature T1 or T2

by performing measurements on a quantum probe interacting
with it. In this section, we assume that the probe is at the
equilibrium with the bath. We do not study how the probe
reaches the equilibrium with the bath, and simply assume that
after enough time the probe has reached such equilibrium. In
the next section, we devote attention to the out-of-equilibrium
case and will introduce an interaction model.

Let us consider a quantum system governed by a bounded
Hamiltonian H with an energy spectrum {|en〉, En}N−1

n=0 , then
the equilibrium state of the probe is given by the Gibbs state

ρeq(β ) = 1

Z (β )

N−1∑
n=0

e−βEn |en〉〈en| (5)

where Z (β ) is the partition function Z (β ) = ∑
n e−βEn and

β = 1/T (we set the Boltzmann constant to 1 throughout the
paper) is the inverse temperature of the heat bath.

Consider now the situation where we do not know in ad-
vance the temperature of the bath, but we know it must be
T1 or T2. As a result, the thermal state will be different and
our goal is to discuss the minimum probability of error in
discriminating the two states ρeq(β1) and ρeq(β2). From the
previous section, we know that the best measurement is given
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by the operator � in (2):

� = 1

2

N−1∑
n=0

(
e−β2

ω0
2 δn

Z (β2)
− e−β1

ω0
2 δn

Z (β1)

)
|en〉〈en|. (6)

Then, in the case of β2 < β1, we have that λ0 < 0 and
λ1, . . . , λN−1 > 0 and the optimal POVM consists of the pro-
jector on the ground state and the projector on any excited
state, i.e., {�1 = |e0〉〈e0|,�2 = ∑N−1

n=1 |en〉〈en|} (if β1 < β2

the role of the projectors in the detection is reversed). If the
energy levels are equispaced (En = δnω0/2 and En+1 − En =
ω0), then the probability of error in the discrimination is given
by

peq
e (β1, β2) = 1

2
− sgn(β2 − β1)

2

(
e−β2

ω0
2 δ0

Z (β2)
− e−β1

ω0
2 δ0

Z (β1)

)
.

(7)
When one of the temperatures is vanishing, say T2 = 0 (β2 =
+∞), the corresponding thermal probe collapses into the
ground state |e0〉〈e0| and the probability of error becomes

peq
e (β1,+∞) = 1

2
− 1

4

(∣∣∣∣e−β1E0

Z (β1)
− 1

∣∣∣∣+
N−1∑
n=1

∣∣∣∣e−β1En

Z (β1)

∣∣∣∣
)

= 1

2

e−β1E0

Z (β1)
. (8)

In the opposite limit, i.e., when one of the two baths has a very
large temperature, say T2 is very large (β2 → 0) compared
to the largest energy eigenvalue maxn{En}, the correspond-
ing thermal state approaches the equiprobable diagonal state
ρeq(0) = I/N . In this limit, we can easily see that the proba-
bility of error scales as the inverse of N , i.e.,

peq
e → 1

2N
. (9)

For a two-dimensional (qubit) probe d = 2, a closed formula
for (7) may be easily evaluated, obtaining

peq
e (β1, β2) = 1

2

[
1 − 1

2

∣∣∣∣tanh

(
ω0β2

2

)
− tanh

(
ω0β1

2

)∣∣∣∣
]
.

(10)

We will use this expression in the following to compare
performance of probes at equilibrium with that of out-of-
equilibrium ones.

We now make a few comments on the probability of error
(10). The minimum of peq

e (T1, T2) depends on the relative
choice of T1 and T2. If T2 = 0, the minimum is reached
asymptotically for T1 → +∞, and we know from previous
considerations that the limiting value is equal to 1/4. Instead,
for T2 > 0, we have two cases: if T2 � ω0 log(3), the min-
imum of peq

e (T1, T2) is reached for T1 → 0, while if T2 �
ω0/ log(3) then the minimum of peq

e (T1, T2) is again obtained
asymptotically for T1 → +∞. Moreover, as ω0 grows the
discrimination improves in the high-temperature regime.

In the rest of the paper and all the subsequent plots, we
have set the value of ω0 to 3.5 kHz, which corresponds to a
realistic experimental situation of a quantum probe [30].

IV. OUT-OF-EQUILIBRIUM DEPHASING QUANTUM
PROBES

Let us now study how dephasing, out-of-equilibrium,
quantum probes may be exploited in the temperature discrim-
ination problem. Here, the quantum probe is an open quantum
system S which effectively interacts with the reservoir, which
is a thermal bath at temperature T1 or T2. We assume that
the total Hamiltonian of the system is H = HS

0 + HB
0 + HI ,

where the first term determines the free evolution of the sys-
tem, the second determines the free evolution of the bath,
and the latter determines the interaction between the open
quantum system and the reservoir. Before specifying the in-
teraction model, let us discuss some general results about
temperature discrimination, regardless of the system and the
interaction.

To perform our discrimination task, we prepare our quan-
tum probe in a certain state and then we let it interact with
the bath. We assume that the bath is at equilibrium in a Gibbs
state:

νk = e−βkHB
0

Z (βk )
(11)

where βk, k = 1, 2 are two distinct inverse temperatures. Once
the probe state ρS ≡ ρS (0) is fixed at time t = 0 and en-
vironment state νk , the evolution of the initially factorized
total system ρS ⊗ νk is determined by a completely positive
trace-preserving (CPT) map �k

t . The state of the system at
time t will be

ρSk (t ) = �k
t [ρS] = TrE

[
U (t ) ρS ⊗ νk U †(t )

]
. (12)

The two baths at different temperatures define two different
CPT maps, and we are going to see that the distance between
these two different maps, defined in the last equation, has
an upper bound which does not depend on the nature of the
probe. The probability of incorrectly discriminating the two
states originating from the interaction with the two baths is
(4), and it depends on the trace distance D(ρS1(t ), ρS2(t )).
Since the trace distance is contractive under the action of the
trace-preserving map, and invariant under unitary transforma-
tions [29,31], we have

D(ρS1(t ), ρS2(t )) = D
(
�1

t [ρS],�2
t [ρS]

)
� D(ρS ⊗ ν1, ρS ⊗ ν2)

= D(ν1, ν2), (13)

where the last equality is due to the fact that the state of
the quantum probe at time t = 0 is fixed, regardless of the
temperature, and thanks to the additivity under tensor products
of the trace distance. Notice that the last equality is no longer
true if the states are not factorized. This is an upper bound
on the maximum distance between two states evolving under
the same reduced dynamics with two baths at T1 and T2.
Moreover, this bound depends only on the nature of the bath
(namely, its Hamiltonian HB

0 ) and on the temperatures to be
discriminated. The upper bound translates into a lower bound
on the probability of error (4), that is,

pneq
e (T1, T2) � 1

2
[1 − D(ν1, ν2)]. (14)
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This bound may be useful in dealing with a finite-size envi-
ronment, whereas in the thermodynamical limit the D(ν1, ν2)
is likely to vanish.

A. Dephasing model

In this section we introduce a (pure) dephasing model that
regulates the probe-environment interaction by generalizing
the qubit model studied in [32]. The full dynamics is generated
by the Hamiltonian

HT = H0 + HI , (15)

where H0 = HS
0 + HB

0 determines the free evolution of the
probe and the bath, whereas HI describes the interaction.
Since we are going to consider quantum probes with a discrete
energy spectrum, we may introduce an energy scale ω0to write
the energy levels as En = δnω0/2. The Hamiltonian may be
written as

HS
0 = ω0

2

N−1∑
n=0

δn|en〉〈en| = ω0

2
H(n). (16)

The diagonal matrix H(n) represents the spacing of the energy
levels, and it may describe the spectrum of a n-level system,
such as qubit H(2) = σ3, as well as that of a quantum reg-
ister of two qubits H(2,2) = (σ3 ⊗ I2 + I2 ⊗ σ3) [33]. In the
second case, the spectrum might be degenerate. Moreover,
where appropriate, we understand the index n as a multi-index
n = (n1, n2), with each n1 and n2 associated, respectively,
with the first qubit and the second qubit.

The reservoir is described by a bath of harmonic oscillators
HB

0 = ∑
k ωkb†

kbk , where ωk are the frequencies of the kth
bosonic modes. Then, the interaction between the system and
the reservoir is given by

HI = H(n) ⊗
∑

k

(gkb†
k + g∗

kbk ). (17)

The quantities gk are the coupling constants between each en-
ergy level and the kth mode of the bath. We assume they do not
depend on the energy level with which they interact. This is
justified by the assumption that the system is small compared
to the size of the reservoir and a collective interaction is a
good approximation. In other words, all the energy levels feel
the same local environment. Moreover, we assume that in the
case of a quantum register all the qubits interact locally with
the same thermal bath [19].

The model here is exactly solvable. The evolution of the
quantum probe in the interaction picture, given the overall
system prepared initially in a factorized state ρS ⊗ ν, is given
by

�
β
t [ρ] = Vβ (t ) ◦ R(t ) ◦ ρS (18)

where the ◦ is the Hadamard (entrywise) product and the
quantities Vβ (t ) and R(t ) are given by

Vβ (t ) =
N−1∑
j,k=0

e
(δ j −δk )2

4 �(t |β )|e j〉〈ek|, (19)

R(t ) =
N−1∑
j,k=0

eiξ (t )
δ2

j −δ2
k

4 |e j〉〈ek|. (20)

The evolution for a generic quantum probe, initialized in the
state ρS = ∑

jk ρ jk|e j〉〈ek|, is given by

ρ
β
S (t ) =

∑
jk

ρ jk eiξ (t )
δ2

j −δ2
k

4 e
(δ j −δk )2

4 �(t |β ) |e j〉〈ek|. (21)

The functions �(t |β ) and ξ (t ) are defined as follows:

�(t |β ) = −
∑

k

4
|gk|2
ω2

k

[1 − cos(ωkt )] coth

(
ωkβ

2

)
, (22)

ξ (t ) = −4
∑

k

|gk|2
ω2

k

[ωkt − sin (ωkt )]. (23)

The first is the decoherence function. It represents the rate of
the damping due to the interaction and it depends directly on
the temperature. The second one is a temperature-independent
phase function which does not affect the probability of error,
since the Hadamard product is distributive.

As a final step, we take the continuous limit for the
frequency of the bosonic bath, i.e.,

∑
k → ∫

dω f (ω) and
|gk|2 → |g(ω)|2, where f (ω) is the density of states. Upon
defining the spectral density as J (ω) = 4 f (ω)|g(ω)|2, the
decoherence function (22) and the temperature-independent
phase function (23) become, respectively,

�(t |β ) = −
∫ +∞

0
dω J (ω) coth

(
ωβ

2

)
1 − cos(ωt )

ω2
, (24)

ξ (t ) = −
∫ +∞

0
dω J (ω)

ωt − sin(ωt )

ω2
. (25)

In the following, we consider environments characterized by
Ohmic-like spectral densities of the form

Js(ω,ωc) = ωc

( ω

ωc

)s
exp

(
− ω

ωc

)
, (26)

where ωc is the cutoff frequency and s is the Ohmicity pa-
rameter. The cutoff frequency is related to the environmental
correlation time, and in turn to the decoherence time, whereas
s sets out the behavior of the spectral density in the low-
frequency range. Three main classes may be identified: the
sub-Ohmic (0 < s < 1), the Ohmic (s = 1), and the super-
Ohmic (s > 1) [34,35].

Notice that for a dephasing quantum probe the populations
of the energy levels are not changed by the evolution, which
affects only the off-diagonal terms of the density matrix of
the system. In other words, there is no exchange of energy
between the probe and the system under investigation, and the
state of the probe is always out of equilibrium.

B. Out-of-equilibrium qubit probe

Let us first consider a qubit probe. In this case, δ0 = −1
and δ1 = +1 and we make the identification |e0〉 → |0〉 and
|e1〉 → |1〉. Thus R(t ) = I2 and we can write the density
matrix (21) directly in the basis |i〉 at time t , obtaining

ρ
β
S (t ) =

[
1 e�(t |β )

e�(t |β ) 1

]
◦ ρS. (27)

We assume no a priori information about the two tempera-
tures to be discriminated, i.e., z1 = z2 = 1/2. The operator �
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in Eq. (2) may be written as

� =
(

0 ρ10

ρ01 0

)
e�(t |β2) − e�(t |β1 )

2
(28)

where ρ10 and ρ01 are the off-diagonal elements of the initial
state of the probe. The probability of error is thus given by

pneq
e (β1, β2) = 1

2

[
1 −

∣∣∣ρ10
(
e�(t |β2) − e�(t |β1 )

)∣∣∣]. (29)

We notice that the probability of error depends only on the
off-diagonal values of the density matrix at time t = 0 and it
does not depend on the value of ω0. Using the Bloch vector
formalism, it can be seen that the best preparation is given
for |ρ10| = 1/2 and ρ00 = ρ11 = 1/2. If ρ01 is real, the op-
timal probe state is the maximally coherent state |ψS (0)〉 =
1/

√
2(|0〉 + |1〉).

Generally speaking, we can exactly find the optimal POVM
to be implemented on the probe, which is identified by the
projectors of the � operator (28). Indeed, if we write ρ01 =
re−iα , then we can write the projective measurement in terms
of Pauli matrices as

�1 = 1

2
[I + cos(α)σx + sin(α)σy], (30)

�2 = 1

2
[I − cos(α)σx − sin(α)σy]. (31)

This is a feasible POVM which depends on the initial prepa-
ration but not on the two temperatures (it does, however,
depend on time since the above expression is in the interaction
picture).

The above results may be interpreted in terms of coherence
of the probe, i.e., the quantity C(ρ) = ∑

i �= j |ρi j |. For the state
in Eq. (27), the coherence is

C(β, t ) = 2|ρ0
01|e�(t |β ), (32)

and the probability of error may be written as a function of the
coherence only:

pneq
e (β1, β2) = 1

2

[
1 −

∣∣∣C(β2, t ) − C(β1, t )
∣∣∣]. (33)

Better discrimination is thus obtained for states with larger
differences of their coherence. In turn, maximally coherent
states are optimal states, since they are more sensible to deco-
herence, which is the sole effect of the pure dephasing model.

In Fig. 2 we show the probability of error (29) for an Ohmic
environment with s = 1 and ωc = 7 kHz. We see that for
T1 = 1 mK (upper panel) there is an optimal time at which
to perform the measurement. Moreover, the minimum pneq

e is
minimum when the second temperature T2 is smaller, as one
would expect. Instead, when T1 = 0 mK (lower panel), there
is a large optimal time interval, at least when times are at the
order of 10−5. If we were to consider different values of s
and ωc, we would obtain similar shapes of pneq

e but different
optimal times. Indeed, the optimal time decreases for non-
Ohmic environments (s �= 1) or for smaller cutoff frequency
ωc. Notice that the value of pneq

e does not depend on ω0.
This is expected since the model we are considering is a pure
dephasing model without energy exchanges.

Finally, in Fig. 3, we compare the performance of the
equilibrium probe studied in Sec. III to that of a dephasing

FIG. 2. Probability of error pneq
e (T1, T2) for a qubit (29) as a

function of time t and T2 for maximally coherent state ρ10 = 1/2.
We fixed ωc = 7 kHz and s = 1. Upper panel: T1 = 1 mK. Lower
panel: T1 = 0 K.

one. In order to have a faithful comparison, we introduce a
gain factor defined as

η(T1, T2) = 1 − pneq
e (T1, T2)

peq
e (T1, T2)

. (34)

A positive value of η(T1, T2) means that the probability of er-
ror in the nonequilibrium regime is lower than the probability
of error in the equilibrium regime. Thus η quantifies the gain
we obtain with a nonequilibrium probe. In contrast, negative η

means that an equilibrium probe provides a lower probability
of error, and thus the latter is preferable. We show the gain
factor in the upper panel of Fig. 3 for T1 = 1 mK. We see
that there is a threshold time, below which out-of-equilibrium
probes outperform equilibrium ones. After that time, out-of-
equilibrium and equilibrium probes provide nearly the same
performance. The gain factor for T1 = 0 K is shown in the
lower panel of Fig. 3. Here, we see a completely different
behavior. The reason lies in the fact that in the limit of T1 → 0
and for T2 ∼ 10−3 we have peq

e � 1/4, i.e., we are in the
region where equilibrium probes are optimal.
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FIG. 3. Gain factor η (equilibrium vs out of equilibrium) given in
(34) as a function of time t and T2 for the maximally coherent state.
We fixed ωc = 7 kHz and s = 1. Further, we plot η for T2 ∼ 10−8 to
show that it becomes negative when T2 approaches zero, according
to the lower panel. Upper panel: T1 = 1 mK. Lower panel: T1 = 0 K.
Notice the different contour scales in the two plots.

C. Out-of-equilibrium qutrit probe

In this section we devote our attention to a three-level sys-
tem with equispaced energy levels. In this system, δ0 = −2,
δ1 = 0, and δ2 = +2, and we make the identification |e0〉 →
|0〉, |e1〉 → |1〉, and |e2〉 → |2〉. The reduced dynamics is
given by Eq. (18), with the matrix Vβ (t ) now given by

Vβ (t ) =
⎛
⎝ 1 e�(t |β ) e4�(t |β )

e�(t |β ) 1 e�(t |β )

e4�(t |β ) e�(t |β ) 1

⎞
⎠. (35)

In order to compare results with those obtained with a qubit
probe, we consider a qutrit initially prepared in a maximally
coherent state |ϕ3〉 = (|0〉 + |1〉 + |2〉)/

√
3 and in a qubitlike

state |ϕq〉 = (|0〉 + |2〉)/
√

2.
In the first case, the trace of the operator |�| defined in (2)

is given by

Tr[|�|] = 1
6 |D3(t ; β1, β2)|

[
1 +

√
1 + 8

(D2(t ;β1,β2 )
D3(t ;β1,β2 )

)2
]

where we have defined

DN (t ; β1, β2) = e(N−1)2�(t |β2 ) − e(N−1)2�(t |β1 ) (36)

(sometimes shortened to DN ). The corresponding probability
of error pneq

e3 (T1, T2) may be then obtained from Eq. (3). The
optimal POVM is given by {�1 = I3 − �2,�2 = |λ0〉〈λ0|}
where

|λ0〉 = 1√
2 + |α|2

(|ẽ0〉 + α|ẽ1〉 + |ẽ2〉) (37)

with

α =
−4D2

2 + D2
3 − D3

√
8D2

2 + D2
3

D2(3D3 +
√

8D2
2 + D2

3 )
(38)

and with the modified energy eigenbasis |ẽ j〉 = e
iξ (t )δ2

j
4 |e j〉.

Differently from the qubit case, here the optimal POVM is
both time and temperature dependent. For the state |ϕq〉, pneq

e2
is instead similar to that of the qubit, i.e.,

pneq
e2 (β1, β2) = 1

2
− |ρ10|

2

∣∣∣e4�(t |β1 ) − e4�(t |β2 )
∣∣∣, (39)

with the difference that the exponentials have a more rapid
decrease. The behavior is thus similar to that of the qubit, but
the minimum is achieved at smaller times.

We now compare the probability of error obtained with
an equilibrium probe to that obtained for a qutrit initially
prepared in a maximally coherent state. The gain factor is
defined as

η3(T1, T2) = 1 − pneq
e3 (T1, T2)

peq
e3(T1, T2)

, (40)

and the value for T1 = 1 mK is shown in the upper panel
of Fig. 4. We see a positive gain factor for times smaller
than a certain threshold time (which depends on the second
temperature T2). The shape of the η3 is similar to that of the
qubit η, but the values are larger (see Fig. 3), in particular the
contour scale.

In order to highlight this possible enhancement, we com-
pare the probabilities of error obtained with a maximally
coherent qubit and a maximally coherent qutrit. The corre-
sponding gain factor is defined as

ηc(T1, T2) = 1 − pneq
e3 (T1, T2)

pneq
e (T1, T2)

(41)

and it is shown in the lower panel of Fig. 4. As we expect,
there is an improvement in the discrimination task, especially
when T2 is very small. The physical intuition behind this
result is that quantum coherence becomes more fragile for
increasing dimension, and thus a qutrit probe is more sensitive
than a qubit one.

D. Out-of-equilibrium equispaced qudit with dimension N

We consider now a qudit with generic dimension N pre-
pared in a maximally coherent state ρS = 1/NJN , where JN is
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FIG. 4. Upper panel: Gain factor η3 (equilibrium vs out of equi-
librium) given in (40). Lower panel: Gain factor ηc (qubit vs qutrit)
given in (41). Both are a function of time t and T2. We fixed ωc =
7 kHz, s = 1, and T1 = 1 mK. Notice the different time scales and
the different contour scales in the two panels.

the N-dimensional matrix of ones. In this case the � is

� = 1

2N
(Vβ2 (t ) − Vβ1 (t )) ◦ R(t )

= 1

2N

∑
jk

(
e

(δ j −δk )2

4 �(t |β2 ) − e
(δ j −δk )2

4 �(t |β1 )

)
|ẽ j〉〈ẽk| (42)

where we have defined the modified energy eigenbasis

|ẽ j〉 = e
iξ (t )δ2

j
4 |e j〉. Assuming that the optimal regime is when

�(t |β1) � 0 and �(t |β2) � 0, we have that the operator � in
the modified basis is

� � 1

2N

⎛
⎜⎜⎝

0 1 · · · 1
1 0 · · · 1
...

...
. . .

...

1 1 · · · 0

⎞
⎟⎟⎠. (43)

Under these conditions, the trace of |�| is equal to 1 − 1/N
and as a result

pneq
e,N � 1

2N
, (44)

which is the same scaling as that of the equilibrium probe [see
(9)]. Nevertheless, from the comparison between equilibrium
and out-of-equilibrium probes (see Fig. 3 and upper panel
in Fig. 4), a slight enhancement is still possible, due to the
different value of the parameter in which the lower bounds (9)
and (44) are achieved. Furthermore, in the region where the
lower bound is attained, if the dimensions are N1 and N2, we
obtain

ηN1,N2
c (T1, T2) = 1 − pneq

eN1
(T1, T2)

pneq
eN2

(T1, T2)
� 1 − N2

N1
. (45)

In the case of qubit vs qutrit η3,2
c (T1, T2) � 1/3, matching the

maximum ηc we see in the lower panel of Fig. 4.
Concerning the optimal POVM, we can see that the latter

can be approximated by the projectors {�1 = IN − �2, �2 =
|λ0〉〈λ0|} where

|λ0〉 = 1√
N

N∑
i=0

|ẽi〉. (46)

Notice that the POVM depends on time t , which is encoded in
phase factor ξ (t ), but not on temperatures β1 and β2.

E. Out-of-equilibrium quantum register made of two qubits

Now, we investigate the performance of a quantum register
of two qubits interacting locally with the thermal bath [19,33].
In this case the matrix of the levels spacing is given by

H(2,2) = (σ3 ⊗ I2 + I2 ⊗ σ3). (47)

We thus obtain that δ00 = −2, δ01 = 0 = δ10, and δ11 =
+2 and make the identifications |e0〉 → |00〉, |e1〉 → |01〉,
|e2〉 → |10〉, and |e3〉 → |11〉. The reduced dynamics is given
by Eq. (18), with the matrix Vβ (t ) now given by

Vβ (t ) =

⎛
⎜⎜⎝

1 e�(t |β ) e�(t |β ) e4�(t |β )

e�(t |β ) 1 1 e�(t |β )

e�(t |β ) 1 1 e�(t |β )

e4�(t |β ) e�(t |β ) e�(t |β ) 1

⎞
⎟⎟⎠. (48)

For the register initially prepared in a maximally coherent
state |ϕ4〉 = 1

4

∑
k |ek〉 we have

Tr[|�|] = 1

8
|D3(t ; β1, β2)|

×
⎡
⎣1 +

√
1 + 16

(D2(t ; β1, β2)

D3(t ; β1, β2)

)2
⎤
⎦. (49)

The corresponding probability of error pneq
e4 (T1, T2) may be

then obtained from Eq. (3). Consequently the POVM is given
by {�1 = I4 − �2,�2 = |λ0〉〈λ0|} where

|λ0〉 = 1√
2 + 2|γ |2

(|ẽ0〉 + γ |ẽ1〉 + γ |ẽ2〉 + |ẽ3〉) (50)

with

γ =
D2(3D3 +

√
16D2

2 + D2
3 )

4D2
2 + D2

3 + B
√

16D2
2 + D2

3

. (51)
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FIG. 5. Gain factor ηe (maximally coherent vs entangled probes)
given in (52) as a function of time t and T2. We fixed ωc = 7 kHz and
s = 1 and T1 = 1 mK.

Again, the optimal POVM depends both on time t and on
temperatures β1 and β2.

Moreover, having at one’s disposal two qubits, one may
wonder whether entanglement may play a role in the dis-
crimination task. We thus consider the four Bell states as
possible initial preparation of the probe register. As it may be
easily seen, the states |�±〉 = 1/

√
2(|01〉 ± |10〉) are useless

since they are invariant under dynamics (48). Concerning the
states |�±〉 = 1/

√
2(|00〉 ± |11〉) the probability of error pneq

�+
is equal to that of the qutrit (39) prepared in the state |ϕq〉.

In order to evaluate whether entanglement is a resource or
not in the discrimination task, we compare the error prob-
ability obtained with a maximally coherent probe with that
obtained with the Bell state |�+〉 by the factor

ηe(T1, T2) = 1 − pneq
�+ (T1, T2)

pneq
e4 (T1, T2)

. (52)

In Fig. 5, we clearly see a threshold time that splits the plot
into two parts: in the first, at smaller times, entangled probes
lead to a lower probability of error. In the second region,
i.e., for larger times, maximally coherent probes outperform
entangled ones. In the next section, we will explore in detail
the performance of entangled probes, thus providing an ex-
planation of why entangled states are better probes at smaller
times. The implementation of the optimal POVM will be also
discussed.

F. Out-of-equilibrium entangled states in a quantum
register of N qubits

Finally, we explore the performance of entangled states in
a N-dimensional quantum register.

First, let us consider N-dimensional Greenberger-Horne-
Zeilinger (GHZ) states |GHZN 〉 = 1√

2
(|0 · · · 0〉 + |1 · · · 1〉). In

the basis |ẽ j〉 we have that

� = 1

4

⎛
⎝ 0 · · · DN (t ; β1, β2)

...
. . .

...

DN (t ; β1, β2) · · · 0

⎞
⎠. (53)

It is straightforward to see that

pneq
e (β1, β2; N ) = 1

2

(
1 − |DN (t ; β1, β2)|

2

)
. (54)

The probability of error has the same form as that of the qubit,
with the only difference in the prefactor of �(t |β ), which
results only in a rescaling of the optimal time, as it has been
discussed for the quantum register of two qubits. The optimal
POVM is given by {�1 = |GHZN 〉〈GHZN |,�2 = I2N − �1}
and it is time and temperature independent. In addition, we
notice that in the optimal region �(t |β1) � 0 and �(t |β2) � 0
we have that pneq

e � 1/4, so there is no scaling advantage in
term of dimension N .

Secondly, we consider W states, i.e., |WN 〉 =
1/

√
N (|10 · · · 0〉 + |01 · · · 0〉 + . . . |0 · · · 01〉). All the

elements in the superposition have the same energy, so
the state is stationary [see (21)]. Thus, there is no dephasing
in the state and consequently the probability of error is
maximum pneq

e = 1/2.

V. CONCLUSION

In this paper, we have analyzed in detail the use of quantum
probes to discriminate two structured baths at different tem-
peratures. In particular, we have addressed quantum probes
interacting with their environment by a dephasing Hamilto-
nian and compared the discrimination performance with those
of equilibrium probes.

At first, we have addressed the discrimination problem
for an equilibrium probe and evaluated the probability of
error, showing that energy measurement is optimal in this
regime. We have then moved to out-of-equilibrium dephas-
ing probes, and derived the exact reduced dynamics for a
finite quantum system locally interacting with an Ohmic-like
thermal bath. Upon exploiting this result, we have studied
the behavior of the probability of error as a function of the
interaction time and found that in the low-temperature regime
out-of-equilibrium probes outperform equilibrium ones at fi-
nite times. We also found that there is a finite value of the
interaction time minimizing the probability of error. In turn,
it results that for qubit systems maximally coherent states
generally represent the best preparation of the probe for the
discrimination task. On the other hand, when one of the two
temperatures is zero, equilibrium probes may represent the
optimal choice. For maximally coherent qubit probes, we have
obtained the optimal POVM, which is a spin measurement
along the x axis. Remarkably, this POVM is independent of
time and temperatures (except for the free evolution phase
factor). Instead, for maximally coherent qudits of dimension
N , we found that under some conditions there is an opti-
mal region where the minimum probability of error scales
as 1/2N . In general, for qudits, the optimal POVM is time
and temperatures dependent, but the temperature dependency
disappears in the optimal region.

We have compared qubit probes with qutrit ones, and have
shown numerically that qutrits allow one to achieve lower
error probability. Finally, we have also investigated the role
of entanglement, showing that at variance with maximally
coherent probes there is no scaling in the minimum of the
probability of error, but only a decrease in the optimal time
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scale. Moreover, the optimal POVM for GHZ states does not
depend on the temperatures. Overall, we conclude that the
optimal POVM may be easily implemented for qubit and
GHZ probes, whereas it may be more challenging to realize
in practice optimal discrimination with higher dimensional
probes.

Our results indicate that dephasing quantum probes
are useful for the task of discriminating temperatures at
intermediate interaction times, and that out-of-equilibrium

coherent quantum probes represent a resource not only for
quantum estimation but also for quantum discrimination.
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